Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized (E, h)-Convexity
Abstract
:1. Introduction
- .
- .
- .
- .
- .
- .
- .
2. Main Results
- If , then Definition 8 returns to Definition 2 in [23].
- If , then
- For , in the above Theorem, we obtain the following inequalities:
- Let ; then, we obtain the local fractional integral inequalities (3.3) in [23].
- is non-negative on .
- is increasing on .
- is decreasing on .
3. Application Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadamard, J. Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math Pures Appl. 1893, 58, 171–215. [Google Scholar]
- VaroŠanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Angulo, H.; Gimenez, J.; Moros, A.M.; Nikodem, K. On strongly h-convex functions. Ann. Funct. Anal. 2011, 2, 85–91. [Google Scholar] [CrossRef]
- Zhao, T.; Saleem, M.S.; Nazeer, W.; Bashir, I.; Hussain, I. On generalized strongly modified h-convex functions. J. Inequalities Appl. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On Some Hadamard-Type Inequalities for h-Convex Functions. J. Math. Inequalities 2008, 2, 335–341. [Google Scholar] [CrossRef]
- Youness, E.A. E-convex sets, E-convex functions, and E-convex programming. J. Optim. Theory Appl. 1999, 102, 439–450. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, R. New Hadamard-type inequalities for E-convex functions involving generalized fractional integrals. J. Inequalities Appl. 2022, 1, 1–18. [Google Scholar] [CrossRef]
- Edgar, G.A. Integral, Probability, and Fractal Measures; Springer: New York, NY, USA, 1988. [Google Scholar]
- Kolwankar, K.M.; Gangal, A.D. Local fractional calculus: A calculus for fractal space-time. In Fractals; Springer: London, UK, 1999; pp. 171–181. [Google Scholar]
- Meftah, B.; Lakhdari, A.; Saleh, W.; Kiliçman, A. Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications. Fractal. Fract. 2023, 7, 166. [Google Scholar] [CrossRef]
- Lakhdari, A.; Saleh, W.; Meftah, B.; Iqbal, A. Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal Fract. 2022, 6, 710. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. Generalized Fejer-Hermite-Hadamard type via generalized (h − m)-convexity on fractal sets and applications. Chaos Solitons Fractals 2021, 147, 110938. [Google Scholar] [CrossRef]
- Baleanu, D.; Srivastava, H.M.; Yang, X.J. Local fractional variational iteration algorithms for the parabolic FokkerPlanck equation defined on Cantor sets. Prog. Fract. Differ. Appl. 2015, 1, 1–11. [Google Scholar]
- Bernstein, F.; Doetsch, G. Zur Theorie der Konvexen Funktionen. Math. Ann. 1915, 76, 514–526. [Google Scholar] [CrossRef]
- Du, T.S.; Wang, H.; Khan, M.A.; Zhang, Y. Certain Integral Inequalities Considering Generalized m-Convexity on Fractal Sets and Their Applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
- Fernandez, A.; Pshtiwan, M. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some Remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Tuba, T.; Budak, H. On generalized some integral inequalities for local fractional integrals. Appl. Math. Comput. 2016, 276, 316–323. [Google Scholar] [CrossRef]
- Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47, 54–60. [Google Scholar] [CrossRef]
- Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Elsevier Science Publishers: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sun, W. Generalized h-convexity on fractal sets and some generalized Hadamard type inequalities. Fractals 2020, 28, 205002. [Google Scholar] [CrossRef]
- Sun, W. Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel. Math. Methods Appl. Sci. 2021, 44, 4985–4998. [Google Scholar] [CrossRef]
- Kilicman, A.; Saleh, W. Generalized convex functions and their applications. In Mathematical Analysis and Applications; Springer: Berlin, Germany, 2018; pp. 77–99. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, W.; Lakhdari, A.; Almutairi, O.; Kiliçman, A. Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized (E, h)-Convexity. Mathematics 2023, 11, 1373. https://doi.org/10.3390/math11061373
Saleh W, Lakhdari A, Almutairi O, Kiliçman A. Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized (E, h)-Convexity. Mathematics. 2023; 11(6):1373. https://doi.org/10.3390/math11061373
Chicago/Turabian StyleSaleh, Wedad, Abdelghani Lakhdari, Ohud Almutairi, and Adem Kiliçman. 2023. "Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized (E, h)-Convexity" Mathematics 11, no. 6: 1373. https://doi.org/10.3390/math11061373