Existence Theoremsfor Solutions of a Nonlinear Fractional-Order Coupled Delayed System via Fixed Point Theory
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics, Recent Advances; World Scientific: Singapore, 2011. [Google Scholar]
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar]
- Hu, X.; Song, Q.; Ge, M.; Li, R. Fractional-order adaptive fault-tolerant control for a class of general nonlinear systems. Nonlinear Dyn. 2020, 101, 379–392. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, T.; Li, Y.; Zhang, X.; Zhong, S. Delay-dependent consensus criteria for fractional-order Takagi-Sugeno fuzzy multi-agent systems with time delay. Inf. Sci. 2021, 560, 456–475. [Google Scholar] [CrossRef]
- Wei, Y.; Sheng, D.; Chen, Y.; Wang, Y. Fractional order chattering free robust adaptive backstepping control technique. Nonlinear Dyn. 2019, 95, 2383–2394. [Google Scholar] [CrossRef]
- Arshad, U.; Sultana, M.; Ali, A.H.; Bazighifan, O.; Al-moneef, A.A.; Nonlaopon, K. Numerical solutions of fractional-order electrical RLC circuit equations via three numerical techniques. Mathematics 2022, 10, 3071. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Zhao, Y.; Song, X. Dynamic stability of a class of fractional-order nonlinear systems via fixed point theory. Math. Meth. Appl. Sci. 2021, 45, 77–92. [Google Scholar] [CrossRef]
- Chadha, A.; Pandey, D.N. Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay. Nonlinear Anal. 2015, 128, 149–175. [Google Scholar] [CrossRef]
- Syed, M.A.; Govindasamy, N.; Vineet, S.; Hamed, A. Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms. Appl. Math. Comput. 2020, 369, 124896. [Google Scholar] [CrossRef]
- Yong, Z.; Feng, J. Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real. 2017, 11, 4465–4475. [Google Scholar]
- Lakshmikantham, V. Theory of fractional functional differential equations. Nonlinear Anal. 2008, 69, 3337–3343. [Google Scholar] [CrossRef]
- Sultana, M.; Arshad, U.; Ali, A.H.; Bazighifan, O.; Al-Moneef, A.A.; Nonlaopon, K. New efficient computations with symmetrical and dynamic analysis for solving higher-order fractional partial differential equations. Symmetry 2022, 14, 1653. [Google Scholar] [CrossRef]
- Al-Ghafri, K.S.; Alabdala, A.T.; Redhwan, S.S.; Bazighifan, O.; Ali, A.H.; Iambor, L.F. Symmetrical solutions for non-Local fractional integro-differential equations via Caputo–Katugampola derivatives. Symmetry 2023, 15, 662. [Google Scholar] [CrossRef]
- Du, F.F.; Lu, J.G. New criteria on finite-time stability of fractional-order hopfield neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3858–3866. [Google Scholar] [CrossRef] [PubMed]
- Syed, M.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B. Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. 2019, 83, 105088. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. New Fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar]
- Khan, F.S.; Khalid, M.; Al-moneef, A.A.; Ali, A.H.; Bazighifan, O. Freelance model with Atangana–Baleanu Caputo fractional derivative. Symmetry 2022, 14, 2424. [Google Scholar] [CrossRef]
- Farman, M.; Aslam, M.; Akgul, A.; Ahmad, A. Modeling of fractional-order COVID-19 epidemic model with quarantine and social distancing. Math. Meth. Appl. Sci. 2021, 44, 6389–6405. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Soliton. Fract. 2018, 117, 16–20. [Google Scholar] [CrossRef]
- Thabet, S.; Abdo, M.S.; Shah, K.; Abdeljawad, T. Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Results Phys. 2020, 19, 103507. [Google Scholar] [CrossRef]
- Atangana, A.; Gómez-Aguilar, J.F. Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos Soliton. Fract. 2018, 114, 516–535. [Google Scholar] [CrossRef]
- Behzad, G.; Atangana, A. A new application of fractional Atangana-Baleanu derivatives: Designing ABC-fractional masks in image processing. Phys. A 2020, 542, 123516. [Google Scholar]
- Khan, H.; Li, Y.; Khan, A.; Khan, A. Existence of solution for a fractional-orderLotka-Volterra reaction-diffusion model with Mittag-Leffler kernel. Math. Meth. Appl. Sci. 2019, 42, 3377–3387. [Google Scholar] [CrossRef]
- Khan, H.; Gomez-Aguilar, J.F.; Abdeljawad, T.; Khan, A. Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation. Fractals 2020, 28, 2040048. [Google Scholar] [CrossRef]
- Čiegis, R.; Bugajev, A. Numerical approximation of one model of the bacterial self-organization. Nonlinear Anal. Model. Control 2012, 17, 253–270. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Alghamdi, B.S. Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 2008, 9, 1727–1740. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.; Alsaedi, A. Existence of solutions for fractional differential equations with nonlocal and average type integral boundary conditions. J. Appl. Math. Comput. 2017, 53, 129–145. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Nieto, J.J. Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions. Appl. Math. Lett. 2021, 116, 107018. [Google Scholar] [CrossRef]
- Chokkalingam, R.; Logeswari, K.; Panda, S.K.; Nisar, K.S. On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions. Chaos Soliton. Fract. 2020, 139, 110012. [Google Scholar]
- Podiubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1974. [Google Scholar]
- Karami, H.; Babakhani, A.; Baleanu, D. Existence results for a class of fractional differential equations with periodic boundary value conditions and with delay. Abstr. Appl. Anal. 2013, 2013, 176180. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, W.; Ding, X.H. Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay. Appl. Math. Comput. 2019, 343, 114–127. [Google Scholar] [CrossRef]
- Zou, X.L.; Zheng, Y.T.; Zhang, L.R.; Lv, J.L. Survivability and stochastic bifurcations for a stochastic holling type II predator-prey model. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, L.; Zhao, Y. Existence Theoremsfor Solutions of a Nonlinear Fractional-Order Coupled Delayed System via Fixed Point Theory. Mathematics 2023, 11, 1634. https://doi.org/10.3390/math11071634
Liu X, Chen L, Zhao Y. Existence Theoremsfor Solutions of a Nonlinear Fractional-Order Coupled Delayed System via Fixed Point Theory. Mathematics. 2023; 11(7):1634. https://doi.org/10.3390/math11071634
Chicago/Turabian StyleLiu, Xin, Lili Chen, and Yanfeng Zhao. 2023. "Existence Theoremsfor Solutions of a Nonlinear Fractional-Order Coupled Delayed System via Fixed Point Theory" Mathematics 11, no. 7: 1634. https://doi.org/10.3390/math11071634
APA StyleLiu, X., Chen, L., & Zhao, Y. (2023). Existence Theoremsfor Solutions of a Nonlinear Fractional-Order Coupled Delayed System via Fixed Point Theory. Mathematics, 11(7), 1634. https://doi.org/10.3390/math11071634