On Translation Curves and Geodesics in
Abstract
:1. Introduction
2. The Model Space
2.1. Lie Group
2.2. Metric and Basis
2.3. Levi–Civita Connection
2.4. Lie algebra
2.5. Riemannian and Sectional Curvatures
3. Translation Curves in
3.1. Translation Curves in
- (a)
- (b)
3.2. Curvature Properties of Translation Curves
3.3. Translation Spheres in
4. Geodesics in
- 1.
- 2.
- 3.
- 4.
- where
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, P. The geometries of 3-manifolds. Bull. London Math. Soc. 1983, 15, 401–487. [Google Scholar] [CrossRef]
- Thurston, W.M. Three-Dimensional Geometry and Topology, Volume I; Levy, S., Ed.; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Filipkiewicz, R. Four Dimensional Geometries. Ph.D. Thesis, University of Warwick, Coventry, UK, 1983. [Google Scholar]
- Wall, C.T.C. Geometric structures on compact complex analytic surfaces. Topology 1986, 25, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Erjavec, Z.; Inoguchi, J. Minimal submanifolds in . RACSAM 2022. submitted. [Google Scholar]
- Erjavec, Z.; Inoguchi, J. J-trajectories in 4-dimensional solvable Lie groups . J. Nonlinear Sci. 2022. submitted. [Google Scholar]
- Molnár, E.; Szilágyi, B. Translation curves and their spheres in homogeneous geometries. Publ. Math. Debrecen 2011, 78, 327–346. [Google Scholar] [CrossRef]
- Erjavec, Z. Geodesics and translation curves in . Mathematics 2023, 11, 1533. [Google Scholar] [CrossRef]
- De Leo, B.; Marinosci, R.A. Homogeneous geodesics of four-dimensional generalized symmetric pseudo-Riemannian spaces. Publ. Math. Debrecen 2008, 73, 341–360. [Google Scholar] [CrossRef]
- Erjavec, Z.; Inoguchi, J. J-trajectories in 4-dimensional solvable Lie groups . Math. Phys. Anal. Geom. 2022, 25, 8. [Google Scholar] [CrossRef]
- Inoguchi, J. J-trajectories in locally conformal Kähler manifolds with parallel anti Lee field. Int. Electron. J. Geom. 2020, 13, 30–44. [Google Scholar] [CrossRef]
- Maeda, S.; Adachi, T. Holomorphic helices in a complex space form. Proc. Amer. Math. Soc. 1997, 125, 1197–1202. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erjavec, Z.; Maretić, M.
On Translation Curves and Geodesics in
Erjavec Z, Maretić M.
On Translation Curves and Geodesics in
Erjavec, Zlatko, and Marcel Maretić.
2023. "On Translation Curves and Geodesics in
Erjavec, Z., & Maretić, M.
(2023). On Translation Curves and Geodesics in