An Efficient Hybrid of an Ant Lion Optimizer and Genetic Algorithm for a Model Parameter Identification Problem
Abstract
:1. Introduction
- This work intends to propose a novel hybrid ALO-GA that can fully balance exploration and exploitation, and significantly improve the global optimization ability. The algorithm performance is validated on a set of classical benchmark functions.
- The ALO-GA hybrid has been applied for the first time for the parameter identification of a nonlinear mathematical model of an E. coli cultivation process. The outperformance of the ALO-GA has been confirmed. The algorithm provides better results than the recent hybrid metaheuristics applied to an E. coli model parameter identification.
- The better ALO-GA performance is further confirmed by applying two parametric and three nonparametric statistical tests. The results show that the ALO-GA statistically outperforms the other algorithms considered in the comparison.
- A new improved model of the fed-batch cultivation process of the strain E. coli MC4110 has been obtained. It is 6.5% better than the best model known so far. The developed mathematical model could be further used for process investigation and optimization based on process monitoring and control.
2. Literature Review
Hybrid Algorithm | Year | Used Approach |
---|---|---|
ABLALO [47] | 2019 | ALO with adaptive boundary and optimal guidance |
OB-L-ALO [48] | 2017 | A novel opposition-based ALO |
ALO-DM [36] | 2018 | ALO with differential mutation operator |
HALO [37,38] | 2019 and 2021 | ALO with arithmetic crossover operation |
MALO [49] | 2022 | ALO with a new algorithm parameter |
K-means-ALO [50] | 2019 | ALO with integrated K-means clustering |
IALO-SVR [51] | 2019 | ALO with support vector regression |
EALO-SCA [31] | 2020 | ALO with a sine cosine algorithm approach |
CHAOARO [21] | 2022 | Aquila optimizer and artificial rabbits optimization algorithm |
IHAOAVOA [52] | 2022 | Aquila optimizer and African vultures optimization algorithm |
ABC-GA [24] | 2021 | Artificial bee colony with genetic algorithm |
ACO-FA [22] | 2014 | Ant colony optimization with firefly algorithm |
GA-ACO [26] | 2016 | Ant colony optimization with genetic algorithm |
OCSSA [53] | 2020 | Chaotic salp swarm algorithm based on opposition-based learning |
COGWO2D [54] | 2018 | Grey wolf optimizer combined with a chaotic logistic map, opposition-based learning, differential evolution, and a disruption operator |
HGGWA [55] | 2019 | Grey wolf optimizer with genetic operators |
LGWO [56] | 2022 | Grey wolf optimizer with Lévy flight |
APSO-PDC [57] | 2019 | Particle swarm optimization based on an adaptive selection of particle roles, population diversity control, and adaptive control of parameters |
MMPA [58] | 2021 | Marine predators algorithm and logistic opposition-based learning mechanism and effective self-adaptive updating methods |
OXDE [59] | 2012 | Orthogonal crossover and differential evolution variants |
nAOA [60] | 2021 | Arithmetic optimization algorithm with the use of natural logarithm and exponential operators |
3. Escherichia coli Fed-Batch Cultivation Process
4. Hybrid Ant Lion Optimizer-Genetic Algorithm (ALO-GA)
Algorithm 1: Pseudo-code of ALO-GA |
1: begin 2: Define the input parameters for both ALO and GA 3: Define the parameters of the problem under consideration 4: % Start ALO 5: Generate randomly the initial populations of ants and antlions 6: Calculate the corresponding fitness estimations 7: Find the best antlion and adopt it as the elite (determined optimum) 8: for j:= 1 to the size of initial population Pop0 9: while the end criterion is not satisfied 10: for each ant 11: Select an antlion using the roulette wheel selection 12: Update the parameters of the random walk 13: Create a random walk and normalize it 14: Update the position of the ant 15: end for 16: Evaluate all ants 17: Replace an antlion with its corresponding ant if it becomes fitter 18: Update the elite if an antlion becomes fitter 19: end while 20: Memorize the best solution for the current iteration in Pop0 21: end for 22: % Start GA 23: Set the initial population Pop0 to the set of best solutions generated by ALO 24: Calculate the value of the fitness function for each individual in Pop0 25: for j:= 1 to MaxGeneration 26: Select individuals Popi from the current population Popi−1 in a way that gives an advantage to better individuals 27: Perform crossover with probability pc 28: Perform mutation with probability pm 29: Calculate the value of the fitness function for each individual in Popi 30: end for 31: Rank the solutions, find the current best, and memorize it 32: end begin |
5. Results and Discussion
5.1. ALO-GA Hybrid Algorithm Performance on Test Functions
- (i)
- (ii)
- Physics-based algorithms (nAOA [60]);
- (iii)
5.2. Parameter Identification of E. coli MC4110 Fed-Batch Cultivation Process
5.2.1. Simulation Setup
5.2.2. Numerical Results
5.2.3. Statistical Analysis
6. Conclusions and Future Research Directions
Author Contributions
Funding
Conflicts of Interest
References
- de Menezes, L.H.S.; Carneiro, L.L.; de Carvalho Tavares, I.M.; Santos, P.H.; das Chagas, T.P.; Mendes, A.A.; da Silva, E.G.P.; Franco, M.; de Oliveira, J.R. Artificial Neural Network Hybridized with a Genetic Algorithm for Optimization of Lipase Production from Penicillium roqueforti ATCC 10110 in Solid-State Fermentation. Biocatal. Agric. Biotechnol. 2021, 31, 101885. [Google Scholar] [CrossRef]
- Pan, N.; Wang, H.; Tian, Y.; Chorukova, E.; Simeonov, I.; Christov, N. Comparison Study of Dynamic Models for One-stage and Two-stage Anaerobic Digestion Processes. IFAC-PapersOnLine 2022, 55, 667–672. [Google Scholar] [CrossRef]
- Chorukova, E.; Hubenov, V.; Gocheva, Y.; Simeonov, I. Two-Phase Anaerobic Digestion of Corn Steep Liquor in Pilot Scale Biogas Plant with Automatic Control System with Simultaneous Hydrogen and Methane Production. Appl. Sci. 2022, 12, 6274. [Google Scholar] [CrossRef]
- Brou, P.; Patricia, T.; Beaufort, S.; Brandam, C. Modelling of S. cerevisiae and T. delbrueckii pure culture fermentation in synthetic media using a compartmental nitrogen model. OENO One 2020, 54, 299–311. [Google Scholar] [CrossRef]
- Zentou, H.; Zainal Abidin, Z.; Yunus, R.; Awang Biak, D.R.; Abdullah Issa, M.; Yahaya Pudza, M. A new model of alcoholic fermentation under a byproduct inhibitory effect. ACS Omega 2021, 6, 4137–4146. [Google Scholar] [CrossRef]
- Ma, X.; Wu, Y.; Shen, J.; Duan, L.; Liu, Y. ML-LME: A Plant Growth Situation Analysis Model Using the Hierarchical Effect of Fractal Dimension. Mathematics 2021, 9, 1322. [Google Scholar] [CrossRef]
- Guzmán-Palomino, A.; Aguilera-Vázquez, L.; Hernández-Escoto, H.; García-Vite, P.M. Sensitivity, Equilibria, and Lyapunov Stability Analysis in Droop’s Nonlinear Differential Equation System for Batch Operation Mode of Microalgae Culture Systems. Mathematics 2021, 9, 2192. [Google Scholar] [CrossRef]
- Benalcázar, E.A.; Noorman, H.; Filho, R.M.; Posada, J.A. Modeling ethanol production through gas fermentation: A biothermodynamics and mass transfer-based hybrid model for microbial growth in a large-scale bubble column bioreactor. Biotechnol. Biofuels 2020, 13, 59. [Google Scholar] [CrossRef]
- Du, Y.H.; Wang, M.Y.; Yang, L.H.; Tong, L.L.; Guo, D.S.; Ji, X.J. Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering 2022, 9, 473. [Google Scholar] [CrossRef]
- Dulf, E.H.; Vodnar, D.C.; Danku, A.; Martău, A.G.; Teleky, B.E.; Dulf, F.V.; Ramadan, M.F.; Crisan, O. Mathematical Modeling and Optimization of Lactobacillus Species Single and Co-Culture Fermentation Processes in Wheat and Soy Dough Mixtures. Front. Bioeng. Biotechnol. 2022, 10, 888827. [Google Scholar] [CrossRef] [PubMed]
- Krista, G.M.; Kresnowati, M.T.A.P. Modeling the synthetic gas fermentation for bioethanol production. IOP Conf. Ser. Earth Environ. Sci. 2022, 963, 012013. [Google Scholar] [CrossRef]
- Ezzatzadegan, L.; Yusof, R.; Morad, N.A.; Shabanzadeh, P.; Muda, N.S.; Borhani, T.N. Experimental and artificial intelligence modelling study of oil palm trunk sap fermentation. Energies 2021, 14, 2137. [Google Scholar] [CrossRef]
- Alvarado-Santos, E.; Aguilar-López, R.; Neria-González, M.I.; Romero-Cortés, T.; Robles-Olvera, V.J.; López-Pérez, P.A. A novel kinetic model for a cocoa waste fermentation to ethanol reaction and its experimental validation. Prep. Biochem. 2022, 53, 167–182. [Google Scholar] [CrossRef]
- Mori, H.; Kataoka, M.; Yang, X. Past, Present, and Future of Genome Modification in Escherichia coli. Microorganisms 2022, 10, 1835. [Google Scholar] [CrossRef]
- Necula, G.; Bacalum, M.; Radu, M. Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane—A Molecular Simulation Approach. Int. J. Mol. Sci. 2023, 24, 2005. [Google Scholar] [CrossRef]
- Castro-López, D.A.; González de la Vara, L.E.; Santillán, M.; Martínez-Antonio, A. A Molecular Dynamic Model of Tryptophan Overproduction in Escherichia coli. Fermentation 2022, 8, 560. [Google Scholar] [CrossRef]
- Predojević, L.; Keše, D.; Bertok, D.Ž.; Korva, M.; Kreft, M.E.; Erjavec, M.S. Cytokine Response of the Biomimetic Porcine Urothelial Model to Different Escherichia coli Strains. Appl. Sci. 2022, 12, 8567. [Google Scholar] [CrossRef]
- Azrag, M.A.K.; Zain, J.M.; Kadir, T.A.A.; Yusoff, M.; Jaber, A.S.; Abdlrhman, H.S.M.; Ahmed, Y.H.Z.; Husain, M.S.B. Estimation of Small-Scale Kinetic Parameters of Escherichia coli (E. coli) Model by Enhanced Segment Particle Swarm Optimization Algorithm ESe-PSO. Processes 2023, 11, 126. [Google Scholar] [CrossRef]
- Jiménez, A.; Castillo, A.; Mahn, A. Kinetic Study and Modeling of Wild-Type and Recombinant Broccoli Myrosinase Produced in E. coli and S. cerevisiae as a Function of Substrate Concentration, Temperature, and pH. Catalysts 2022, 12, 683. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovská, E.; Zuščák, T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022, 12, 17387. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y.; Guo, Y.; Li, J. Dynamic Chaotic Opposition-Based Learning-Driven Hybrid Aquila Optimizer and Artificial Rabbits Optimization Algorithm: Framework and Applications. Processes 2022, 10, 2703. [Google Scholar] [CrossRef]
- Roeva, O.; Fidanova, S. Parameter Identification of an E. coli cultivation process model using hybrid metaheuristics. Int. J. Metaheuristics 2014, 3, 133–148. [Google Scholar] [CrossRef]
- Roeva, O.; Atanassova, V. Cuckoo search algorithm for model parameter identification. Int. J. Bioautom. 2016, 20, 483–492. [Google Scholar]
- Roeva, O.; Zoteva, D.; Lyubenova, V. Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm. Processes 2021, 9, 1418. [Google Scholar] [CrossRef]
- Angelova, M.; Vassilev, P.; Pencheva, T. Genetic Algorithm and Cuckoo Search Hybrid Technique for Parameter Identification of Fermentation Process Model. Int. J. Bioautom. 2020, 24, 277–288. [Google Scholar] [CrossRef]
- Roeva, O.; Fidanova, S.; Paprzycki, M. InterCriteria analysis of ACO and GA hybrid algorithms. Stud. Comput. Intell. 2016, 610, 107–126. [Google Scholar]
- Khoja, I.; Ladhari, T.; M’sahli, F.; Sakly, A. Cuckoo search approach for parameter identification of an activated sludge process. Comput. Int. Neurosci. 2018, 2018, 3476851. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley Professional: Boston, MA, USA, 1989. [Google Scholar]
- Zhang, H.; Gao, Z.; Zhang, J.; Liu, J.; Nie, Z.; Zhang, J. Hybridizing extended ant lion optimizer with sine cosine algorithm approach for abrupt motion tracking. EURASIP J. Image Video Process. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Velasco, L.; Guerrero, H.; Hospitaler, A. Can the global optimum of a combinatorial optimization problem be reliably estimated through extreme value theory? Swarm Evol. Comput. 2022, 75, 101172. [Google Scholar] [CrossRef]
- Pandey, H.M. 3—State of the Art: Genetic Algorithms and Premature Convergence; Hari, M.P., Ed.; State of the Art on Grammatical Inference Using Evolutionary Method; Academic Press: Cambridge, MA, USA, 2022; pp. 35–124. [Google Scholar] [CrossRef]
- Assiri, A.S.; Hussien, A.G.; Amin, M. Ant lion optimization: Variants, hybrids, and applications. IEEE Access 2020, 8, 77746–77764. [Google Scholar] [CrossRef]
- Abualigah, L.; Shehab, M.; Alshinwan, M.; Mirjalili, S.; Elaziz, M.A. Ant lion optimizer: A comprehensive survey of its variants and applications. Arch. Comput. Methods Eng. 2021, 28, 1397–1416. [Google Scholar] [CrossRef]
- Hu, P.; Wang, Y.; Wang, H.; Zhao, R.; Yuan, C.; Zheng, Y.; Lu, Q.; Li, Y.; Masood, I. ALO-DM: A Smart Approach Based on Ant lion Optimizer with Differential Mutation Operator in Big Data Analytics. In Database Systems for Advanced Applications. DASFAA 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10829, pp. 64–73. [Google Scholar] [CrossRef]
- Dwivedi, D.; Balasubbareddy, M. Optimal power flow using hybrid ant lion optimization algorithm. Pramana Res. J. 2019, 9, 368–380. [Google Scholar]
- Singh, D.K.; Srivastava, S.; Khanna, R.K. Optimal Power Flow using Hybrid Ant Lion Optimization and Spotted Hyena Optimization Algorithm: Comparison and Analysis. Elem. Educ. Online 2021, 19, 3055. [Google Scholar]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 4th ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 674–701. [Google Scholar] [CrossRef]
- Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
- García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of nonparametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617–644. [Google Scholar] [CrossRef]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064. [Google Scholar] [CrossRef]
- Kruskal, W.; Wallis, W. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods and Scientific Inference, 2nd ed.; Oliver and Boyd: Edinburgh, UK, 1959. [Google Scholar]
- Wang, R.A.; Zhou, Y.W.; Zheng, Y.Y. Ant lion optimizer with adaptive boundary and optimal guidance. In Proceedings of the Recent Developments in Mechatronics and Intelligent Robotics: Proceedings of International Conference on Mechatronics and Intelligent Robotics (ICMIR2018), Kunming, China, 19–20 May 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 379–386. [Google Scholar]
- Dinkar, S.K.; Deep, K. Opposition based Laplacian Ant Lion Optimizer. J. Comput. Sci. 2017, 23, 71–90. [Google Scholar] [CrossRef]
- El Bakrawy, L.M.; Cifci, M.A.; Kausar, S.; Hussain, S.; Islam, M.A.; Alatas, B.; Desuky, A.S. A Modified Ant Lion Optimization Method and Its Application for Instance Reduction Problem in Balanced and Imbalanced Data. Axioms 2022, 11, 95. [Google Scholar] [CrossRef]
- Majhi, S.K.; Biswal, S. A hybrid clustering algorithm based on Kmeans and ant lion optimization. In Emerging Technologies in Data Mining and Information Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 639–650. [Google Scholar]
- Wang, Y.; Ni, Y.; Li, N.; Lu, S.; Zhang, S.; Feng, Z.; Wang, J. A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium-ion batteries. Energy Sci. Eng. 2019, 7, 2797–2813. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, Y.; Cui, H.; Wang, Y.; Li, J.; Zhang, Y. IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems. Math. Biosci. Eng. 2022, 19, 10963–11017. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, F.; Han, Y.; Cui, Y. An opposition-based chaotic salp swarm algorithm for global optimization. IEEE Access 2020, 8, 36485–36501. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Abd Elaziz, M.; Lu, S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [Google Scholar] [CrossRef]
- Gu, Q.; Li, X.; Jiang, S. Hybrid genetic grey wolf algorithm for large-scale global optimization. Complexity 2019, 2019, 2653512. [Google Scholar] [CrossRef]
- Sang-To, T.; Le-Minh, H.; Mirjalili, S.; Wahab, M.A.; Cuong-Le, T. A new movement strategy of grey wolf optimizer for optimization problems and structural damage identification. Adv. Eng. Softw. 2022, 173, 103276. [Google Scholar] [CrossRef]
- Song, Z.; Liu, B.; Cheng, H. Adaptive particle swarm optimization with population diversity control and its application in tandem blade optimization. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 1859–1875. [Google Scholar] [CrossRef]
- Fan, Q.; Huang, H.; Chen, Q.; Yao, L.; Yang, K.; Huang, D. A modified self-adaptive marine predators algorithm: Framework and engineering applications. Eng. Comput. 2021, 38, 3269–3294. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Zhang, Q. Enhancing the search ability of differential evolution through orthogonal crossover. Inf. Sci. 2012, 185, 153–177. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E. Advanced arithmetic optimization algorithm for solving mechanical engineering design problems. PLoS ONE 2021, 16, e0255703. [Google Scholar] [CrossRef] [PubMed]
- Pencheva, T.; Roeva, O.; Hristozov, I. Functional State Approach to Fermentation Processes Modelling; Prof. Marin Drinov Academic Publishing House: Sofia, Bulgaria, 2006. [Google Scholar]
- Slavov, T.; Roeva, O. Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control. Int. J. Bioautom. 2011, 15, 101–114. [Google Scholar]
- Roeva, O. Application of Artificial Bee Colony Algorithm for Model Parameter Identification. In Innovative Computing, Optimization and Its Applications; Zelinka, I., Vasant, P., Duy, V., Dao, T., Eds.; Studies in Computational Intelligence; Springer: Cham, Switzerland, 2018; Volume 741, pp. 285–303. [Google Scholar] [CrossRef]
- Mühlenbein, H.; Schlierkamp-Voosen, D. Predictive models for the breeder genetic algorithm I. Continuous parameter optimization. Evol. Comput. 1993, 1, 25–49. [Google Scholar] [CrossRef]
- Anane, E.; Neubauer, P.; Bournazou, M.N.C. Modelling Overflow Metabolism in Escherichia coli by Acetate Cycling. Biochem. Eng. J. 2017, 125, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; John, J.; Rode, B.; Hitzmann, B.; Gerardy-Schahn, R.; Kasper, C.; Scheper, T. Comparison of Polysialic Acid Production in Escherichia coli K1 During Batch Cultivation and Fed-batch Cultivation Applying Two Different Control Strategies. J. Biotechnol. 2011, 154, 222–229. [Google Scholar] [CrossRef]
- Vital, M.; Hammes, F.; Egli, T. Competition of Escherichia coli O157 with a Drinking Water Bacterial Community at low Nutrient Concentrations. Water Res. 2012, 46, 6279–6290. [Google Scholar] [CrossRef]
- Campbell, M.J.; Swinscow, T.D.V. Statistics at Square One, 11th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. 2013, 45, 1–33. [Google Scholar] [CrossRef]
- Hussain, A.; Muhammad, Y.S. Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator. Complex Intell. Syst. 2020, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Corus, D.; Oliveto, P.S. On the benefits of populations for the exploitation speed of standard steady-state genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13–17 July 2019; pp. 1452–1460. [Google Scholar]
- Pierezan, J.; Dos Santos Coelho, L. Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreinineja, A.; Shukor, M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
>10% T | 2 |
>50% T | 3 |
>75% T | 4 |
>90% T | 5 |
>95% T | 6 |
Function | Definition | Range | |
---|---|---|---|
Sphere, UM | [−100, 100] | 0 | |
Schwefel’s 2.22, UM | [−100, 100] | 0 | |
Schwefel’s 2.21, UM | [−100, 100] | 0 | |
Rosenbrock, UM | [−200, 200] | 0 | |
Quartic, UM | [−1.28, 1.28] | 0 | |
Rastrigin, MM | [−5.12, 5.12] | 0 | |
Ackley, MM | [−32, 32] | 0 | |
Grienwank, MM | [−600, 600] | 0 |
ALO-GA | MALO, [46] | OB-L-ALO, [45] | ABLALO, [44] | CHAOARO, [21] | OCSSA, [51] | nAOA, [58] | COGWO2D, [52] | IHAOAVOA, [50] | APSO-PDC, [55] | MMPA, [56] | HGGWA, [53] | OXDE, [57] | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.00 × 100 | 0.00 × 100 | 1.09 × 10−11 | 4.26 × 10−18 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 4.85 × 10−53 | 1.58 × 10−16 | |
SD | 0.00×100 | 0.00 × 100 | 3.86 × 10−11 | 2.74 × 10−18 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 2.41 × 10−52 | 1.41 × 10−16 | |
Rank | 1 | 1 | 5 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | |
Mean | 0.00 × 100 | 0.00 × 100 | 1.85 × 10−18 | 9.88 × 10−2 | 0.00 × 100 | 3.27 × 10−199 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 4.01 × 10−33 | 4.38 × 10−12 | |
SD | 0.00 × 100 | 0.00 × 100 | 1.01 × 10−17 | 5.57 × 10−1 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 4.34 × 10−33 | 1.93 × 10−12 | |
Rank | 1 | 1 | 4 | 6 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 5 | |
Mean | 0.00 × 100 | 0.00 × 100 | 4.09 × 10−6 | no data | 0.00 × 100 | 4.39 × 10−210 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 5.87 × 10−87 | 0.00 × 100 | 4.55 × 101 | 3.69 × 101 | |
SD | 0.00 × 100 | 0.00 × 100 | 9.62 × 10−6 | no data | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 9.59 × 10−87 | 0.00 × 100 | 1.49 × 100 | 0.96 × 100 | |
Rank | 1 | 1 | 4 | − | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 6 | 5 | |
Mean | 1.23 × 10−6 | 5.31 × 10−4 | 5.46 × 10−4 | 9.41 × 10−3 | 2.66 × 10−3 | 1.19 × 101 | 4.61 × 100 | 2.70 × 101 | 5.83 × 10−7 | 1.36 × 101 | 9.65 × 101 | 6.82 × 101 | 1.59 × 10−1 | |
SD | 1.49 × 10−6 | 8.98 × 10−4 | 1.60 × 10−3 | 5.02 × 10−3 | 4.89 × 10−4 | 8.55 × 100 | 2.59 × 10−1 | 4.06 × 100 | 9.72 × 10−7 | 1.20 × 10−1 | 3.96 × 10−1 | 1.25 × 10−1 | 7.79 × 10−1 | |
Rank | 2 | 3 | 4 | 6 | 5 | 9 | 8 | 11 | 1 | 10 | 13 | 12 | 7 | |
Mean | 4.13 × 10−9 | 1.83 × 10−4 | 2.85 × 10−4 | no data | 8.52 × 10−5 | 1.62 × 10−4 | 4.86 × 10−5 | 8.99 × 10−5 | 3.22 × 10−5 | 5.21 × 10−16 | 3.81 × 10−5 | 2.34 × 10−10 | 2.95 × 10−3 | |
SD | 3.25 × 10−9 | 1.65 × 10−4 | 2.49 × 10−4 | no data | 8.29 × 10−5 | 1.60 × 10−4 | 4.12 × 10−5 | 9.79 × 10−5 | 2.53 × 10−5 | 9.17 × 10−16 | 2.36 × 10−5 | 3.17 × 10−10 | 1.32 × 10−3 | |
Rank | 3 | 10 | 11 | − | 7 | 9 | 6 | 8 | 4 | 1 | 5 | 2 | 12 | |
Mean | 0.00 × 100 | 0.00 × 100 | 3.01 × 10−9 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 4.06 × 100 | |
SD | 0.00 × 100 | 0.00 × 100 | 4.82 × 10−9 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 1.95 × 100 | |
Rank | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | |
Mean | 3.22 × 10−18 | 8.88 × 10−16 | 2.10 × 10−5 | no data | 8.88 × 10−16 | 1.53 × 10−15 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 1.92 × 10−18 | 8.88 × 10−16 | 2.15 × 10−15 | 2.99 × 10−9 | |
SD | 3.79 × 10−18 | 0.00 × 100 | 1.46 × 10−5 | no data | 0.00 × 100 | 1.42 × 10−15 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 3.24 × 10−18 | 0.00 × 100 | 3.48 × 10−15 | 1.54 × 10−9 | |
Rank | 2 | 3 | 7 | − | 3 | 4 | 3 | 3 | 3 | 1 | 3 | 5 | 6 | |
Mean | 0.00 × 100 | 0.00 × 100 | 6.32 × 10−9 | 1.11 × 10−16 | 0.00 × 100 | 0.00 × 100 | 2.49 × 10−4 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 1.48 × 10−3 | |
SD | 0.00 × 100 | 0.00 × 100 | 1.27 × 10−8 | 1.92 × 10−16 | 0.00 × 100 | 0.00 × 100 | 1.37 × 10−3 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 3.02 × 10−3 | |
Rank | 1 | 1 | 3 | 2 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 5 | |
Total Rank | 1 | 5 | 10 | 11 | 4 | 8 | 6 | 8 | 2 | 3 | 7 | 9 | 12 |
Algorithm | Objective Function, J | |||
---|---|---|---|---|
Mean | Best | Worst | SD | |
ABC-GA [24] | 4.5462 | 4.4403 | 4.6127 | 0.04117 |
GA-ACO [26] | 4.5706 | 4.3803 | 4.6949 | 0.06325 |
ACO-FA [22] | 4.5195 | 4.4013 | 4.6803 | 0.05914 |
ALO-GA | 4.3164 | 4.1128 | 4.5358 | 0.07114 |
Algorithm | Model Parameters Estimates | |||||
---|---|---|---|---|---|---|
SD | SD | SD | ||||
ABC-GA [24] | 0.4909 | 0.0039 | 0.0127 | 0.00072 | 2.0211 | 0.0011 |
GA-ACO [26] | 0.4946 | 0.0121 | 0.0123 | 0.0020 | 2.0204 | 0.0025 |
ACO-FA [22] | 0.4824 | 0.0110 | 0.0114 | 0.0019 | 2.0206 | 0.0021 |
ALO-GA | 0.5022 | 0.0093 | 0.0146 | 0.0018 | 2.0182 | 0.0019 |
Friedman Test | |||||
---|---|---|---|---|---|
‘Source’ | ‘SS’ | ‘df’ | ‘MS’ | ‘Chi-sq’ | ‘Prob > Chi-s’ |
‘Columns’ | 99.1333 | 3 | 33.0444 | 59.4800 | 7.5916 × 10−13 |
‘Error’ | 50.8667 | 87 | 0.5847 | [] | [] |
‘Total’ | 150 | 119 | [] | [] | [] |
meanranks | [3.1333 3.3667 2.4667 1.0333] for [ABC-GA GA-ACO ACO-FA ALO-GA] | ||||
sigma | 1.2910 | ||||
Wilcoxon test | |||||
ALO-GA vs. | p-value | H | STATS | ||
zval | ranksum | ||||
ABC-GA | 1.0937 × 10−10 | 1 | −6.4534 | 478 | |
GA-ACO | 1.4643 × 10−10 | 1 | −6.4090 | 481 | |
ACO-FA | 2.8700 × 10−10 | 1 | −6.3056 | 488 | |
Paired t-test | |||||
ALO-GA vs. | p-value | H | ci | STATS | |
tstat | df | ||||
ABC-GA | 3.2061 × 10−17 | 1 | −0.2753, −0.1844 | −13.6293 | 43.0670 |
GA-ACO | 6.9515 × 10−17 | 1 | −0.3121, −0.1963 | −11.6985 | 57.8919 |
ACO-FA | 7.3148 × 10−15 | 1 | −0.2545, −0.1518 | −10.5496 | 55.3599 |
Kruskal–Wallis test | |||||
‘Source’ | ‘SS’ | ‘df’ | ‘MS’ | ‘Chi-sq’ | ‘Prob > Chi-s’ |
‘Columns’ | 8.2122 × 104 | 3 | 2.7374 × 104 | 67.8698 | 1.2199 × 10−14 |
‘Error’ | 6.1867 × 104 | 116 | 533.3394 | [] | [] |
‘Total’ | 1.4399 × 105 | 119 | [] | [] | [] |
meanranks | [76.1667 85.2333 63.3667 17.2333] for [ABC-GA GA-ACO ACO-FA ALO-GA] | ||||
sumt | 6 | ||||
ANOVA | |||||
‘Source’ | ‘SS’ | ‘df’ | ‘MS’ | ‘F’ | ‘Prob > F’ |
‘Columns’ | 1.2197 | 3 | 0.4066 | 80.241 | 3.6030 × 10−28 |
‘Error’ | 0.5878 | 116 | 0.0051 | [] | [] |
‘Total’ | 1.8075 | 119 | [] | [] | [] |
means | [4.5462 4.5706 4.5195 4.3164] for [ABC-GA GA-ACO ACO-FA ALO-GA] | ||||
df | 116 | ||||
s | 0.0712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roeva, O.; Zoteva, D.; Roeva, G.; Lyubenova, V. An Efficient Hybrid of an Ant Lion Optimizer and Genetic Algorithm for a Model Parameter Identification Problem. Mathematics 2023, 11, 1292. https://doi.org/10.3390/math11061292
Roeva O, Zoteva D, Roeva G, Lyubenova V. An Efficient Hybrid of an Ant Lion Optimizer and Genetic Algorithm for a Model Parameter Identification Problem. Mathematics. 2023; 11(6):1292. https://doi.org/10.3390/math11061292
Chicago/Turabian StyleRoeva, Olympia, Dafina Zoteva, Gergana Roeva, and Velislava Lyubenova. 2023. "An Efficient Hybrid of an Ant Lion Optimizer and Genetic Algorithm for a Model Parameter Identification Problem" Mathematics 11, no. 6: 1292. https://doi.org/10.3390/math11061292
APA StyleRoeva, O., Zoteva, D., Roeva, G., & Lyubenova, V. (2023). An Efficient Hybrid of an Ant Lion Optimizer and Genetic Algorithm for a Model Parameter Identification Problem. Mathematics, 11(6), 1292. https://doi.org/10.3390/math11061292