Analysis, Evaluation and Reusability of Virtual Laboratory Software Based on Conceptual Modeling and Conformance Checking †
Abstract
:1. Introduction
1.1. Virtual Laboratories Software
1.2. Software Engineering Models and Methods
1.3. Conformance Checking
1.4. Contribution
2. Conceptual Modeling of Virtual Laboratory Experiments
2.1. Conceptual Modeling Tools
2.1.1. UML Activity Diagrams
- A is a set of action names;
- Vinp is a set of input variables over finite domains;
- Vloc is a set of local variables over finite domains;
- AN is a set of action nodes, an1 with acname (an) = ac ∊ A;
- PN is a set of pseudo-nodes, such as initial nodes PNinit, final nodes PNfin, decision nodes PNdec.
2.1.2. Petri Nets
2.2. Virtual Laboratory
2.3. Modeling Experiments within a Virtual Laboratory
3. Conformance Checking Framework for Evaluation and Reusability of Virtual Laboratory
3.1. Conformance Checking Preliminaries
Fitness
3.2. Proposed Implementation Framework
4. A Prototype Implementation of a Fitness Metric for Virtual Lab Experiments to Assist Education Analysts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofstein, A.; Lunetta, V.N. The Laboratory in Science Education: Foundations for the Twenty-First Century. Sci. Educ. 2004, 88, 28–54. [Google Scholar] [CrossRef]
- Schneider, J.; Felkai, C.; Munro, I. A Comparison of Real and Virtual Laboratories for Pharmacy Teaching. Pharmacy 2022, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Lazonder, A.W.; Harmsen, R. Meta-Analysis of Inquiry-Based Learning: Effects of Guidance. Rev. Educ. Res. 2016, 86, 681–718. [Google Scholar] [CrossRef]
- Wörner, S.; Kuhn, J.; Scheiter, K. The Best of Two Worlds: A Systematic Review on Combining Real and Virtual Experiments in Science Education. Rev. Educ. Res. 2022, 92, 911–952. [Google Scholar] [CrossRef]
- Pedaste, M.; Mäeots, M.; Siiman, L.A.; De Jong, T.; Van Riesen, S.A.N.; Kamp, E.T.; Manoli, C.C.; Zacharia, Z.C.; Tsourlidaki, E. Phases of Inquiry-Based Learning: Definitions and the Inquiry Cycle Educational Research Review Phases of Inquiry-Based Learning: Definitions and the Inquiry Cycle. Educ. Res. Rev. 2015, 14, 47–61. [Google Scholar] [CrossRef]
- Sypsas, A.; Paxinou, E.; Kalles, D. Reviewing Inquiry-Based Learning Approaches in Virtual Laboratory Environment for Science Education. In Proceedings of the Conference in Open & Distance Education, Athens, Greece, 22–24 November 2019; pp. 74–89. [Google Scholar]
- Makransky, G.; Thisgaard, M.W.; Gadegaard, H. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills. PLoS ONE 2016, 11, e0155895. [Google Scholar] [CrossRef]
- Brinson, J.R. Learning Outcome Achievement in Non-Traditional (Virtual and Remote) versus Traditional (Hands-on) Laboratories: A Review of the Empirical Research. Comput. Educ. 2015, 87, 218–237. [Google Scholar] [CrossRef]
- Sypsas, A.; Kalles, D. Virtual Laboratories in Biology, Biotechnology and Chemistry Education: A Literature Review. In Proceedings of the 22nd Pan-Hellenic Conference on Informatics, Athens, Greece, 29 November–1 December 2018; pp. 70–75. [Google Scholar] [CrossRef]
- Sypsas, A.; Kiourt, C.; Paxinou, E.; Zafeiropoulos, V.; Kalles, D. The Educational Application of Virtual Laboratories in Archaeometry. Int. J. Comput. Methods Herit. Sci. 2019, 3, 1–19. [Google Scholar] [CrossRef]
- Rossiter, J.A. Low Production Cost Virtual Modelling and Control Laboratories for Chemical Engineering Students. IFAC-PapersOnLine 2016, 49, 230–235. [Google Scholar] [CrossRef]
- Paxinou, E.; Zafeiropoulos, V.; Sypsas, A.; Kiourt, C.; Kalles, D. Assessing the Impact of Virtualizing Physical Labs. In Proceedings of the Exploring the Micro, Meso and Macro Navigating between Dimensions in the Digital Learning Landscape, Genoa, Italy, 17–20 June 2018; Volungeviciene, A., Szűcs, A., Eds.; European Distance and E-Learning Network: Genoa, Italy, 2018; pp. 151–158. [Google Scholar]
- Vasiliadou, R. Virtual Laboratories during Coronavirus (COVID-19) Pandemic. Biochem. Mol. Biol. Educ. 2020, 48, 482–483. [Google Scholar] [CrossRef]
- Kapilan, N.; Vidhya, P.; Gao, X.Z. Virtual Laboratory: A Boon to the Mechanical Engineering Education during COVID-19 Pandemic. High. Educ. Futur. 2021, 8, 31–46. [Google Scholar] [CrossRef]
- Abumalloh, R.A.; Asadi, S.; Nilashi, M.; Minaei-Bidgoli, B.; Nayer, F.K.; Samad, S.; Mohd, S.; Ibrahim, O. The Impact of Coronavirus Pandemic (COVID-19) on Education: The Role of Virtual and Remote Laboratories in Education. Technol. Soc. 2021, 67, 101728. [Google Scholar] [CrossRef] [PubMed]
- Elmoazen, R.; Saqr, M.; Khalil, M.; Wasson, B. Learning Analytics in Virtual Laboratories: A Systematic Literature Review of Empirical Research. Smart Learn. Environ. 2023, 10, 23. [Google Scholar] [CrossRef]
- Huppert, J.; Lomask, S.M.; Lazarowitz, R. Computer Simulations in the High School: Students’ Cognitive Stages, Science Process Skills and Academic Achievement in Microbiology. Int. J. Sci. Educ. 2002, 24, 803–821. [Google Scholar] [CrossRef]
- Rivers, R.H.; Vockell, E. Computer Simulations to Stimulate Scientific Problem Solving. J. Res. Sci. Teach. 1987, 24, 403–415. [Google Scholar] [CrossRef]
- Riess, W.; Mischo, C. Promoting Systems Thinking through Biology Lessons. Int. J. Sci. Educ. 2010, 32, 705–725. [Google Scholar] [CrossRef]
- Tüysüz, C. The Effect of the Virtual Laboratory on Students’ Achievement and Attitude in Chemistry. Int. Online J. Educ. Sci. 2010, 2, 37–53. [Google Scholar]
- Gibbons, N.J.; Evans, C.; Payne, A.; Shah, K.; Griffin, D.K. Computer Simulations Improve University Instructional Laboratories. Cell Biol. Educ. 2004, 3, 263–269. [Google Scholar] [CrossRef]
- Martinez-Jiménez, P.; Pontes-Pedrajas, A.; Polo, J.; Climent-Bellido, M.S. Learning in Chemistry with Virtual Laboratories. J. Chem. Educ. 2003, 80, 346–352. [Google Scholar] [CrossRef]
- Grimaldi, D.; Rapuano, S. Hardware and Software to Design Virtual Laboratory for Education in Instrumentation and Measurement. Measurement 2009, 42, 485–493. [Google Scholar] [CrossRef]
- Xie, W.; Yang, X.; Li, F. A Virtual Laboratory Platform and Simulation Software Based on Web. In Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 1650–1654. [Google Scholar]
- Gubsky, D.S.; Kleschenkov, A.B.; Mamay, I.V. Virtual Laboratory for Microwave Measurements. Comput. Appl. Eng. Educ. 2019, 27, 1496–1505. [Google Scholar] [CrossRef]
- Liu, Y.H.; He, Y.T.; Tian, D.; Fan, R.L.; Yao, L. A Web-Based Virtual Laboratory for SHRIMP. Comput. Appl. Eng. Educ. 2018, 26, 1493–1506. [Google Scholar] [CrossRef]
- Makransky, G.; Bonde, M.T.; Wulff, J.S.G.; Wandall, J.; Hood, M.; Creed, P.A.; Bache, I.; Silahtaroglu, A.; Nørremølle, A. Simulation Based Virtual Learning Environment in Medical Genetics Counseling: An Example of Bridging the Gap between Theory and Practice in Medical Education. BMC Med. Educ. 2016, 16, 98. [Google Scholar] [CrossRef]
- Bonde, M.T.; Makransky, G.; Wandall, J.; Larsen, M.V.; Morsing, M.; Jarmer, H.; Sommer, M.O.A. Improving Biotech Education through Gamified Laboratory Simulations. Nat. Biotechnol. 2014, 32, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Zafeiropoulos, V.; Kalles, D. Performance Evaluation in Virtual Lab Training. In Proceedings of the Online, Open and Flexible Higher Education Conference 2016, Rome, Italy, 19–21 October 2016; pp. 455–468. [Google Scholar]
- Sus, B.; Revenchuk, I.; Tmienova, N.; Bauzha, O.; Chaikivskyi, T. Software System for Virtual Laboratory Works. In Proceedings of the 2020 IEEE 15th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine, 23–26 September 2020; Volume 1, pp. 396–399. [Google Scholar]
- Vergara, D.; Fernández-Arias, P.; Extremera, J.; Dávila, L.P.; Rubio, M.P. Educational Trends Post COVID-19 in Engineering: Virtual Laboratories. Mater. Today Proc. 2022, 49, 155–160. [Google Scholar] [CrossRef]
- Ramírez, J.; Soto, D.; López, S.; Akroyd, J.; Nurkowski, D.; Botero, M.L.; Bianco, N.; Brownbridge, G.; Kraft, M.; Molina, A. A Virtual Laboratory to Support Chemical Reaction Engineering Courses Using Real-Life Problems and Industrial Software. Educ. Chem. Eng. 2020, 33, 36–44. [Google Scholar] [CrossRef]
- Waltemath, D.; Adams, R.; Beard, D.A.; Bergmann, F.T.; Bhalla, U.S.; Britten, R.; Chelliah, V.; Cooling, M.T.; Cooper, J.; Crampin, E.J.; et al. Minimum Information about a Simulation Experiment (MIASE). PLoS Comput. Biol. 2011, 7, e1001122. [Google Scholar] [CrossRef]
- Le Novère, N. Model Storage, Exchange and Integration. BMC Neurosci. 2006, 7, S11. [Google Scholar] [CrossRef]
- Klipp, E.; Liebermeister, W.; Helbig, A.; Kowald, A.; Schaber, J. Systems Biology Standards—The Community Speaks. Nat. Biotechnol. 2007, 25, 390–391. [Google Scholar] [CrossRef]
- Kumar, G.; Bhatia, P.K. Comparative Analysis of Software Engineering Models from Traditional to Modern Methodologies. In Proceedings of the 2014 Fourth International Conference on Advanced Computing and Communication Technologies, Rohtak, India, 8–9 February 2014; pp. 189–196. [Google Scholar]
- Yu, E.S.K.; Mylopoulos, J. Understanding “why” in Software Process Modelling, Analysis, and Design. In Proceedings of the 16th International Conference on Software Engineering, Sorrento, Italy, 16–21 May 1994; pp. 159–168. [Google Scholar] [CrossRef]
- Petersen, K.; Wohlin, C.; Baca, D. The Waterfall Model in Large-Scale Development. In Proceedings of the PROFES 2009, LNBIP 32, Berlin/Heidelberg, Germany, 15–17 June 2019; Bomarius, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 386–400. [Google Scholar]
- Amritesh; Misra, S.C. Conceptual Modeling for Knowledge Management to Support Agile Software Development. Knowl. Eng. Rev. 2014, 29, 496–511. [Google Scholar] [CrossRef]
- Frakes, W.B.; Kang, K. Software Reuse Research: Status and Future. IEEE Trans. Softw. Eng. 2005, 31, 529–536. [Google Scholar] [CrossRef]
- Criado, J.; Iribarne, L. Reusability and Discovery Models in Software Systems: A Systematic Literature Review. J. Object Technol. 2022, 21, 1–17. [Google Scholar] [CrossRef]
- Khan, F.; Lingala, G. Machine Learning Techniques For Software Component Reusability. In Proceedings of the 2022 3rd International Conference for Emerging Technology, INCET 2022, Belgaum, India, 27–29 May 2022; pp. 1–6. [Google Scholar]
- Kessentini, W.; Sahraoui, H.; Wimmer, M. Automated Metamodel/Model Co-Evolution Using a Multi-Objective Optimization Approach. In Proceedings of the European Conference on Modelling Foundations and Applications, Vienna, Austria, 6–7 July 2016; pp. 138–155. [Google Scholar]
- Brambilla, M.; Cabot, J.; Wimmer, M. Introduction. In Model-Driven Software Engineering in Practice. Synthesis Lectures on Software Engineering; Baresi, L., Ed.; Springer: Cham, Switzerland, 2017; pp. 1–6. [Google Scholar]
- Eshuis, R. Symbolic Model Checking of UML Activity Diagrams. ACM Trans. Softw. Eng. Methodol. 2006, 15, 1–38. [Google Scholar] [CrossRef]
- Sypsas, A.; Kalles, D. Computing Similarities Between Virtual Laboratory Experiments Models Using Petri Nets. In Proceedings of the 20th International Conference on Modelling and Applied Simulation, MAS 2021, Online, 15–17 September 2021; pp. 29–37. [Google Scholar]
- Scacchi, W. Process Models in Software Engineering. In Encyclopedia of Software Engineering, 2nd ed.; Marciniak, J.J., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; p. 28. [Google Scholar]
- Sypsas, A.; Kalles, D. Reviewing Process Mining Applications and Techniques in Education. Int. J. Artif. Intell. Appl. 2022, 13, 83–102. [Google Scholar] [CrossRef]
- van der Aalst, W.M.P. Process Mining: A 360 Degree Overview. In Process Mining Handbook; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 3–34. ISBN 9783031088483. [Google Scholar]
- Romero, C.; Cerezo, R.; Bogarín, A.; Sánchez-Santillán, M. Educational Process Mining: A Tutorial and Case Study Using Moodle Data Sets. In Data Mining and Learning Analytics: Applications in Educational Research; Elatia, S., Ipperciel, D., Zaïane, O.R., Eds.; John Wiley & Sons, Inc.: New Jersey, USA, 2016; pp. 3–28. ISBN 9781118998236. [Google Scholar]
- Macak, M.; Daubner, L.; Sani, M.F.; Buhnova, B. Cybersecurity Analysis via Process Mining: A Systematic Literature Review. In Proceedings of the International Conference on Advanced Data Mining and Applications, Brisbane, QLD, Australia, 28–30 November 2022; Springer: Cham, Switzerland, 2022; Volume 13087, pp. 393–407. [Google Scholar]
- Lemos, A.M.; Sabino, C.C.; Lima, R.M.F.; Oliveira, C.A.L. Using Process Mining in Software Development Process Management: A Case Study. In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October 2011; pp. 1181–1186. [Google Scholar]
- Jensen, C.; Scacchi, W. Data Mining for Software Process Discovery in Open Source Software Development Communities. In Proceedings of the MSR, Edinburgh, UK, 25 May 2004; pp. 96–100. [Google Scholar]
- Rubin, V.; Günther, C.W.; Van Der Aalst, W.M.; Kindler, E.; van Dongen, B.F.; Schäfer, W. Process Mining Framework for Software Processes. In Proceedings of the International Conference on Software Process; Springer; Berlin/Heidelberg, Germany, 2007; pp. 169–181. [Google Scholar]
- Sebu, M.L.; Ciocarlie, H. Applied Process Mining in Software Development. In Proceedings of the 2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 15–17 May 2014; pp. 55–60. [Google Scholar]
- Van Der Aalst, W. Process Mining. Commun. ACM 2012, 55, 76–83. [Google Scholar] [CrossRef]
- Rozinat, A.; Van der Aalst, W.M. Conformance Checking of Processes Based on Monitoring Real Behavior. Inf. Syst. 2008, 33, 64–95. [Google Scholar] [CrossRef]
- Leemans, S.J.J.; Fahland, D.; van der Aalst, W.M.P. Scalable Process Discovery and Conformance Checking. Softw. Syst. Model. 2018, 17, 599–631. [Google Scholar] [CrossRef]
- Fani Sani, M.; van Zelst, S.J.; van der Aalst, W.M.P. Conformance Checking Approximation Using Subset Selection and Edit Distance. In Proceedings of the Advanced Information Systems Engineering, Grenoble, France, 8–12 June 2020; Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 234–251. [Google Scholar]
- Daum, B. Modeling Business Objects with XML Schema; Morgan Kaufmann: Heidelberg, Germany, 2003. [Google Scholar]
- Ahmad, T.; Iqbal, J.; Ashraf, A.; Truscan, D.; Porres, I. Model-Based Testing Using UML Activity Diagrams: A Systematic Mapping Study. Comput. Sci. Rev. 2019, 33, 98–112. [Google Scholar] [CrossRef]
- Sypsas, A.; Kalles, D. Using UML Activity Diagram for Adapting Experiments under a Virtual Laboratory Environment. In Proceedings of the 24th Pan-Hellenic Conference on Informatics, Athens, Greece, 20–22 November 2020; pp. 27–30. [Google Scholar] [CrossRef]
- Chishti, I.; Basukoski, A.; Chaussalet, T.; Beeknoo, N. Transformation of UML Activity Diagram for Enhanced Reasoning. Adv. Intell. Syst. Comput. 2019, 881, 466–482. [Google Scholar] [CrossRef]
- Peleg, M.; Yeh, I.; Altman, R.B. Modelling Biological Processes Using Workflow and Petri Net Models. Bioinformatics 2002, 18, 825–837. [Google Scholar] [CrossRef]
- Rehman, A.; Latif, S.; Zafar, N.A. Formal Modeling of Smart Office Using Activity Diagram and Non Deterministic Finite Automata. In Proceedings of the 2019 International Conference on Information Science and Communication Technology, ICISCT 2019, Karachi, Pakistan, 9–10 March 2019; pp. 1–5. [Google Scholar]
- Peng, D.; Warnke, T.; Haack, F.; Uhrmacher, A.M. Reusing Simulation Experiment Specifications to Support Developing Models by Successive Extension. Simul. Model. Pract. Theory 2016, 68, 33–53. [Google Scholar] [CrossRef]
- Hucka, M.; Bergmann, F.T.; Hoops, S.; Keating, S.M.; Sahle, S.; Schaff, J.C.; Smith, L.P.; Wilkinson, D.J. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core. J. Integr. Bioinform. 2015, 12, 382–549. [Google Scholar] [CrossRef]
- Waltemath, D.; Adams, R.; Bergmann, F.T.; Hucka, M.; Kolpakov, F.; Miller, A.K.; Moraru, I.I.; Nickerson, D.; Sahle, S.; Snoep, J.L.; et al. Reproducible Computational Biology Experiments with SED-ML—The Simulation Experiment Description Markup Language. BMC Syst. Biol. 2011, 5, 198. [Google Scholar] [CrossRef] [PubMed]
- Maoz, S.; Ringert, J.O.; Rumpe, B. ADDiff: Semantic Differencing for Activity Diagrams. In Proceedings of the 8th Joint European Software Engineering Conference (ESEC) and Symposium on the Foundations of Software Engineering (FSE), Szeged, Hungary, 5–9 September 2011; pp. 179–189. [Google Scholar]
- Rahmoune, Y.; Chaoui, A.; Kerkouche, E. A Framework for Modeling and Analysis UML Activity Diagram Using Graph Transformation. Procedia Comput. Sci. 2015, 56, 612–617. [Google Scholar] [CrossRef]
- Reisig, W.; Rozenberg, G. (Eds.) Lectures on Petri Nets I: Basic Models; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1491. [Google Scholar]
- Murata, T. Petri Nets: Properties, Analysis and Applications. Proc. IEEE 1989, 77, 541–580. [Google Scholar] [CrossRef]
- Huang, E.; McGinnis, L.F.; Mitchell, S.W. Verifying SysML Activity Diagrams Using Formal Transformation to Petri Nets. Syst. Eng. 2019, 23, 118–135. [Google Scholar] [CrossRef]
- Szilágyi, L. Random Process Simulation Using Petri Nets. In Proceedings of the MACRo 2015, Tirgu Mures, Romani, 6–7 March 2015; Volume 1, pp. 177–182. [Google Scholar]
- Thong, W.J.; Ameedeen, M.A. A Survey of Petri Net Tools. In Proceedings of the Advanced Computer and Communication Engineering Technology. Lecture Notes in Electrical Engineering, Cham, Switzerland, 24 December 2015; Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C., Eds.; Springer: Cham, Switzerland, 2015; pp. 537–551. [Google Scholar]
- Trčka, N.; Pechenizkiy, M.; van der Aalst, W. Process Mining from Educational Data. In Handbook of Educational Data Mining; Romero, C., Ventura, S., Pechenizkiy, M., Baker, R., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 123–142. ISBN 9781439804582. [Google Scholar]
- Sani, M.F.; Gonzalez, J.J.G.; Van Zelst, S.J.; Van Der Aalst, W.M.P. Conformance Checking Approximation Using Simulation. In Proceedings of the 2020 2nd International Conference on Process Mining (ICPM), Padua, Italy, 5–8 October 2020; pp. 105–112. [Google Scholar]
- Sypsas, A.; Kalles, D. Applying Conformance Checking on Virtual Laboratory Experiments. In Proceedings of the 21st International Conference on Modeling and Applied Simulation, MAS 2022, Rome, Italy, 19–21 September 2022. [Google Scholar]
- Taymouri, F.; Carmona, J. Computing Alignments of Well-Formed Process. ACM Trans. Softw. Eng. Methodol. 2020, 29, 1–41. [Google Scholar] [CrossRef]
Log File | Fitness Value |
---|---|
Log1 | 0.59 |
Log2 | 0.57 |
Log3 | 0.61 |
Log4 | 0.63 |
Log5 | 0.56 |
Log6 | 0.55 |
Log7 | 0.62 |
Log8 | 0.65 |
Log9 | 0.58 |
Log10 | 0.67 |
Log11 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sypsas, A.; Kalles, D. Analysis, Evaluation and Reusability of Virtual Laboratory Software Based on Conceptual Modeling and Conformance Checking. Mathematics 2023, 11, 2153. https://doi.org/10.3390/math11092153
Sypsas A, Kalles D. Analysis, Evaluation and Reusability of Virtual Laboratory Software Based on Conceptual Modeling and Conformance Checking. Mathematics. 2023; 11(9):2153. https://doi.org/10.3390/math11092153
Chicago/Turabian StyleSypsas, Athanasios, and Dimitris Kalles. 2023. "Analysis, Evaluation and Reusability of Virtual Laboratory Software Based on Conceptual Modeling and Conformance Checking" Mathematics 11, no. 9: 2153. https://doi.org/10.3390/math11092153
APA StyleSypsas, A., & Kalles, D. (2023). Analysis, Evaluation and Reusability of Virtual Laboratory Software Based on Conceptual Modeling and Conformance Checking. Mathematics, 11(9), 2153. https://doi.org/10.3390/math11092153