
Citation: Tan, X. Determining the

Coefficients of the Thermoelastic

System from Boundary Information.

Mathematics 2023, 11, 2147. https://

doi.org/10.3390/math11092147

Academic Editor: Alberto Ferrero

Received: 22 March 2023

Revised: 17 April 2023

Accepted: 18 April 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Determining the Coefficients of the Thermoelastic System from
Boundary Information
Xiaoming Tan

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; xtan@bit.edu.cn

Abstract: Given a compact Riemannian manifold (M, g) with smooth boundary ∂M, we give an
explicit expression for the full symbol of the thermoelastic Dirichlet-to-Neumann map Λg with
variable coefficients λ, µ, α, β ∈ C∞(M̄). We prove that Λg uniquely determines partial derivatives of
all orders of these coefficients on the boundary ∂M. Moreover, for a nonempty smooth open subset
Γ ⊂ ∂M, suppose that the manifold and these coefficients are real analytic up to Γ. We show that Λg

uniquely determines these coefficients on the whole manifold M̄.
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1. Introduction

In this paper, we will study the thermoelastic Calderón problem, i.e., whether one can
uniquely determine the Lamé coefficients λ, µ, and the other two physical coefficients α, β
of a thermoelastic body by boundary information. Let (M, g) be a compact Riemannian
manifold of dimension n with smooth boundary ∂M. We consider the manifold M as an
inhomogeneous, isotropic, thermoelastic body. Assume that the coefficient β ∈ C∞(M̄),
the Lamé coefficients λ, µ ∈ C∞(M̄), and the heat conduction coefficient α ∈ C∞(M̄) of the
thermoelastic body satisfy

µ > 0, λ + µ > 0, α > 0. (1)

1.1. Thermoelastic Operator

We denote by grad, div, ∆g, ∆B, and Ric, respectively, the gradient operator, the di-
vergence operator, the Laplace–Beltrami operator, the Bochner Laplacian, and the Ricci
tensor with respect to the metric g. For the displacement vector field u ∈ [C∞(M)]n and the
temperature variation θ ∈ C∞(M), we define the thermoelastic operator Tg with variable
coefficients as (cf. [1–4])

Tg

[
u
θ

]
:=
[

Lg + ρω2 −β grad
iωθ0β div α∆g + iωγ

][
u
θ

]
, (2)

where the Lamé operator Lg with variable coefficients is defined by (see [4])

Lgu := µ∆Bu + (λ + µ) grad div u + µ Ric(u)

+ (grad λ)div u + (Su)(grad µ). (3)

Here the strain tensor S (also called the deformation tensor) of type (1, 1) is defined by
(see [5], p. 562)

Su := ∇u + (∇u)t, (4)
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where the superscript t denotes the transpose. The coefficient β ∈ C∞(M̄) depends on
the Lamé coefficients and the linear expansion coefficient of the thermoelastic body, γ is
the specific heat per unit volume, θ0 is the reference temperature, ρ is the density of the
thermoelastic body, ω is the angular frequency, and i =

√
−1.

In particular, the Lamé operator with constant coefficients has the form Lu = µ∆u +
(λ + µ)∇(∇ · u) in Euclidean bounded domains (see [1,6]).

1.2. Thermoelastic Calderón Problem

We first consider the following Dirichlet boundary value problem for the thermoelastic
system {

TgU = 0 in M,
U = V on ∂M,

(5)

where U = (u, θ)t. Problem (5) is an extension of the boundary value problem for classical
elastic system. Particularly, when M is a bounded Euclidean domain and the temperature is
not taken into consideration, problem (5) reduces to the corresponding problem for classical
elastic system.

For any vector V ∈ [H1/2(∂M)]n+1, there is a unique solution U ∈ [H1(M)]n+1 solving
problem (5) by the theory of elliptic operators. Therefore, we define the thermoelastic
Dirichlet-to-Neumann map Λg : [H1/2(∂M)]n+1 → [H−1/2(∂M)]n+1 associated with the
thermoelastic operator Tg as (see [3])

Λg(U|∂M) :=
[

λν div+µνS −βν
0 α∂ν

]
U on ∂M, (6)

where ν is the outward unit normal vector to the boundary ∂M. The thermoelastic Dirichlet-
to-Neumann map Λg is an elliptic, self-adjoint pseudodifferential operator of order one
defined on the boundary. For the studies about other types of Dirichlet-to-Neumann map,
we also refer the reader to [3,7–9] and references therein.

In this paper, we will study the thermoelastic Calderón problem on a Riemannian man-
ifold, which determines the coefficients λ, µ, α, β ∈ C∞(M̄) by the thermoelastic Dirichlet-
to-Neumann map Λg. By giving explicit expressions for Λg and its full symbol σ(Λg), we
show that Λg uniquely determines the coefficients λ, µ, α, β.

We briefly recall some uniqueness results for the classical Calderón problem and
the elastic Calderón problem. The classical Calderón problem [10] is concerned with
whether one can uniquely determine the electrical conductivity of a medium by making
voltage and current measurements at the boundary of the medium. This problem has been
studied for decades. For a bounded Euclidean domain Ω ⊂ Rn with smooth boundary
∂Ω, n > 2, Kohn and Vogelius [11] proved a famous uniqueness result on the boundary

for C∞-conductivities, that is, if Λγ1 = Λγ2 , then, ∂|J|γ1
∂x J

∣∣
∂Ω = ∂|J|γ2

∂x J

∣∣
∂Ω for all multi-indices

J ∈ Nn. This settled the uniqueness problem on the boundary in the real analytic category.
They extended the uniqueness result to piecewise real analytic conductivities in [12]. In
dimensions n > 3, in a celebrated paper [13], Sylvester and Uhlmann proved the uniqueness
of the C∞-conductivities by constructing the complex geometrical optics solutions. The
classical Calderón problem has attracted much attention for decades (see, for example,
[14–18] in two dimensional cases, and [19–22] in higher dimensional cases). We also refer the
reader to the survey articles [23,24] for the classical Calderón problem and related topics.

For the elastic Calderón problem, partial uniqueness results for determination of Lamé
coefficients from boundary measurements were obtained. For a bounded Euclidean domain
Ω ⊂ Rn with smooth boundary ∂Ω, Nakamura and Uhlmann [25] proved that one can
determine the full Taylor series of Lamé coefficients on the boundary in all dimensions
n > 2 and for a generic anisotropic elastic tensor in two dimensions. In [26], Imanuvilov
and Yamamoto also proved the global uniqueness of the Lamé coefficients λ, µ ∈ C10(Ω̄).
In three-dimensional Euclidean domains, Nakamura and Uhlmann [27] and Eskin and
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Ralston [28] proved the global uniqueness of Lamé coefficients provided that ∇µ is small
in a suitable norm. However, in dimensions n > 3, the global uniqueness of the Lamé
coefficients λ, µ ∈ C∞(Ω̄) without the smallness assumption (‖∇µ‖ < ε0 for some small
positive ε0) remains an open problem (see [29], p. 210). We also refer the reader to [30–33]
for the elastic Calderón problem.

Recently, Tan and Liu [4] gave an explicit expression for the full symbol of the elastic
Dirichlet-to-Neumann map on a Riemannian manifold M, and showed that the elastic
Dirichlet-to-Neumann map uniquely determines partial derivatives of all orders of the
Lamé coefficients on the boundary. Moreover, for a nonempty open subset Γ ⊂ ∂M,
suppose that the manifold and the Lamé coefficients are real analytic up to Γ, they proved
that the elastic Dirichlet-to-Neumann map uniquely determines the Lamé coefficients on
the whole manifold M̄.

In mathematics, physics, and engineering, there are lots of inverse problems have been
studied for decades. Here we do not list all the references about these topics. We refer the
reader to [34–38] for Maxwell’s equations, to [39–49] for incompressible fluid, Schrödinger
operator, elastic operator, and the related problems. For the studies about other types of
Dirichlet-to-Neumann map, we also refer the reader to [3,7–9,50,51] and references therein.

Before we state the main results of this paper, we recall some basic concepts about
boundary normal coordinates, pseudodifferential operators and symbols.

1.3. Boundary Normal Coordinates

We briefly introduce the construction of geodesic coordinates with respect to the
boundary ∂M (see [21], [52], p. 532).

For each boundary point x′ ∈ ∂M, let γx′ : [0, ε)→ M̄ denote the unit-speed geodesic
starting at x′ and normal to ∂M. If x′ := {x1, . . . , xn−1} are any local coordinates for ∂M
near x0 ∈ ∂M, we can extend them smoothly to functions on a neighborhood of x0 in M̄
by letting them be constant along each normal geodesic γx′ . If we then define xn to be
the parameter along each γx′ , it follows easily that {x1, . . . , xn} form coordinates for M̄ in
some neighborhood of x0, which we call the boundary normal coordinates determined
by {x1, . . . , xn−1}. In these coordinates xn > 0 in M, and the boundary ∂M is locally
characterized by xn = 0. A standard computation shows that the metric has the form
g = gαβ dxα dxβ + dx2

n.

1.4. Pseudodifferential Operators and Symbols

We recall some concepts of pseudodifferential operators and their symbols (cf. [52],
Chapter 7).

Assuming U ⊂ Rn and m ∈ R, we define Sm
1,0 = Sm

1,0(U,Rn) to consist of C∞-functions
p(x, ξ) satisfying for every compact set V ⊂ U,

|Dβ
x Dα

ξ p(x, ξ)| 6 CV,α,β〈ξ〉m−|α|, x ∈ V, ξ ∈ Rn

for all α, β ∈ Nn, where Dα = Dα1 · · ·Dαn , Dj = −i ∂
∂xj

and 〈ξ〉 = (1 + |ξ|2)1/2. The
elements of Sm

1,0 are called symbols of order m. It is clear that Sm
1,0 is a Fréchet space with

semi-norms given by

‖p‖V,α,β := sup
x∈V

∣∣(Dβ
x Dα

ξ p(x, ξ)
)
(1 + |ξ|)−m+|α|∣∣.

Let p(x, ξ) ∈ Sm
1,0 and û(ξ) =

∫
Rn e−iy·ξ u(y) dy be the Fourier transform of u. A pseu-

dodifferential operator in an open set U is essentially defined by a Fourier integral operator

P(x, D)u(x) =
1

(2π)n

∫
Rn

p(x, ξ)eix·ξ û(ξ) dξ
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for u ∈ C∞
0 (U). In such a case, we say the associated operator P(x, D) belongs to OPSm. We

denote OPS−∞ =
⋂

m OPSm. If there are smooth pm−j(x, ξ), homogeneous in ξ of degree
m− j for |ξ| > 1, that is, pm−j(x, rξ) = rm−j pm−j(x, ξ) for r > 0, and if

p(x, ξ) ∼ ∑
j>0

pm−j(x, ξ) (7)

in the sense that

p(x, ξ)−
N

∑
j=0

pm−j(x, ξ) ∈ Sm−N−1
1,0

for all N, then, we say p(x, ξ) ∈ Sm
cl , or just p(x, ξ) ∈ Sm. We denote S−∞ =

⋂
m Sm. We call

pm(x, ξ) the principal symbol of P(x, D). We say P(x, D) ∈ OPSm is elliptic of order m if
on each compact V ⊂ U there are constants CV and r < ∞ such that

|p(x, ξ)−1| 6 CV〈ξ〉−m, |ξ| > r.

We can now define a pseudodifferential operator on a manifold M. In particular,

P : C∞
0 (M)→ C∞(M)

belongs to OPSm
1,0(M) if the kernel of P is smooth off the diagonal in M×M and if for any

coordinate neighborhood U ⊂ M with Φ : U → O a diffeomorphism onto an open subset
O ⊂ Rn, the map P̃ : C∞

0 (O)→ C∞(O) given by

P̃u := P(u ◦Φ) ◦Φ−1

belongs to OPSm
1,0(O). We refer the reader to [53–55] for more details.

1.5. The Main Results of This Paper

For the sake of simplicity, we denote by i =
√
−1, ξ ′ = (ξ1, . . . , ξn−1), ξα = gαβξβ,

|ξ ′| =
√

ξαξα, In the n× n identity matrix,

[aα
β] :=

 a1
1 . . . a1

n−1
...

. . .
...

an−1
1 . . . an−1

n−1

, [aj
k] :=

a1
1 . . . a1

n
...

. . .
...

an
1 . . . an

n

,

and

[
[aj

k] [bj]
[ck] d

]
:=


[aα

β] [aα
n] [bα]

[an
β] an

n bn

[cβ] cn d

 =


a1

1 . . . a1
n b1

...
. . .

...
...

an
1 . . . an

n bn

c1 . . . cn d

,

where 1 6 α, β 6 n− 1, and 1 6 j, k 6 n.
The main results of this paper are the following three theorems.

Theorem 1. Let (M, g) be a compact Riemannian manifold of dimension n with smooth boundary
∂M. Assume that the coefficient β ∈ C∞(M̄), the Lamé coefficients λ, µ ∈ C∞(M̄), and the
heat conduction coefficient α ∈ C∞(M̄) satisfy µ > 0, λ + µ > 0, and α > 0. Let σ(Λg) ∼
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∑j61 pj(x, ξ ′) be the full symbol of the thermoelastic Dirichlet-to-Neumann map Λg. Then, in
boundary normal coordinates,

p1(x, ξ ′) =

µ|ξ ′|In−1 +
µ(λ+µ)

(λ+3µ)|ξ ′ | [ξ
αξβ] − 2iµ2

λ+3µ [ξ
α] 0

2iµ2

λ+3µ [ξβ]
2µ(λ+2µ)

λ+3µ |ξ
′| 0

0 0 α|ξ ′|

, (8)

p0(x, ξ ′) =

µIn−1 0 0
0 λ + 2µ 0
0 0 α

q0(x, ξ ′)−

 0 0 0
λ[Γα

αβ] λΓα
αn −β

0 0 0

, (9)

p−m(x, ξ ′) =

µIn−1 0 0
0 λ + 2µ 0
0 0 α

q−m(x, ξ ′), m > 1, (10)

where q−m(x, ξ ′), m > 0, are the remain symbols of a pseudodifferential operator (see (42) in
Section 2).

By studying the full symbol of the thermoelastic Dirichlet-to-Neumann map Λg, we
prove the following result:

Theorem 2. Let (M, g) be a compact Riemannian manifold of dimension n with smooth boundary
∂M. Assume that the coefficient β ∈ C∞(M̄), the Lamé coefficients λ, µ ∈ C∞(M̄), and the heat
conduction coefficient α ∈ C∞(M̄) satisfy µ > 0, λ + µ > 0, and α > 0. Then, the thermoelastic

Dirichlet-to-Neumann map Λg uniquely determines ∂|J|λ
∂x J , ∂|J|µ

∂x J , ∂|J|α
∂x J , and ∂|J|β

∂x J on the boundary
∂M for all multi-indices J.

The uniqueness result in Theorem 2 can be extended to the whole manifold for the
real analytic setting.

Theorem 3. Let (M, g) be a compact Riemannian manifold of dimension n with smooth boundary
∂M, and let Γ ⊂ ∂M be a nonempty open subset. Suppose that the manifold is real analytic up to Γ,
and the coefficients λ, µ, α, β are also real analytic up to Γ and satisfy µ > 0, λ + µ > 0, and α > 0.
Then, the thermoelastic Dirichlet-to-Neumann map Λg uniquely determines λ, µ, α, and β on M̄.

Theorem 3 shows that the global uniqueness of real analytic coefficients on a real
analytic Riemannian manifold. To the best of our knowledge, this is the first global
uniqueness result for variable coefficients in thermoelasticity on a Riemannian manifold. It
is clear that Theorem 3 also holds for any real analytic bounded Euclidean domain with
smooth boundary.

1.6. The Main Ideas of this Paper

The main ideas of this paper are as follows. First, Liu [2] established a method such
that one can calculate the full symbol of the elastic Dirichlet-to-Neumann map with constant
coefficients. In [4], the full symbol of the elastic Dirichlet-to-Neumann map with variable
coefficients was obtained. The full symbol of the thermoelastic Dirichlet-to-Neumann map
with constant coefficients was obtained in [3]. Combining the methods and the results
in [2–4], we can deal with the case for variable coefficients in thermoelasticity.

In boundary normal coordinates, there is a factorization for the thermoelastic operator
Tg as follows:

A−1Tg = In+1
∂2

∂x2
n
+ B

∂

∂xn
+ C =

(
In+1

∂

∂xn
+ B−Q

)(
In+1

∂

∂xn
+ Q

)
,
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where B, C are two differential operators, and Q = Q(x, ∂x′) is a pseudodifferential operator.
As a result, we obtain the equation

Q2 − BQ−
[ ∂

∂xn
, Q
]
+ C = 0,

where [ ∂
∂xn

, Q] is the commutator. The corresponding full symbol equation of the above
equation is

∑
J

(−i)|J|

J!
∂J

ξ ′q ∂J
x′q−∑

J

(−i)|J|

J!
∂J

ξ ′b ∂J
x′q−

∂q
∂xn

+ c = 0, (11)

which is an (n + 1)× (n + 1) matrix equation, where the sum is over all multi-indices J,
ξ ′ = (ξ1, . . . , ξn−1), and x′ = (x1, . . . , xn−1). Here b, c, and q are the full symbols of the
operators B, C, and Q, respectively.

Note that the computations of the full symbols of matrix-valued pseudodifferential
operators (i.e., solving the above full symbol Equation (11)) are quite difficult tasks. There
are two major difficulties:

(i) How to solve the unknown matrix q1 from the following matrix equation?

q2
1 − b1q1 + c2 = 0, (12)

where q1, b1, and c2 are the principal symbols of Q, B, and C, respectively.
(ii) How to solve the unknown matrix q−m−1, m > −1, from the following Sylvester

equation?

(q1 − b1)q−m−1 + q−m−1q1 = E−m, m > −1, (13)

where q−m−1, m > −1, are the remain symbols, and E−m, m > −1, are given by
(38)–(40).

For the first part of the problem, generally, the quadratic matrix equation of the form

X2 + U1X + V1 = 0 (14)

can not be solved exactly, where X is an unknown matrix, U1 and V1 are given matrices. In
other words, there is not a general formula of the solution represented by the coefficients of
matrix equation (14). Fortunately, in our setting, b1 and c2 can be represented as special
block matrices. This implies that the q1 can also be represented as a block matrix, which
is a linear combination of In+1 and a special matrix F1 with the property F2

1 = 0 (see (56)
in Section 2). Then, by solving a system of the coefficients, we can obtain the explicit
expression for q1 (see (41)).

For the second part of the problem, the matrix equation of the form

U2X + XV2 = Y (15)

is called the Sylvester equation (see [56], Chapter 9), where X is an unknown matrix, U2,
V2, and Y are given matrices. Let

A =


a1

1 a1
2 · · · a1

n
a2

1 a2
2 · · · a2

n
...

...
. . .

...
an

1 an
2 · · · an

n

.
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The vectorization vecA of the matrix A is a column vector, which is defined by (see [56],
Chapter 9)

vecA := (a1
1, a2

1, . . . , an
1 , a1

2, a2
2, . . . , an

2 , . . . , a1
n, a2

n, . . . , an
n)

t. (16)

The Kronecker product A⊗B of two matrices A and B is defined by (see [56], Chapter 9)

A⊗B :=


a1

1B a1
2B · · · a1

nB
a2

1B a2
2B · · · a2

nB
...

...
. . .

...
an

1B an
2B · · · an

nB

. (17)

There are some properties of Kronecker product and vectorization as follows (see [56],
Chapter 9):

(A+ B)⊗ C = A⊗ C + B ⊗ C, (18)

C ⊗ (A+ B) = C ⊗A+ C ⊗ B, (19)

(A⊗B)−1 = A−1 ⊗B−1, (20)

(A⊗B)(C ⊗D) = AC ⊗ BD, (21)

vec(AB) = (In ⊗A) vecB, (22)

vec(BC) = (C t ⊗ In) vecB, (23)

vec(ABC) = (C t ⊗A) vecB. (24)

It follows from (15), (22), and (23) that

vec Y = vec(U2X + XV2)

=
(
(In ⊗U2) + (Vt

2 ⊗ In)
)

vec(X)

:= G vec X. (25)

Therefore, (15) has a unique solution if and only if G is invertible and

vec X = G−1 vec Y.

Thus, we can obtain X from vec X. Finally, we obtain the symbols qj, j 6 1, of the pseudod-
ifferential operator Q. Finally, using this method, we solve (13) and obtain the symbols
q−m−1 for m > −1. This implies that we obtain Q(x, ∂x′) (modulo a smoothing operator)
on the boundary.

Next, we flatten the boundary and induce a Riemannian metric in a neighborhood of
the boundary, and give a local representation for the thermoelastic Dirichlet-to-Neumann
map Λg with variable coefficients in boundary normal coordinates, that is,

Λg = A
(
− ∂

∂xn

)
− K on ∂M,

where A and K are two matrices. Note that, in boundary normal coordinates, the operator
∂

∂xn

∣∣
∂M can be represented as a pseudodifferential operator (modulo a smoothing operator)

of order one in x′ = (x1, . . . , xn−1) depending smoothly on xn. Therefore, we have

Λg = (AQ− K)|∂M

modulo a smoothing operator (see (72) in Section 2).
Finally, we obtain the full symbol of the thermoelastic Dirichlet-to-Neumann map Λg,

which contain the information about the coefficients λ, µ, α, β, and their derivatives on the
boundary. Thus, we can prove that they can be uniquely determined by the thermoelastic
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Dirichlet-to-Neumann map. Furthermore, we prove that the coefficients can be uniquely
determined on the whole manifold M̄ by the thermoelastic Dirichlet-to-Neumann map
provided the manifold and these coefficients are real analytic.

This paper is organized as follows. In Section 2, we derive a factorization of thermoe-
lastic operator Tg with variable coefficients, and compute the full symbol of the pseudodif-
ferential operator Q, we then give the explicit expression of the thermoelastic Dirichlet-to-
Neumann map Λg in boundary normal coordinates. In Section 3, we prove Theorem 1 and
Theorem 2 for boundary determination. Finally, Section 4 is devoted to proving Theorem 3
for global uniqueness.

2. Symbols of the Pseudodifferential Operators

Let (M, g) be a compact Riemannian manifold of dimension n with smooth boundary
∂M. In the local coordinates {xj}n

j=1, we denote by
{

∂
∂xj

}n
j=1 and {dxj}n

j=1, respectively,
the natural basis for the tangent space Tx M and the cotangent space T∗x M at the point
x ∈ M. We will use the Einstein summation convention. The Greek indices run from 1 to
n− 1, whereas the Roman indices run from 1 to n, unless otherwise specified. Then, the
Riemannian metric g is given by g = gjk dxj ⊗ dxk.

Let ∇j = ∇ ∂
∂xj

be the covariant derivative with respect to ∂
∂xj

and ∇j = gjk∇k. Then,

for displacement vector field u, we denote by div the divergence operator, i.e.,

div u = ∇juj =
∂uj

∂xj
+ Γj

jkuk, u = uj ∂

∂xj
∈ X(M). (26)

Here the Christoffel symbols

Γm
jk =

1
2

gml
(∂gjl

∂xk
+

∂gkl
∂xj
−

∂gjk

∂xl

)
,

and [gjk] = [gjk]
−1. For smooth function f ∈ C∞(M), the gradient operator is given by

grad f = (∇j f )
∂

∂xj
= gjk ∂ f

∂xk

∂

∂xj
, f ∈ C∞(M). (27)

The Laplace–Beltrami operator is given by

∆g f = gjk
( ∂2 f

∂xj∂xk
− Γl

jk
∂ f
∂xl

)
, f ∈ C∞(M). (28)

The Lamé operator (3) with variable coefficients can be rewritten as (see [4])

(Lgu)j = µ∆guj + (λ + µ)∇j∇kuk + (∇jλ)∇kuk + (∇kµ)(∇kuj +∇juk)

+ µgkl
(

2Γj
km

∂um

∂xl
+

∂Γj
kl

∂xm
um
)

, j = 1, 2, . . . , n. (29)

In boundary normal coordinates, we write the Laplace–Beltrami operator as

∆g =
∂2

∂x2
n
+ Γα

αn
∂

∂xn
+ gαβ ∂2

∂xα∂xβ
+
(

gαβΓγ
γα +

∂gαβ

∂xα

) ∂

∂xβ
. (30)

Combining this and (2), (3), (26)–(29), we deduce that (cf. [3,4])

A−1Tg = In+1
∂2

∂x2
n
+ B

∂

∂xn
+ C, (31)
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where

A =

µIn−1 0 0
0 λ + 2µ 0
0 0 α

, (32)

B = B1 + B0, C = C2 + C1 + C0, and

B1 = (λ + µ)

 0 1
µ

[
gαβ ∂

∂xβ

]
0

1
λ+2µ

[
∂

∂xβ

]
0 0

0 0 0

,

B0 =

Γα
αn In−1 + 2[Γα

nβ] 0 0
λ+µ
λ+2µ [Γ

α
αβ] Γα

nα − β
λ+2µ

0 iωβθ0
α Γα

nα

+


1
µ

∂µ
∂xn

In−1
1
µ [∇αλ] 0

1
λ+2µ

[ ∂µ
∂xβ

] 1
λ+2µ

∂(λ+2µ)
∂xn

0

0 0 0

,

C2 =


(gαβ ∂2

∂xα∂xβ
)In−1 +

λ+µ
µ

[
gαγ ∂2

∂xγ∂xβ

]
0 0

0 µ
λ+2µ gαβ ∂2

∂xα∂xβ
0

0 0 gαβ ∂2

∂xα∂xβ

,

C1 =


(
(gαβΓγ

αγ + ∂gαβ

∂xα
) ∂

∂xβ

)
In−1 0 0

0 µ
λ+2µ

(
gαβΓγ

αγ + ∂gαβ

∂xα

)
∂

∂xβ
0

0 0
(

gαβΓγ
αγ + ∂gαβ

∂xα

)
∂

∂xβ



+
λ + µ

µ


[
gαγΓρ

ρβ
∂

∂xγ

] [
gαγΓρ

ρn
∂

∂xγ

]
0

0 0 0
0 0 0



+


2
[
gγρΓα

ρβ
∂

∂xγ

]
2
[
gγρΓα

ρn
∂

∂xγ

]
− β

µ

[
gαβ ∂

∂xβ

]
2µ

λ+2µ

[
gγρΓn

ρβ
∂

∂xγ

]
0 0

iωβθ0
α

[
∂

∂xβ

]
0 0



+


1
µ (∇αµ ∂

∂xα
)In−1 +

1
µ

[
∇αλ ∂

∂xβ
+ gαγ ∂µ

∂xβ

∂
∂xγ

] 1
µ

∂µ
∂xn

[
gαβ ∂

∂xβ

]
0

1
λ+2µ

∂λ
∂xn

[
∂

∂xβ

] 1
λ+2µ∇

αµ ∂
∂xα

0

0 0 0

,

C0 = (λ + µ)


1
µ

[
gαγ

∂Γρ
ρβ

∂xγ

] 1
µ

[
gαγ ∂Γρ

ρn
∂xγ

]
0

1
λ+2µ

[ ∂Γα
αβ

∂xn

] 1
λ+2µ

∂Γα
αn

∂xn
0

0 0 0

+


[
gml ∂Γα

ml
∂xβ

] [
gml ∂Γα

ml
∂xn

]
0

µ
λ+2µ

[
gml ∂Γn

ml
∂xβ

] µ
λ+2µ gml ∂Γn

ml
∂xn

0

0 0 0



+


ρω2

µ In−1 0 0

0 ρω2

λ+2µ 0
iωβθ0

α [Γα
αβ]

iωβθ0
α Γα

αn
iωγ

α



+


1
µ

[
(∇αλ)Γγ

βγ −
∂µ

∂xγ

∂gαγ

∂xβ

] 1
µ

[
(∇αλ)Γβ

βn −
∂µ
∂xβ

∂gαβ

∂xn

]
0

1
λ+2µ

∂λ
∂xn

[Γα
αβ]

1
λ+2µ

∂λ
∂xn

Γα
αn 0

0 0 0

.

Let

b(x, ξ ′) = b1(x, ξ ′) + b0(x, ξ ′)
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and

c(x, ξ ′) = c2(x, ξ ′) + c1(x, ξ ′) + c0(x, ξ ′)

be the full symbols of B and C, respectively. We denote

ξα = gαβξβ, |ξ ′| =
√

ξαξα.

Thus, we have

b1(x, ξ ′) = i(λ + µ)

 0 1
µ [ξ

α] 0
1

λ+2µ [ξβ] 0 0
0 0 0

, (33)

b0(x, ξ ′) = B0, (34)

c2(x, ξ ′) = −

|ξ ′|2 In−1 +
λ+µ

µ [ξαξβ] 0 0
0 µ

λ+2µ |ξ
′|2 0

0 0 |ξ ′|2

, (35)

c1(x, ξ ′) = i


(
ξαΓβ

αβ +
∂ξα

∂xα

)
In−1 0 0

0 µ
λ+2µ

(
ξαΓβ

αβ +
∂ξα

∂xα

)
0

0 0 ξαΓβ
αβ +

∂ξα

∂xα



+
i(λ + µ)

µ

[ξαΓγ
γβ] Γβ

βn[ξ
α] 0

0 0 0
0 0 0

+


2i[ξγΓα

γβ] 2i[ξγΓα
γn] −

iβ
µ [ξ

α]
2iµ

λ+2µ [ξ
γΓn

γβ] 0 0

−ωβθ0
α [ξβ] 0 0



+ i


1
µ (ξα∇αµ)In−1 +

1
µ

[
ξβ∇αλ + ξα ∂µ

∂xβ

] 1
µ

∂µ
∂xn

[ξα] 0
1

λ+2µ
∂λ
∂xn

[ξβ]
1

λ+2µ ξα∇αµ 0
0 0 0

, (36)

c0(x, ξ ′) = C0. (37)

For the convenience of stating the following proposition, we define

E1 := i ∑
α

∂(q1 − b1)

∂ξα

∂q1

∂xα
+ b0q1 +

∂q1

∂xn
− c1, (38)

E0 := i ∑
α

(∂(q1 − b1)

∂ξα

∂q0

∂xα
+

∂q0

∂ξα

∂q1

∂xα

)
+

1
2 ∑

α,β

∂2q1

∂ξα∂ξβ

∂2q1

∂xα∂xβ

− q2
0 + b0q0 +

∂q0

∂xn
− c0, (39)

and

E−m := b0q−m +
∂q−m

∂xn
− i ∑

α

∂b1

∂ξα

∂q−m

∂xα
− ∑
−m6j,k61
|J|=j+k+m

(−i)|J|

J!
∂J

ξ ′qj ∂J
x′qk (40)

for m > 1.

We then derive the microlocal factorization of the thermoelastic operator Tg.
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Proposition 4. There exists a pseudodifferential operator Q(x, ∂x′) of order one in x′ depending
smoothly on xn such that

A−1Tg =
(

In+1
∂

∂xn
+ B−Q

)(
In+1

∂

∂xn
+ Q

)
modulo a smoothing operator. Moreover, let q(x, ξ ′) ∼ ∑j61 qj(x, ξ ′) be the full symbol of Q(x, ∂x′).
Then, in boundary normal coordinates,

q1(x, ξ ′) = |ξ ′|In+1 +
λ + µ

λ + 3µ
F1, (41)

q−m−1(x, ξ ′) =
1

2|ξ ′|E−m −
λ + µ

4(λ + 3µ)|ξ ′|2 (F2E−m + E−mF1)

+
(λ + µ)2

4(λ + 3µ)2|ξ ′|3 F2E−mF1, m > −1, (42)

where

F1 =

 1
|ξ ′ | [ξ

αξβ] i[ξα] 0
i[ξβ] −|ξ ′| 0

0 0 0

, (43)

F2 =


1
|ξ ′ | [ξ

αξβ] − i(λ+2µ)
µ [ξα] 0

− iµ
λ+2µ [ξβ] −|ξ ′| 0

0 0 0

. (44)

Proof. It follows from (31) that

In+1
∂2

∂x2
n
+ B

∂

∂xn
+ C =

(
In+1

∂

∂xn
+ B−Q

)(
In+1

∂

∂xn
+ Q

)
.

Equivalently,

Q2 − BQ−
[

In+1
∂

∂xn
, Q
]
+ C = 0, (45)

where the commutator
[
In+1

∂
∂xn

, Q
]

is defined by, for any v ∈ C∞(M),

[
In+1

∂

∂xn
, Q
]
v := In+1

∂

∂xn
(Qv)−Q

(
In+1

∂

∂xn

)
v

=
∂Q
∂xn

v.

Recall that if G1 and G2 are two pseudodifferential operators with full symbols g1 = g1(x, ξ)
and g1 = g2(x, ξ), respectively, then the full symbol σ(G1G2) of the operator G1G2 is given
by (see [52], p. 11, [54], p. 71 and also [53,57])

σ(G1G2) ∼∑
J

(−i)|J|

J!
∂J

ξ g1 ∂J
xg2,

where the sum is over all multi-indices J. Let q = q(x, ξ ′) be the full symbol of the operator
Q(x, ∂x′), we write q(x, ξ ′) ∼ ∑j61 qj(x, ξ ′) with qj(x, ξ ′) homogeneous of degree j in ξ ′.
Hence, we get the following full symbol equation of (45)

∑
J

(−i)|J|

J!
∂J

ξ ′q ∂J
x′q−∑

J

(−i)|J|

J!
∂J

ξ ′b ∂J
x′q−

∂q
∂xn

+ c = 0. (46)
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We shall determine qj recursively so that (46) holds modulo S−∞. Grouping the
homogeneous terms of degree two in (46), we have

q2
1 − b1q1 + c2 = 0. (47)

Note that c2 can be rewritten as (see (35))

c2 = −|ξ ′|2 In+1 −


λ+µ

µ [ξαξβ] 0 0

0 − λ+µ
λ+2µ |ξ

′|2 0
0 0 0

. (48)

In our notations, [ξα] = (ξ1, . . . , ξn−1)t is a column vector, [ξβ] = (ξ1, . . . , ξn−1) is a
row vector, and [ξαξβ] is an (n− 1)× (n− 1) matrix. Then,

[ξα] · [ξβ] = [ξαξβ],

[ξβ] · [ξα] = |ξ ′|2,

[ξαξβ] · [ξα] = |ξ ′|2[ξα],

[ξβ] · [ξαξβ] = |ξ ′|2[ξβ],

[ξαξβ] · [ξαξβ] = |ξ ′|2[ξαξβ].

We find that  1
|ξ ′ | [ξ

αξβ] 0 0
0 |ξ ′| 0
0 0 0


2

=

 0 [ξα] 0
[ξβ] 0 0

0 0 0

2

=

[ξαξβ] 0 0
0 |ξ ′|2 0
0 0 0

,

 1
|ξ ′ | [ξ

αξβ] 0 0
0 |ξ ′| 0
0 0 0


 0 [ξα] 0
[ξβ] 0 0

0 0 0

 =

 0 [ξα] 0
[ξβ] 0 0

0 0 0


 1
|ξ ′ | [ξ

αξβ] 0 0
0 |ξ ′| 0
0 0 0


= |ξ ′|

 0 [ξα] 0
[ξβ] 0 0

0 0 0

.

In view of the special forms of b1 and c2, we set q1 has the form

q1 = |ξ ′|In+1 +

s1
1
|ξ ′ | [ξ

αξβ] is2[ξ
α] 0

is3[ξβ] −s4|ξ ′| 0
0 0 0

, (49)

where sj, 1 6 j 6 4, are coefficients to be determined. Substituting (49), (33), and (48) into
(47), we get

0 = |ξ ′|2 In+1 +

 (s2
1 − s2s3)[ξ

αξβ] is2(s1 − s4)|ξ ′|[ξα] 0
is3(s1 − s4)|ξ ′|[ξβ] (s2

4 − s2s3)|ξ ′|2 0
0 0 0


+ 2

 s1[ξ
αξβ] is2|ξ ′|[ξα] 0

is3|ξ ′|[ξβ] −s4|ξ ′|2 0
0 0 0

− i(λ + µ)


 0 1

µ |ξ ′|[ξα] 0
1

λ+2µ |ξ
′|[ξβ] 0 0

0 0 0



+


is3
µ [ξαξβ] − s4

µ |ξ ′|[ξα] 0
s1

λ+2µ |ξ
′|[ξβ]

is2
λ+2µ |ξ

′|2 0
0 0 0


− |ξ ′|2 In+1 +

−
λ+µ

µ [ξαξβ] 0 0

0 λ+µ
λ+2µ |ξ

′|2 0
0 0 0

.
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Therefore, we have the following equations of coefficients:

s2
1 − s2s3 + 2s1 +

λ + µ

µ
(s3 − 1) = 0,

s2(s1 − s4) + 2s2 +
λ + µ

µ
(s4 − 1) = 0,

s3(s1 − s4) + 2s3 −
λ + µ

λ + 2µ
(s1 + 1) = 0,

s2
4 − s2s3 − 2s4 +

λ + µ

λ + 2µ
(s2 + 1) = 0.

(50)

Because we have chosen the outer normal vector ν on the boundary, we should take

s1 > 0, 1− s4 > 0. (51)

Such a choice implies that the real part of q1 is positive definite. Solving the above equations
with the conditions (51) and (1), we then get

s1 = s2 = s3 = s4 =
λ + µ

λ + 3µ
. (52)

Let

F1 =

 1
|ξ ′ | [ξ

αξβ] i[ξα] 0
i[ξβ] −|ξ ′| 0

0 0 0

. (53)

Then, we obtain (41) immediately by combining (49), (52), and (53).
Grouping the homogeneous terms of degree −m (m > −1) in (46), we get

(q1 − b1)q−m−1 + q−m−1q1 = E−m, (54)

where E−m, m > −1, are given by (38)–(40). Equation (54) is called the Sylvester equation
(see [56], Chapter 9).

Let

F2 =


1
|ξ ′ | [ξ

αξβ] − i(λ+2µ)
µ [ξα] 0

− iµ
λ+2µ [ξβ] −|ξ ′| 0

0 0 0

. (55)

Then, from (33), (52), (53), and (55), we have

F2
1 = F2

2 = 0, (56)

b1 = s1(F1 − F2), (57)

b1F1 = −s1F2F1, (58)

b1F2 = s1F1F2. (59)

By (41) and (57), we get

q1 − b1 = |ξ ′|In+1 + s1F2. (60)
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Recall that, in (17) and (16), ⊗ and vec denote the Kronecker product and the vector-
ization of matrices, respectively. It follows from (25) that

vec E−m = vec((q1 − b1)q−m−1 + q−m−1q1)

= H vec q−m−1, m > −1, (61)

where

H = (In+1 ⊗ (q1 − b1)) + (qt
1 ⊗ In+1). (62)

Combining (62) and (60), we obtain

H = In+1 ⊗ (|ξ ′|In+1 + s1F2) + ((|ξ ′|In+1 + s1Ft
1)⊗ In+1)

= 2|ξ ′|In+1 ⊗ In+1 + s1(In+1 ⊗ F2 + Ft
1 ⊗ In+1). (63)

In view of (18)–(21), (56), and H is of order one in ξ ′, thus, we set H−1 has the form

H−1 =
1

2|ξ ′| In+1 ⊗ In+1 +
s5

|ξ ′|2 (In+1 ⊗ F2 + Ft
1 ⊗ In+1) +

s6

|ξ ′|3 (Ft
1 ⊗ F2), (64)

where s5 and s6 are coefficients to be determined. From (61), we have

vec q−m−1 = H−1 vec E−m, m > −1. (65)

Combining (64), (65), and (22)–(24), we obtain, for m > −1,

q−m−1 =
1

2|ξ ′|E−m +
s5

|ξ ′|2 (F2E−m + E−mF1) +
s6

|ξ ′|3 F2E−mF1. (66)

It follows from (21), (56), (63), and (64) that

I(n+1)2 = HH−1

= In+1 ⊗ In+1 +
2s5

|ξ ′| (In+1 ⊗ F2 + Ft
1 ⊗ In+1) +

2s6

|ξ ′|2 (Ft
1 ⊗ F2)

+
s1

2|ξ ′| (In+1 ⊗ F2 + Ft
1 ⊗ In+1) +

s1s5

|ξ ′|2 (In+1 ⊗ F2
2 + (Ft

1)
2 ⊗ In+1

+ 2Ft
1 ⊗ F2) +

s1s6

|ξ ′|3 (Ft
1 ⊗ F2

2 + (Ft
1)

2 ⊗ F2)

= In+1 ⊗ In+1 +
(

2s5 +
s1

2

) 1
|ξ ′| (In+1 ⊗ F2 + Ft

1 ⊗ In+1)

+ 2(s6 + s1s5)
1
|ξ ′|2 (Ft

1 ⊗ F2).

Note that In+1 ⊗ In+1 = I(n+1)2 . This implies that2s5 +
s1

2
= 0,

s6 + s1s5 = 0.

Recall that s1 = λ+µ
λ+3µ by (52). Thus, solving the above equations, we get


s5 = − s1

4
= − λ + µ

4(λ + 3µ)
,

s6 =
s2

1
4

=
(λ + µ)2

4(λ + 3µ)2 .
(67)
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Substituting (67) into (66), we immediately get (42).

From Proposition 4, we get the full symbol of the pseudodifferential operator Q(x, ∂x′).
This implies that we obtain Q(x, ∂x′) (modulo a smoothing operator) on the boundary.

Proposition 5. In boundary normal coordinates, the thermoelastic Dirichlet-to-Neumann map Λg
can be written as

Λg = A
(
− ∂

∂xn

)
− K on ∂M, (68)

where A is given by (32), and

K =

 0 µ
[
gαβ ∂

∂xβ

]
0

λ
[

∂
∂xβ

+ Γα
αβ

]
λΓα

αn −β

0 0 0

. (69)

Proof. By (4), we have

((Su)ν)j = (Su)j
kνk = (∇juk +∇kuj)νk.

In boundary normal coordinates, we take ν = (0, . . . , 0,−1)t and ∂ν = −∂xn . In particular,
un = un since gjn = δjn in boundary normal coordinates. We get

((Su)ν)j = −(∇jun +∇nuj).

Note that Γn
nk = Γk

nn = 0 and gαβΓn
βγ + Γα

nγ = 0 in boundary normal coordinates. Thus,

((Su)ν)α = −(∇αun +∇nuα)

= −
[

gαβ
(∂un

∂xβ
+ Γn

βγuγ
)
+

∂uα

∂xn
+ Γα

nγuγ
]

= −gαβ ∂un

∂xβ
− ∂uα

∂xn
, (70)

((Su)ν)n = −(∇nun +∇nun) = −2
∂un

∂xn
. (71)

Hence, we immediately obtain (68) by combining (26), (6), (70), and (71).

In boundary normal coordinates, the operator ∂
∂xn

∣∣
∂M can be represented as the pseu-

dodifferential operator Q(x, ∂x′) (modulo a smoothing operator) of order one in x′ depend-
ing smoothly on xn. Hence, we have the following proposition.

Proposition 6. In boundary normal coordinates, the thermoelastic Dirichlet-to-Neumann map Λg
can be represented as

Λg = (AQ− K)|∂M (72)

modulo a smoothing operator, where A and K are given by (32) and (69), respectively.

Proof. We use the boundary normal coordinates (x′, xn) with xn ∈ [0, T]. Since the princi-
pal symbol of the thermoelastic operator Tg is negative definite, the hyperplane xn = 0 is
non-characteristic. Hence, Tg is partially hypoelliptic with respect to this boundary (see [58],
p. 107). Therefore, the solution to the equation TgU = 0 is smooth in normal variable, that
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is, U ∈ [C∞([0, T];D′(Rn−1))]n+1 locally. From Proposition 4, we see that (5) is locally
equivalent to the following system of equations for U, W ∈ [C∞([0, T];D′(Rn−1))]n+1:(

In+1
∂

∂xn
+ Q

)
U = W , U|xn=0 = V ,(

In+1
∂

∂xn
+ B−Q

)
W = Y ∈ [C∞([0, T]×Rn−1)]n+1.

Inspired by [2] (cf. [21]), if we substitute t = T− xn into the second equation above, then,
we get a backwards generalized heat equation

∂W
∂t
− (B−Q)W = −Y .

Since U is smooth in the interior of the manifold M by interior regularity for elliptic operator
Tg, it follows that W is also smooth in the interior of M, and so W |xn=T is smooth. In view
of the real part of q1 (the principal symbol of Q) is positive definite (see (41)), we get that
the solution operator for this heat equation is smooth for t > 0 (see [57], p. 134). Therefore,

∂U
∂xn

+ QU = W ∈ [C∞([0, T]×Rn−1)]n+1

locally. If we setRV = W |∂M, then,R is a smoothing operator and

∂U
∂xn

∣∣∣∣
∂M

= −QU|∂M +RV . (73)

Combining (73) and (68), we immediately obtain (72).

3. Determining Coefficients on the Boundary

In this section we will prove the uniqueness results for the coefficients λ, µ, α, and β
on the boundary. We first prove Theorem 1.

Proof of Theorem 1. Let σ(Λg) ∼ ∑j61 pj(x, ξ ′) be the full symbol of the thermoelastic
Dirichlet-to-Neumann map Λg. According to (72) and (69) we have

p1(x, ξ ′) = Aq1(x, ξ ′)− k1, (74)

p0(x, ξ ′) = Aq0(x, ξ ′)− k0, (75)

p−m(x, ξ ′) = Aq−m(x, ξ ′), m > 1, (76)

where A is given by (32), and

k1 =

 0 iµ[ξα] 0
iλ[ξβ] 0 0

0 0 0

, k0 =

 0 0 0
λ[Γα

αβ] λΓα
αn −β

0 0 0

. (77)

Substituting (41), (32), and (77) into (74), we immediately obtain (8). Similarly, (9) and (10)
can also be obtained.

We then prove the uniqueness of the coefficients on the boundary.

Proof of Theorem 2. It follows from (8)–(10) that the Lamé coefficients λ and µ only appear

in the n × n submatrices. In the Lamé system, the uniqueness of ∂|J|λ
∂x J and ∂|J|µ

∂x J on the
boundary for all multi-indices J has been proved in [4]. Clearly, this particular result also
holds in thermoelastic system, and the proof is the same as that of [4]. Thus, we only need
to prove the uniqueness of the coefficients α and β on the boundary.
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From (8), we know that the (n + 1, n + 1)-entry of p1 is

(p1)
n+1
n+1 = α|ξ ′|.

This shows that p1 uniquely determines α on the boundary. Furthermore, the tangential
derivatives ∂α

∂xγ
for 1 6 γ 6 n− 1 can also be uniquely determined by p1 on the boundary.

Let b′0 and c′1 be the terms that only involve the partial derivatives of λ and µ in the
expressions (34) and (36), respectively. That is,

b′0 =


1
µ

∂µ
∂xn

In−1
1
µ [∇αλ] 0

1
λ+2µ

[ ∂µ
∂xβ

] 1
λ+2µ

∂(λ+2µ)
∂xn

0

0 0 0

,

c′1 = i


1
µ (ξα∇αµ)In−1 +

1
µ

[
ξβ∇αλ + ξα ∂µ

∂xβ

] 1
µ

∂µ
∂xn

[ξα] 0
1

λ+2µ
∂λ
∂xn

[ξβ]
1

λ+2µ ξα∇αµ 0
0 0 0

.

It follows from (42) that

q0 = q̃0 +
1

2|ξ ′|E
′
1 −

λ + µ

4(λ + 3µ)|ξ ′|2 (F2E′1 + E′1F1) +
(λ + µ)2

4(λ + 3µ)2|ξ ′|3 F2E′1F1,

where E′1 = b′0q1 − c′1, and q̃0 is the solution of the corresponding equation with constant
coefficients (see [3], p. 13). Hence, we see that q0 has the form (see [3], p. 13)

q0 =


∗ ∗ iβ

(λ+3µ)|ξ ′ | [ξα]

∗ ∗ − β
λ+3µ

µωβθ0
α(λ+3µ)|ξ ′ | [ξβ]

iµωβθ0
α(λ+3µ)

∗

, (78)

where ∗ denotes the terms which we do not care (of course, they can be computed explicitly).
Therefore, combining (78), (75), and (77), we get the (n, n + 1)-entry (p0)

n
n+1, that is,

(p0)
n
n+1 = β− β(λ + 2µ)

λ + 3µ
=

βµ

λ + 3µ
.

This implies that p0 uniquely determines β on the boundary and the tangential derivatives
∂β

∂xγ
on the boundary for 1 6 γ 6 n − 1, since λ and µ have been determined on the

boundary by the previous arguments.
According to the above discussion, we see from (75) that q0 is uniquely determined by

p0 since the boundary values of λ, µ, α, and β have been uniquely determined. By (54), we
can determine E1 from the knowledge of q0. For k > 0, we denote by T−k = T−k(λ, µ, α, β)
the terms that involve only the boundary values of λ, µ, α, β, and their normal derivatives
of order ar most k (which have been uniquely determined). Note that T−k may be different
in different expressions.

From (38), we have

E1 = b0q1 +
∂q1

∂xn
− c1 + T0. (79)

By (76) and (54), we know that q−1 is uniquely determined by p−1, and E0 can be deter-
mined from the knowledge of q−1. From (39), we see that

E0 =
∂q0

∂xn
+ T−1. (80)
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From (78), we find that the (n, n + 1)-entry ( ∂q0
∂xn

)n
n+1 and the (n + 1, n)-entry ( ∂q0

∂xn
)n+1

n of
∂q0
∂xn

are, respectively,

( ∂q0

∂xn

)n

n+1
= −

∂β
∂xn

(λ + 3µ)− β( ∂λ
∂xn

+ 3 ∂µ
∂xn

)

(λ + 3µ)2

= − 1
λ + 3µ

∂β

∂xn
+ T−1, (81)

( ∂q0

∂xn

)n+1

n
=
−βµ(λ + 3µ) ∂α

∂xn
+ αµ(λ + 3µ) ∂β

∂xn
+ αβ(λ ∂µ

∂xn
− µ ∂λ

∂xn
)

α2(λ + 3µ)2

= − βµ

α2(λ + 3µ)

∂α

∂xn
+

µ

α(λ + 3µ)

∂β

∂xn
+ T−1. (82)

Since α, β, λ, µ, ∂λ
∂xn

and ∂µ
∂xn

have been determined on the boundary, then, ∂β
∂xn

can be de-

termined by ( ∂q0
∂xn

)n
n+1 on the boundary, and ∂α

∂xn
can be determined by ( ∂q0

∂xn
)n+1

n on the

boundary. This implies that p−1 uniquely determines ∂α
∂xn

and ∂β
∂xn

on the boundary.
By (54), we have

(q1 − b1)
∂q0

∂xn
+

∂q0

∂xn
q1 =

∂E1

∂xn
+ T−1.

This implies that ∂E1
∂xn

can be determined from the knowledge of ∂q0
∂xn

. By (76) and (54),
we know that q−2 is uniquely determined by p−2, and E−1 can be determined from the
knowledge of q−2. From (40), we see that

E−1 =
∂q−1

∂xn
+ T−2.

By (54), we have

(q1 − b1)
∂q−1

∂xn
+

∂q−1

∂xn
q1 =

∂E0

∂xn
+ T−2.

This implies that ∂E0
∂xn

can be determined from the knowledge of ∂q−1
∂xn

. From (80), we have

∂E0

∂xn
=

∂2q0

∂x2
n
+ T−2.

Thus, it follows from (81) and (82) that(∂2q0

∂x2
n

)n

n+1
= − 1

λ + 3µ

∂2β

∂x2
n
+ T−2,(∂2q0

∂x2
n

)n+1

n
= − βµ

α2(λ + 3µ)

∂2α

∂x2
n
+

µ

α(λ + 3µ)

∂2β

∂x2
n
+ T−2.

Since λ, µ, α, β, ∂λ
∂xn

, ∂µ
∂xn

, ∂2λ
∂x2

n
, ∂2µ

∂x2
n

, ∂α
∂xn

, and ∂β
∂xn

have been determined on the boundary, then,
∂2β

∂x2
n

can be determined by ( ∂2q0
∂x2

n
)n

n+1 on the boundary, and ∂2α
∂x2

n
can be determined by

( ∂2q0
∂x2

n
)n+1

n on the boundary. This implies that p−2 uniquely determines ∂α2

∂x2
n

and ∂2β

∂x2
n

on
the boundary.
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Finally, we consider p−m−1 for m > 1. By (76) and (54), we have p−m−1 uniquely
determines q−m−1, and E−m can be determined from the knowledge of q−m−1. From (40),
we obtain

E−m =
∂q−m

∂xn
+ T−m−1.

We see from (54) that

(q1 − b1)
∂q−m

∂xn
+

∂q−m

∂xn
q1 =

∂E−m+1

∂xn
+ T−m−1.

This implies that ∂E−m+1
∂xn

can be determined from the knowledge of ∂q−m
∂xn

.
We end this proof by induction. Suppose we have shown that, by iteration, E−m

uniquely determines

∂mE0

∂xm
n

=
∂m+1q0

∂xm+1
n

+ T−m−1, (83)

which further determines ∂m+1α
∂xm+1

n
and ∂m+1β

∂xm+1
n

on the boundary since we have

(∂m+1q0

∂xm+1
n

)n

n+1
= − 1

λ + 3µ

∂m+1β

∂xm+1
n

+ T−m−1,

(∂m+1q0

∂xm+1
n

)n+1

n
= − βµ

α2(λ + 3µ)

∂m+1α

∂xm+1
n

+
µ

α(λ + 3µ)

∂m+1β

∂xm+1
n

+ T−m−1.

By (76) and (54), we know that q−m−2 is uniquely determined by p−m−2, and E−m−1
can be determined from the knowledge of q−m−2. Hence, E−m−1 uniquely determines
∂m+2q0
∂xm+2

n
by iteration. It follows that

(∂m+2q0

∂xm+2
n

)n

n+1
= − 1

λ + 3µ

∂m+2β

∂xm+2
n

+ T−m−2,(∂m+2q0

∂xm+2
n

)n+1

n
= − βµ

α2(λ + 3µ)

∂m+2α

∂xm+2
n

+
µ

α(λ + 3µ)

∂m+2β

∂xm+2
n

+ T−m−2.

This implies that p−m−2 uniquely determines ∂m+2α
∂xm+2

n
and ∂m+2β

∂xm+2
n

on the boundary.

Therefore, by combining the uniqueness result of ∂|J|λ
∂x J , ∂|J|µ

∂x J (see [4]), and the above
arguments, we conclude that the thermoelastic Dirichlet-to-Neumann map Λg uniquely

determines ∂|J|λ
∂x J , ∂|J|µ

∂x J , ∂|J|α
∂x J , and ∂|J|β

∂x J on the boundary for all multi-indices J.

4. Global Uniqueness of Real Analytic Coefficients

This section is devoted to proving the global uniqueness of real analytic coefficients
λ, µ, α, and β on a real analytic manifold. More precisely, we prove that the thermoelastic
Dirichlet-to-Neumann map Λg uniquely determines the real analytic coefficients on the
whole manifold M̄.

We recall that the definitions of real analytic functions and real analytic hypersurfaces
of a Riemannian manifold. Let f (x) be a real-valued function defined on an open set
Ω ⊂ Rn. For y ∈ Ω, we call f (x) real analytic at y if there exist aJ ∈ R and a neighborhood
Ny of y such that f (x) = ∑J aJ(x − y)J for all x ∈ Ny and J ∈ Nn. We say f (x) is real
analytic on an open set Ω if f (x) is real analytic at each y ∈ Ω.

Let (M, g) be a Riemannian manifold. A subset U of M is said to be an (n − 1)-
dimensional real analytic hypersurface if U is nonempty and if for every point x ∈ U,
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there is a real analytic diffeomorphism of a unit open ball B(0, 1) ⊂ Rn onto an open
neighborhood Nx of x such that B(0, 1) ∩ {x ∈ Rn|xn = 0}maps onto Nx ∩U.

In order to prove Theorem 3, we need the following lemma (see [59], p. 65).

Lemma 7. (Unique continuation of real analytic functions) Let M ⊂ Rn be a connected open set
and f (x) be a real analytic function defined on M. Let y ∈ M. Then, f (x) is uniquely determined

in M if we know ∂|J| f (y)
∂x J for all J ∈ Nn. In particular, f (x) is uniquely determined in M by its

values in any nonempty open subset of M.

Note that Lemma 7 still holds for real analytic functions defined on real analytic
manifolds. Finally, we prove Theorem 3.

Proof of Theorem 3. According to Theorem 2, it has been proved that the thermoelastic

Dirichlet-to-Neumann map Λg uniquely determines ∂|J|λ
∂x J , ∂|J|µ

∂x J , ∂|J|α
∂x J , and ∂|J|β

∂x J on the bound-
ary for all multi-indices J. Hence, for any point x0 ∈ Γ, the coefficients can be uniquely
determined in some neighborhood of x0 by the analyticity of the coefficients on M ∪ Γ.
Furthermore, it follows from Lemma 7 that the coefficients can be uniquely determined in
M. Therefore, by combining Theorem 2, we conclude that the coefficients λ, µ, α, and β can
be uniquely determined on M̄ by the thermoelastic Dirichlet-to-Neumann map Λg.

Remark 8. By applying the method of Kohn and Vogelius [12], we can also prove that the ther-
moelastic Dirichlet-to-Neumann map Λg uniquely determines the coefficients λ, µ, α, and β on M̄,
provided the manifold and the coefficients are piecewise analytic.
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