An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods
Abstract
1. Introduction
2. Basic Definitions
3. General Methodology of the HPTM
4. General Methodology of the YTDM
5. Applications
Example
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Mofarreh, F.; Khan, A.; Shah, R. A Comparative Analysis of Fractional-Order Fokker-Planck Equation. Symmetry 2023, 15, 430. [Google Scholar] [CrossRef]
- Naeem, M.; Yasmin, H.; Shah, N.A.; Nonlaopon, K. Investigation of Fractional Nonlinear Regularized Long-Wave Models via Novel Techniques. Symmetry 2023, 15, 220. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Shah, N.A.; Shah, R.; Nonlaopon, K. Implementation of Yang residual power series method to solve fractional non-linear systems. AIMS Math. 2023, 8, 8294–8309. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Shah, R.; Aly, S.; Nonlaopon, K. Comparison of two modified analytical approaches for the systems of time fractional partial differential equations. AIMS Math. 2023, 8, 7142–7162. [Google Scholar] [CrossRef]
- Machado, J.A.; Tenreiro, C. An Introduction to the Numerical Solution of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Xie, Z.; Feng, X.; Chen, X. Partial Least Trimmed Squares Regression. Chemom. Intell. Lab. Syst. 2022, 221, 104486. [Google Scholar] [CrossRef]
- Li, X.; Dong, Z.; Wang, L.; Niu, X.; Yamaguchi, H.; Li, D.; Yu, P. A Magnetic Field Coupling Fractional Step Lattice Boltzmann Model for the Complex Interfacial Behavior in Magnetic Multiphase Flows. Appl. Math. Model. 2023, 117, 219–250. [Google Scholar] [CrossRef]
- Xu, S.; Dai, H.; Feng, L.; Chen, H.; Chai, Y.; Zheng, W.X. Fault Estimation for Switched Interconnected Nonlinear Systems with External Disturbances via Variable Weighted Iterative Learning. IEEE Trans. Circuits Syst. II Express Briefs 2023. [Google Scholar] [CrossRef]
- Sun, L.; Hou, J.; Xing, C.; Fang, Z. A Robust Hammerstein-Wiener Model Identification Method for Highly Nonlinear Systems. Processes 2022, 10, 2664. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Xue, J.; Wong, K. Channel Prediction Using Ordinary Differential Equations for MIMO Systems. IEEE Trans. Veh. Technol. 2022, 72, 2111–2119. [Google Scholar] [CrossRef]
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1939, 1, 171–199. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 1941, 30, 299–303. [Google Scholar]
- Courant, R.; Friedrichs, K.; Lewy, H. On the partial difference equations of mathematical physics. IBM J. Res. Dev. 1952, 11, 215–234. [Google Scholar] [CrossRef]
- Bona, J.L.; Chen, M.; Saut, J.C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: Nonlinear theory. Nonlinearity 2002, 15, 1–44. [Google Scholar] [CrossRef]
- Kirane, M.; Abdeljabbar, A. Nonexistence of Global Solutions of Systems of Time Fractional Differential equations posed on the Heisenberg group. Math. Methods Appl. Sci. 2022, 45, 7336–7345. [Google Scholar] [CrossRef]
- Rahman, Z.; Abdeljabbar, A.; Ali, M.Z. Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme. Fractal Fract. 2022, 6, 444. [Google Scholar] [CrossRef]
- Xie, X.; Wang, T.; Zhang, W. Existence of Solutions for the (p,q)-Laplacian Equation with Nonlocal Choquard Reaction. Appl. Math. Lett. 2023, 135, 108418. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Liu, Y.; Deng, X.; Chen, Q.; Ma, Z. 60-GHz Compact Dual-Mode On-Chip Bandpass Filter Using GaAs Technology. IEEE Electron Device Lett. 2021, 42, 1120–1123. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, K.; Li, J.; Guo, Y.; Zhang, A.; Chen, Q. Millimeter-Wave E-Plane Waveguide Bandpass Filters Based on Spoof Surface Plasmon Polaritons. IEEE Trans. Microw. Theory Tech. 2022, 70, 4399–4409. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Z.; Wei, W.; Gao, B.; Xin, D.; Sun, C.; Wu, G. Novel Detection Approach for Thermal Defects: Study on Its Feasibility and Application to Vehicle Cables. High Voltage 2022, 1–10. [Google Scholar] [CrossRef]
- Lu, S.; Yang, B.; Xiao, Y.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. Iterative Reconstruction of Low-Dose CT Based on Differential Sparse. Biomed. Signal Process. Control 2023, 79, 104204. [Google Scholar] [CrossRef]
- Shen, M.; Li, Y.; Li, X.; Zhang, X. The analytical solutions and numerical simulations of the Burgers equation with variable coefficients. Symmetry 2019, 11, 1267. [Google Scholar] [CrossRef]
- Alesemi, M.; Shahrani, J.S.A.; Iqbal, N.; Shah, R.; Nonlaopon, K. Analysis and Numerical Simulation of System of Fractional Partial Differential Equations with Non-Singular Kernel Operators. Symmetry 2023, 15, 233. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Kim, J. The numerical solutions of the nonlinear shock wave equation with boundary conditions. J. Comput. Phys. 2019, 396, 490–526. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Sun, L. The comparison of finite difference and finite volume methods for the numerical solutions of the nonlinear shock wave equation. Appl. Math. Comput. 2020, 365, 180–194. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Xu, Y. The analysis of the stability of the shock wave solutions of the nonlinear wave equation. J. Math. Anal. Appl. 2020, 489, 326–341. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y. Numerical Solutions of the Fractional Nonlinear Shock Wave Equation. Mathematics 2021, 9, 23. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J. Analytical solutions for the fractional nonlinear shock wave equation. J. Appl. Math. Phys. 2020, 8, 2662–2668. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. A numerical solution for fractional nonlinear shock wave equation by Adomian decomposition method. J. Appl. Math. Phys. 2019, 7, 2057–2064. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z. Logistic damping effect in chemotaxis models with density-suppressed motility. Adv. Nonlinear Anal. 2023, 12. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y. Study on the fractional nonlinear shock wave equation by the Adomian decomposition method. J. Appl. Math. Phys. 2017, 5, 2682–2687. [Google Scholar] [CrossRef]
- He, J.H. A new perturbation method. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Elzaki, T.M. A novel nonlinear transform method for solving linear and nonlinear partial differential equations. J. Math. Anal. Appl. 2010, 365, 397–407. [Google Scholar]
- Chen, Y. Applications of homotopy perturbation method to nonlinear problems. Nonlinear Sci. Lett. A 2015, 6, 259–263. [Google Scholar]
- Lu, J.Y.; Chen, G.R. The combination of homotopy perturbation method and Elzaki transform for solving nonlinear problems. J. Math. Anal. Appl. 2016, 433, 738–747. [Google Scholar]
- Elzaki, T.M.; Mustafa, M.M. New method for solving nonlinear differential equations. J. Appl. Math. 2011. [Google Scholar]
- Khodaei, S.; Aligholi, M.; Niroom, F. Application of the Adomian decomposition method and Elzaki transform for solving nonlinear differential equations. J. Appl. Math. Phys. 2015, 3, 757–764. [Google Scholar]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Elzaki, T.M.; Hilal, E.M.; Arabia, J.S.; Arabia, J.S. Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Math. Theory Model. 2012, 2, 33–42. [Google Scholar]
℘ | ||||||
---|---|---|---|---|---|---|
0.2 | 0.000004490 | 0.000004487 | 0.000004483 | 0.000004483 | 0.000004479 | |
0.4 | 0.000005481 | 0.000005479 | 0.000005476 | 0.000005476 | 0.000005470 | |
0.01 | 0.6 | 0.000006693 | 0.000006691 | 0.000006688 | 0.000006688 | 0.000006681 |
0.8 | 0.000008171 | 0.000008171 | 0.000008169 | 0.000008169 | 0.000008161 | |
1 | 0.000009982 | 0.000009980 | 0.000009978 | 0.000009978 | 0.000009968 | |
0.2 | 0.000004490 | 0.000004487 | 0.000004483 | 0.000004483 | 0.000004474 | |
0.4 | 0.000005482 | 0.000005478 | 0.000005476 | 0.000005476 | 0.000005465 | |
0.02 | 0.6 | 0.000006693 | 0.000006690 | 0.000006688 | 0.000006688 | 0.000006675 |
0.8 | 0.000008177 | 0.000008172 | 0.000008169 | 0.000008169 | 0.000008153 | |
1 | 0.000009987 | 0.000009982 | 0.000009978 | 0.000009978 | 0.000009958 | |
0.2 | 0.000004489 | 0.000004485 | 0.000004483 | 0.000004483 | 0.000004470 | |
0.4 | 0.000005489 | 0.00000583 | 0.000005476 | 0.000005476 | 0.000005459 | |
0.03 | 0.6 | 0.000006693 | 0.000006690 | 0.000006688 | 0.000006688 | 0.000006668 |
0.8 | 0.000008179 | 0.000008174 | 0.000008169 | 0.000008169 | 0.000008145 | |
1 | 0.000009989 | 0.000009982 | 0.000009978 | 0.000009978 | 0.000009948 | |
0.2 | 0.000004492 | 0.000004487 | 0.000004483 | 0.000004483 | 0.000004465 | |
0.4 | 0.000005487 | 0.000005481 | 0.000005476 | 0.000005476 | 0.000005454 | |
0.04 | 0.6 | 0.000006699 | 0.000006691 | 0.000006688 | 0.000006688 | 0.000006661 |
0.8 | 0.000008183 | 0.000008177 | 0.000008169 | 0.000008169 | 0.000008136 | |
1 | 0.000009999 | 0.000009983 | 0.000009978 | 0.000009978 | 0.000009938 | |
0.2 | 0.000004497 | 0.000004489 | 0.000004483 | 0.000004483 | 0.000004461 | |
0.4 | 0.000005490 | 0.000005479 | 0.000005476 | 0.000005476 | 0.000005448 | |
0.05 | 0.6 | 0.000006697 | 0.000006691 | 0.000006688 | 0.000006688 | 0.000006655 |
0.8 | 0.000008191 | 0.000008185 | 0.000008169 | 0.000008169 | 0.000008128 | |
1 | 0.000009997 | 0.000009988 | 0.000009978 | 0.000009978 | 0.000009928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alesemi, M. An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods. Mathematics 2023, 11, 1253. https://doi.org/10.3390/math11051253
Alesemi M. An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods. Mathematics. 2023; 11(5):1253. https://doi.org/10.3390/math11051253
Chicago/Turabian StyleAlesemi, Meshari. 2023. "An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods" Mathematics 11, no. 5: 1253. https://doi.org/10.3390/math11051253
APA StyleAlesemi, M. (2023). An Innovative Approach to Nonlinear Fractional Shock Wave Equations Using Two Numerical Methods. Mathematics, 11(5), 1253. https://doi.org/10.3390/math11051253