A Mathematical Tool to Investigate the Stability Analysis of Structured Uncertain Dynamical Systems with M-Matrices
Abstract
:1. Introduction
Algorithm 1: Approximate the perturbation level to approximate structured singular values |
procedure Given(A(M-matrix), BLK, , (given lower bound), (given lower bound) , (given upper bound), (starting number of eigenvalues)) for i ← 1 solve the system of ODEs (4.10) in [20] corresponding to each case start from initial choice . Let be a stationary solution and be the smallest eigenvalue corresponding to perturbed matrix Set Set , , , the eigenvectors Compute by one step Newton Iteration Set While solve ODEs (4.10) in [20] with starting from Let be a stationary solution of (4.10) in [20]. Let be smallest eigenvalue of perturbed matrix if then Set Compute with one step Newton Iteration. end procedure |
2. Structured Singular Values
3. M-Matrices
4. Main Results
Algorithm 2: Compute the derivative of the spectrum of . |
Data: , M-Matrix , M-Matrix _, uncertainty Result: Spectrum before and after Differentiation _, eigenvalues before Differentiation _, eigenvalues after Differentiation for i in 1 to for j in 1 to diff_ _ diff_t[i,j] _ end for end for AB S_ S× delta_t(t) _S_delta S_delta Sy i×thetay_) for i in 1 to _[i] × (transpose(z) ×_t×_) end for |
Algorithm 3: Compute derivative of spectrum of |
Data: A, M-Matrix B, M-Matrix ⟵ _ , uncertainty Result: Spectrum before and after Differentiation _, eigenvalues before Differentiation _, eigenvalues after Differentiation for i in 1 to for j in 1 to diff_⟵ derivative of _ diff_t[i,j] ⟵ diff_ end for end for S A and B S___ _⟵ eigen vectors of S_ ⟵ eigen values of S_ y⟵ 0 y[1] ⟵ 1 z ⟵ transpose(S)×y r ⟵ exp(i×)× (_) for i in 1 to _[i] ⟵× (transpose(z) ×_t×_) end for |
5. Applications
The approximation of bounds of structured singular values for M-matrices | |||
BLK | mussv (u.b) | mussv (l.b) | Algorithm 1 (l.b) |
15.4142 | 15.1218 | 15.1218 | |
15.4142 | 15.0607 | 15.0213 | |
15.4142 | 15.4142 | 15.1025 | |
15.4142 | 15.4142 | 15.4142 |
The approximation of bounds of structured singular values for M-matrices | |||
BLK | mussv (u.b) | mussv (l.b) | Algorithm 1 (l.b) |
3.6180 | 3.6180 | 3.6180 | |
3.6180 | 3.6180 | 3.6153 | |
3.6180 | 3.5615 | 3.5518 | |
3.5180 | 3.5180 | 13.5180 |
The approximation of bounds of structured singular values for M-matrices | |||
BLK | mussv (u.b) | mussv (l.b) | Algorithm 1 (l.b) |
12 | 11.7724 | 11.7724 | |
12 | 11.8125 | 11.8041 | |
12 | 12 | 11.9532 | |
12 | 12 | 11.9532 |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doyle, J.C.; Wall, J.; Stein, G. Performance and robustness analysis for structured uncertainty. In Proceedings of the 1982 21st IEEE Conference on Decision and Control, Orlando, FL, USA, 8–10 December 1982; pp. 629–636. [Google Scholar]
- Doyle, J. Analysis of feedback systems with structured uncertainties. IEE Proc. Control Theory Appl. 1982, 129, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Bernhardsson, B.; Rantzer, A.; Qiu, L. Real perturbation values and real quadratic forms in a complex vector space. Linear Algebra Appl. 1998, 270, 131–154. [Google Scholar] [CrossRef]
- Braatz, R.P.; Young, P.M.; Doyle, J.C.; Morari, M. Computational complexity of μ calculation. IEEE Trans. Automat. Control 1994, 39, 1000–1002. [Google Scholar] [CrossRef] [Green Version]
- Butta, P.; Guglielmi, N.; Noschese, S. Computing the structured pseudospectrum of a Toeplitz matrix and its extreme points. SIAM J. Matrix Anal. Appl. 2012, 33, 1300–1319. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Fan, M.K.; Nett, C.N. Structured singular values with nondiagonal structures. I. Characterizations. IEEE Trans. Automat. Control 1996, 41, 1057–1511. [Google Scholar]
- Guglielmi, N.; Kressner, D.; Lubich, C. Computing extremal points of symplectic pseudospectra and solving symplectic matrix nearness problems. SIAM J. Matrix Anal. Appl. 2014, 35, 1407–1428. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, N.; Kressner, D.; Lubich, C. Low rank differential equations for Hamiltonian matrix nearness problems. Numer. Math. 2015, 129, 279–319. [Google Scholar] [CrossRef]
- Guglielmi, N.; Lubich, C. Differential equations for roaming pseudospectra: Paths to extremal points and boundary tracking. SIAM J. Numer. Anal. 2011, 49, 1194–1209. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, N.; Manetta, M. Approximating real stability radii. IMA J. Numer. Anal. 2015, 35, 1402–1425. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Packard, A.; Doyle, J.C. The complex structured singular value. Automatica 1993, 29, 71–109. [Google Scholar] [CrossRef] [Green Version]
- Dailey, R.L. A new algorithm for the real structured singular value. In Proceedings of the 1990 American Control Conference, San Diego, CA, USA, 23–25 May 1990; pp. 3036–3040. [Google Scholar]
- de Gaston, R.R.E. Non-Conservative Calculation of the Multi-Loop Stability Margin. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 1985. [Google Scholar]
- de Gaston, R.R.E.; Safonov, M.G. Exact calculation of the multitop stability margin. IEEE Trans. Autom. Control 1988, 33, 156–171. [Google Scholar] [CrossRef]
- Sideris, A.; de Gaston, R.R.E. Multi variable stability calculation with uncertain correlated parameters. In Proceedings of the IEEE Conference on Decision and Control, Athens, Greece, 10–12 December 1986; pp. 766–771. [Google Scholar]
- Pefia, R.S.S.; Sideris, A. A general program to compute the multivariable stability margin for systems with parametric uncertainty. In Proceedings of the American Control Conference, Atlanta, GA, USA, 15–17 June 1988. [Google Scholar]
- Chang, B.C.; Ekdal, O.; Yeh, H.H.; Banda, S.S. Computation of the real structured singular value via polytopic polynomials. In Proceedings of the AIAA Conference on Guidance Navigation and Control, Boston, MA, USA, 14–16 August 1989. [Google Scholar]
- Yazıcı, A.; Karamancıoğlu, A.; Kasimbeyli, R. A nonlinear programming technique to compute a tight lower bound for the real structured singular value. Optim. Eng. 2011, 12, 445–458. [Google Scholar] [CrossRef]
- Rehman, M.U.; Alzabut, J.; Brohi, J.H. Computing µ-values for LTI Systems. AIMS Math 2021, 6, 304–313. [Google Scholar] [CrossRef]
- Rehman, M.U.; Iqbal, S.; Alzabut, J.; El-Nabulsi, R.A. Stability Analysis of LTI System with Diagonal Norm Bounded Linear Differential Inclusions. Symmetry 2021, 13, 152. [Google Scholar] [CrossRef]
- Troeng, O. Five-Full-Block Structured Singular Values of Real Matrices Equal Their Upper Bounds. IEEE Control Syst. Lett. 2020, 5, 583–586. [Google Scholar] [CrossRef]
- Rehman, M.U.; Alzabut, J.; Ateeq, T.; Kongson, J.; Sudsutad, W. The Dual Characterization of Structured and Skewed Structured Singular Values. Mathematics 2022, 10, 2050. [Google Scholar] [CrossRef]
- Chen, K.C.; Wang, C.S.; Yen, C.C. Numerical algorithms for the largest structured singular value of μ–synthesis control system. Taiwan. J. Math. 2010, 14, 973–998. [Google Scholar] [CrossRef]
- Pankov, P.S.; Zheentaeva, Z.K.; Shirinov, T. Asymptotic reduction of solution space dimension for dynamical systems. Twms J. Pure Appl. Math. 2021, 12, 243–253. [Google Scholar]
- Musaev, H.K. The Cauchy problem for degenerate parabolic convolution equation. Twms J. Pure Appl. Math. 2021, 12, 278–288. [Google Scholar]
- Sunday, J.; Shokri, A.; Marian, D. Variable step hybrid block method for the approximation of Kepler problem. Fractal Fract. 2022, 6, 343. [Google Scholar] [CrossRef]
- Rehman, M.U.; Alzabut, J.; Hyder, A. Quadratic stability of non-linear systems modeled with norm bounded linear differential inclusions. Symmetry 2020, 12, 1432. [Google Scholar] [CrossRef]
- Iqbal, A.; Waqar, A.; Madurai Elavarasan, R.; Premkumar, M.; Ahmed, T.; Subramaniam, U.; Mekhilef, S. Stability assessment and performance analysis of new controller for power quality conditioning in microgrids. Int. Trans. Electr. Energy Syst. 2021, 6, e12891. [Google Scholar] [CrossRef]
- Sergiyenko, O.; Zhirabok, A.; Ibraheem, I.K.; Zuev, A.; Filaretov, V.; Azar, A.T.; Hameed, I.A. Interval Observers for Discrete-Time Linear Systems with Uncertainties. Symmetry 2022, 14, 2131. [Google Scholar] [CrossRef]
- Sakthivel, R.; Harshavarthini, S.; Almakhles, D.J.; Kavikumar, R. Design of uncertainty and disturbance estimator based tracking control for fuzzy switched systems. IET Control. Theory Appl. 2021, 15, 1804–1817. [Google Scholar] [CrossRef]
- Plemmons, R.J. M-matrix characterizations. I—nonsingular M-matrices. Linear Algebra Its Appl. 1977, 18, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Strang, G. Linear Algebra and Its Applications; Thomson, Brooks/Cole: Belmont, CA, USA, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.-U.; Alzabut, J.; Fatima, N.; Khan, S. A Mathematical Tool to Investigate the Stability Analysis of Structured Uncertain Dynamical Systems with M-Matrices. Mathematics 2023, 11, 1622. https://doi.org/10.3390/math11071622
Rehman M-U, Alzabut J, Fatima N, Khan S. A Mathematical Tool to Investigate the Stability Analysis of Structured Uncertain Dynamical Systems with M-Matrices. Mathematics. 2023; 11(7):1622. https://doi.org/10.3390/math11071622
Chicago/Turabian StyleRehman, Mutti-Ur, Jehad Alzabut, Nahid Fatima, and Sajid Khan. 2023. "A Mathematical Tool to Investigate the Stability Analysis of Structured Uncertain Dynamical Systems with M-Matrices" Mathematics 11, no. 7: 1622. https://doi.org/10.3390/math11071622
APA StyleRehman, M.-U., Alzabut, J., Fatima, N., & Khan, S. (2023). A Mathematical Tool to Investigate the Stability Analysis of Structured Uncertain Dynamical Systems with M-Matrices. Mathematics, 11(7), 1622. https://doi.org/10.3390/math11071622