An Algebraic Approach to the Δh-Frobenius–Genocchi–Appell Polynomials
Abstract
:1. Introduction and Preliminaries
2. -Frobenius–Genocchi–Appell Equations
3. Quasi-Monomiality and Determinant Form
4. Special Case
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avram, F.; Taqqu, M.S. Noncentral limit theorems and Appell polynomials. Ann. Probab. 1987, 15, 767–775. [Google Scholar] [CrossRef]
- Costabile, F.A.; Longo, E. A determinantal approach to Appell polynomials. J. Comput. Appl. Math. 2010, 234, 1528–1542. [Google Scholar] [CrossRef]
- Costabile, F.A.; Longo, E. The Appell interpolation problem. J. Comput. Appl. Math. 2011, 236, 1024–1032. [Google Scholar] [CrossRef]
- He, M.X.; Ricci, P.E. Differential equation of Appell polynomials via the factorization method. J. Comput. Appl. Math. 2002, 139, 231–237. [Google Scholar] [CrossRef]
- Wani, S.A.; Khan, S. Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials. Tbil. Math. J. 2019, 12, 93–104. [Google Scholar] [CrossRef]
- Wani, S.A.; Khan, S.; Naikoo, S. Differential and integral equations for the Laguerre-Gould-Hopper based Appell and related polynomials. Boletín Soc. Matemática Mex. 2019, 26, 617–646. [Google Scholar] [CrossRef]
- Araci, S.; Riyasat, M.; Wani, S.A.; Khan, S. Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials. App. Math. Inf. Sci. 2017, 11, 1335–1346. [Google Scholar] [CrossRef]
- Khan, S.; Riyasat, M.; Wani, S.A. On some classes of differential equations and associated integral equations for the Laguerre-Appell polynomials. Adv. Pure Appl. Math. 2017, 5, 185–194. [Google Scholar] [CrossRef]
- Khan, S.; Wani, S.A. Differential and integral equations associated with some hybrid families of Legendre polynomials. Tbil. Math. J. 2018, 11, 127–139. [Google Scholar]
- Costabile, F.A.; Longo, E. Δh-Appell sequences and related interpolation problem. Numer. Algorithm 2013, 63, 165–186. [Google Scholar] [CrossRef]
- Jordan, C. Calculus of Finite Differences; Chelsea Publishing Company: New York, NY, USA, 1965. [Google Scholar]
- Yilmaz, B.; Özarslan, M.A. Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations. New Trends Math. Sci. 2015, 3, 17–21. [Google Scholar]
- Kim, D.S.; Kim, T. Some new identities of Frobenius-Genocchi numbers and polynomials. J. Inequal. Appl. 2012, 2012, 307. [Google Scholar] [CrossRef]
- Kim, T. Identities involving Frobenius-Genocchi polynomials arising from non-linear differential equations. J. Number Theory 2012, 132, 2854–2865. [Google Scholar] [CrossRef]
- Kim, T.; Lee, B.-J. Some identities of the Frobenius-Genocchi polynomials. Abstr. Appl. Anal. 2009, 2009, 639439. [Google Scholar] [CrossRef]
- Kim, T.; Seo, J.-J. Some identities involving Frobenius-Genocchi polynomials and numbers. Proc. Jangjeon Math. Soc. 2016, 19, 39–46. [Google Scholar]
- Young, P.T. Degenerate Bernoulli polynomials, generalized factorial sums, and their applications. J. Number Theory 2008, 128, 738–758. [Google Scholar] [CrossRef]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. Adv. Spec. Funct. Appl. 1999, 1, 147–164. [Google Scholar]
- Frobenius, F.G. Über die Bernoullischen Zahlen und die Eulerischen Polynome; Reichsdr: Berlin, Germany, 1910; pp. 809–847. [Google Scholar]
- Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Phil. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press: New York, NY, USA, 1984. [Google Scholar]
S. No. | Result | Expression |
---|---|---|
I. | Multiplicative and derivative operators | |
II. | Differential equation | |
III. | Recurrence relation | |
IV. | Implicit formulas | |
V. | Explicit representations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, S.A.; Shaikh, S.; Alam, P.; Tamboli, S.; Zayed, M.; Dar, J.G.; Bhat, M.Y. An Algebraic Approach to the Δh-Frobenius–Genocchi–Appell Polynomials. Mathematics 2023, 11, 2029. https://doi.org/10.3390/math11092029
Wani SA, Shaikh S, Alam P, Tamboli S, Zayed M, Dar JG, Bhat MY. An Algebraic Approach to the Δh-Frobenius–Genocchi–Appell Polynomials. Mathematics. 2023; 11(9):2029. https://doi.org/10.3390/math11092029
Chicago/Turabian StyleWani, Shahid Ahmad, Sarfaraj Shaikh, Parvez Alam, Shahid Tamboli, Mohra Zayed, Javid G. Dar, and Mohammad Younus Bhat. 2023. "An Algebraic Approach to the Δh-Frobenius–Genocchi–Appell Polynomials" Mathematics 11, no. 9: 2029. https://doi.org/10.3390/math11092029
APA StyleWani, S. A., Shaikh, S., Alam, P., Tamboli, S., Zayed, M., Dar, J. G., & Bhat, M. Y. (2023). An Algebraic Approach to the Δh-Frobenius–Genocchi–Appell Polynomials. Mathematics, 11(9), 2029. https://doi.org/10.3390/math11092029