Determining the Coefficients of the Thermoelastic System from Boundary Information
Abstract
:1. Introduction
1.1. Thermoelastic Operator
1.2. Thermoelastic Calderón Problem
1.3. Boundary Normal Coordinates
1.4. Pseudodifferential Operators and Symbols
1.5. The Main Results of This Paper
1.6. The Main Ideas of This Paper
- (i)
- How to solve the unknown matrix from the following matrix equation?
- (ii)
2. Symbols of the Pseudodifferential Operators
3. Determining Coefficients on the Boundary
4. Global Uniqueness of Real Analytic Coefficients
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kupradze, V.; Gegelia, T.; Basheleishvili, M.; Burchuladze, T. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity; North-Holland Series in Applied Mathematics & Mechanics 25; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Liu, G. Determination of isometric real-analytic metric and spectral invariants for elastic Dirichlet-to-Neumann map on Riemannian manifolds. arXiv 2019, arXiv:1908.05096. [Google Scholar]
- Liu, G.; Tan, X. Asymptotic expansion of the heat trace of the thermoelastic Dirichlet-to-Neumann map. arXiv 2022, arXiv:2206.01374. [Google Scholar]
- Tan, X.; Liu, G. Determining Lamé coefficients by elastic Dirichlet-to-Neumann map on a Riemannian manifold. arXiv 2022, arXiv:2211.06650. [Google Scholar]
- Taylor, M. Partial Differential Equations III, 2d ed.; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Landau, L.; Lifshitz, E.M. Theory of Elasticity, 3rd ed.; Butterworth Heinemann: Oxford, UK, 1986. [Google Scholar]
- Liu, G. The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds. Adv. Math. 2011, 228, 2162–2217. [Google Scholar] [CrossRef]
- Liu, G. Asymptotic expansion of the trace of the heat kernel associated to the Dirichlet-to-Neumann operator. J. Differ. Equ. 2015, 259, 2499–2545. [Google Scholar] [CrossRef]
- Liu, G.; Tan, X. Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds. J. Math. Phys. 2023, 64, 041501. [Google Scholar] [CrossRef]
- Calderón, A. On an inverse boundary value problem. Comput. Appl. Math. 2006, 25, 133–138. [Google Scholar] [CrossRef]
- Kohn, R.; Vogelius, M. Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 1984, 37, 289–298. [Google Scholar] [CrossRef]
- Kohn, R.; Vogelius, M. Determining conductivity by boundary measurements. II. Interior results. Comm. Pure Appl. Math. 1985, 38, 643–667. [Google Scholar] [CrossRef]
- Sylvester, J.; Uhlmann, G. A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 1987, 125, 153–169. [Google Scholar] [CrossRef]
- Astala, K.; Päivxaxrinta, L. Calderón’s inverse conductivity problem in the plane. Ann. Math. 2006, 163, 265–299. [Google Scholar] [CrossRef]
- Astala, K.; Lassas, M.; Päivxaxrinta, L. Calderón’s inverse problem for anisotropic conductivity in the plane. Comm. Partial Differ. Equ. 2005, 30, 207–224. [Google Scholar] [CrossRef]
- Imanuvilov, O.; Uhlmann, G.; Yamamoto, M. The Calderón problem with partial data in two dimensions. J. Am. Math. Soc. 2010, 23, 655–691. [Google Scholar] [CrossRef]
- Nachman, A.I. Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 1996, 143, 71–96. [Google Scholar] [CrossRef]
- Sun, Z.; Uhlmann, G. Anisotropic inverse problems in two dimensions. Inverse Probl. 2003, 19, 1001–1010. [Google Scholar] [CrossRef]
- Caro, P.; Rogers, K.M. Global uniqueness for the Calderón problem with Lipschitz conductivities. In Forum of Mathematics, Pi; Cambridge University Press: Cambridge, UK, 2016; Volume 4, p. e2. [Google Scholar]
- Haberman, B.; Tataru, D. Uniqueness in Calderón’s problem with Lipschitz conductivities. Duke Math. J. 2013, 162, 497–516. [Google Scholar] [CrossRef]
- Lee, J.; Uhlmann, G. Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 1989, 42, 1097–1112. [Google Scholar] [CrossRef]
- Sun, Z.; Uhlmann, G. Inverse problems in quasilinear anisotropic media. Am. J. Math. 1997, 119, 771–797. [Google Scholar]
- Uhlmann, G. Electrical impedance tomography and Calderón’s problem. Inverse Probl. 2009, 25, 123011. [Google Scholar] [CrossRef]
- Uhlmann, G. Inverse problems: Seeing the unseen. Bull. Math. Sci. 2014, 4, 209–279. [Google Scholar] [CrossRef]
- Nakamura, G.; Uhlmann, G. Inverse problems at the boundary for an elastic medium. SIAM J. Math. Anal. 1995, 26, 263–279. [Google Scholar] [CrossRef]
- Imanuvilov, O.; Yamamoto, M. Global uniqueness in inverse boundary value problems for the Navier–Stokes equations and Lamé system in two dimensions. Inverse Probl. 2015, 31, 035004. [Google Scholar] [CrossRef]
- Nakamura, G.; Uhlmann, G. Erratum: Global uniqueness for an inverse boundary problem arising in elasticity. Invent. Math. 2003, 152, 205–207. [Google Scholar] [CrossRef]
- Eskin, G.; Ralston, J. On the inverse boundary value problem for linear isotropic elasticity. Inverse Probl. 2002, 18, 907–921. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Problems for Partial Differential Equations, 3rd ed.; Applied Mathematical Sciences; Springer: New York, NY, USA, 2017; Volume 127. [Google Scholar]
- Akamatsu, M.; Nakamura, G.; Steinberg, S. Identification of the Lamé coefficients from boundary observations. Inverse Probl. 1991, 7, 335–354. [Google Scholar] [CrossRef]
- Imanuvilov, O.; Uhlmann, G.; Yamamoto, M. On uniqueness of Lamé coefficients from partial Cauchy data in three dimensions. Inverse Probl. 2012, 28, 125002. [Google Scholar] [CrossRef]
- Imanuvilov, O.; Yamamoto, M. On reconstruction of Lamé coefficients from partial Cauchy data. J. Inverse-Ill-Posed Probl. 2011, 19, 881–891. [Google Scholar] [CrossRef]
- Nakamura, G.; Uhlmann, G. Identification of Lamé parameters by boundary measurements. Am. J. Math. 1993, 115, 1161–1187. [Google Scholar] [CrossRef]
- Liu, G. Determining anisotropic real-analytic metric from boundary electromagnetic information. arXiv 2019, arXiv:1909.12803. [Google Scholar]
- McDowall, S.R. Boundary determination of material parameters from electromagnetic boundary information. Inverse Probl. 1997, 13, 153–163. [Google Scholar] [CrossRef]
- Joshi, M.S.; McDowall, S.R. Total determination of material parameters from electromagnetic boundary information. Pac. J. Math. 2000, 193, 107–129. [Google Scholar] [CrossRef]
- Caro, P.; Zhou, T. Global uniqueness for an IBVP for the time-harmonic Maxwell equations. Anal. PDE 2014, 7, 375–405. [Google Scholar] [CrossRef]
- Pichler, M. An inverse problem for Maxwell equations with Lipschitz parameters. Inverse Probl. 2018, 34, 025006. [Google Scholar] [CrossRef]
- Liu, G. The geometric invariants for the spectrum of the Stokes operator. Math. Ann. 2022, 382, 1985–2032. [Google Scholar] [CrossRef]
- Liu, G. Geometric invariants of spectrum of the Navier-Lamé operator. J. Geom. Anal. 2021, 31, 10164–10193. [Google Scholar] [CrossRef]
- Liu, G. Determining the viscosity from the boundary information for incompressible fluid. arXiv 2020, arXiv:2006.04310. [Google Scholar]
- Heck, H.; Wang, J.-N.; Li, X. Identification of viscosity in an incompressible fluid. Indiana Univ. Math. J. 2007, 56, 2489–2510. [Google Scholar]
- Li, X.; Wang, J.-N. Determination of viscosity in the stationary Navier–Stokes equations. J. Differ. Equ. 2007, 242, 24–39. [Google Scholar] [CrossRef]
- Dos Santos Ferreira, D.; Kenig, C.; Sjöstrand, J.; Uhlmann, G. Determining a Magnetic Schrödinger Operator from Partial Cauchy Data. Commun. Math. Phys. 2007, 271, 467–488. [Google Scholar] [CrossRef]
- Dos Santos Ferreira, D.; Kenig, C.; Salo, M.; Uhlmann, G. Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 2009, 178, 119–171. [Google Scholar] [CrossRef]
- Päivärinta, L.; Salo, M.; Uhlmann, G. Inverse scattering for the magnetic Schrödinger operator. J. Funct. Anal. 2010, 259, 1771–1798. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.; Bao, J. Determination of the insulated inclusion in conductivity problem and related Eshelby conjecture. J. Differ. Equ. 2014, 257, 4503–4524. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, R. Second order asymptotical regularization methods for inverse problems in partial differential equations. J. Comput. Appl. Math. 2020, 375, 112798. [Google Scholar] [CrossRef]
- Zhang, Y.; Hofmann, B. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Probl. Imaging 2021, 15, 229–256. [Google Scholar] [CrossRef]
- Liu, G. Spectral invariants of the perturbed polyharmonic Steklov problem. Calc. Var. Partial Differ. Equ. 2022, 61, 19. [Google Scholar] [CrossRef]
- Liu, G. On asymptotic properties of biharmonic Steklov eigenvalues. J. Differ. Equ. 2016, 261, 4729–4757. [Google Scholar] [CrossRef]
- Taylor, M. Partial Differential Equations II, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Grubb, G. Functional Calculus of Pseudo-Differential Boundary Problems; Birkhäuser: Boston, MA, USA, 1986. [Google Scholar]
- Hörmander, L. The Analysis of Partial Differential Operators III; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Taylor, M. Pseudodifferential Operators; Princeton University Press: Princeton, NJ, USA, 1981. [Google Scholar]
- Bernstein, D.S. Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas; Revised and expanded edition; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Treves, F. Introduction to Pseudodifferential and Fourier Integral Operator; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Hörmander, L. Linear Partial Differential Operators; Springer: Berlin/Heidelberg, Germany, 1963. [Google Scholar]
- John, F. Partial Differential Equations, 4th ed.; Springer: New York, NY, USA, 1982. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X. Determining the Coefficients of the Thermoelastic System from Boundary Information. Mathematics 2023, 11, 2147. https://doi.org/10.3390/math11092147
Tan X. Determining the Coefficients of the Thermoelastic System from Boundary Information. Mathematics. 2023; 11(9):2147. https://doi.org/10.3390/math11092147
Chicago/Turabian StyleTan, Xiaoming. 2023. "Determining the Coefficients of the Thermoelastic System from Boundary Information" Mathematics 11, no. 9: 2147. https://doi.org/10.3390/math11092147
APA StyleTan, X. (2023). Determining the Coefficients of the Thermoelastic System from Boundary Information. Mathematics, 11(9), 2147. https://doi.org/10.3390/math11092147