# The General Fractional Integrals and Derivatives on a Finite Interval

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The General Fractional Integrals on a Finite Interval

**Definition**

**1.**

**Definition**

**2.**

**Proposition**

**1.**

**Proof.**

**Proposition**

**2.**

**Proof.**

**Proposition**

**3.**

**Proof.**

## 3. The General Fractional Derivatives on a Finite Interval

**Definition**

**3.**

**Proposition**

**4.**

**Proof.**

**Proposition**

**5.**

**Proof.**

**Theorem**

**1.**

**Proof.**

**Remark**

**1.**

**Theorem**

**2.**

**Proof.**

## 4. Conclusions and Directions for Further Research

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sonine, N. Sur la généralisation d’une formule d’Abel. Acta Math.
**1884**, 4, 171–176. [Google Scholar] [CrossRef] - Kochubei, A.N. General fractional calculus, evolution equations, and renewal processes. Integr. Equa. Oper. Theory
**2011**, 71, 583–600. [Google Scholar] [CrossRef] [Green Version] - Luchko, Y.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics
**2020**, 8, 2115. [Google Scholar] [CrossRef] - Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal.
**2018**, 19, 676–695. [Google Scholar] [CrossRef] - Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics
**2021**, 9, 594. [Google Scholar] [CrossRef] - Luchko, Y. General fractional integrals and derivatives of arbitrary order. Symmetry
**2021**, 13, 755. [Google Scholar] [CrossRef] - Luchko, Y. Operational calculus for the general fractional derivative and its applications. Fract. Calc. Appl. Anal.
**2021**, 24, 338–375. [Google Scholar] [CrossRef] - Luchko, Y. Special functions of fractional calculus in the form of convolution series and their applications. Mathematics
**2021**, 9, 2132. [Google Scholar] [CrossRef] - Luchko, Y. Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal.
**2022**, 25, 207–228. [Google Scholar] [CrossRef] - Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense. Mathematics
**2022**, 10, 849. [Google Scholar] [CrossRef] - Luchko, Y. The 1st level general fractional derivatives and some of their properties. J. Math. Sci.
**2022**, 268, 1–14. [Google Scholar] [CrossRef] - Tarasov, V.E. General fractional dynamics. Mathematics
**2021**, 9, 1464. [Google Scholar] [CrossRef] - Tarasov, V.E. General non-Markovian quantum dynamics. Entropy
**2021**, 23, 1006. [Google Scholar] [CrossRef] - Tarasov, V.E. General fractional vector calculus. Mathematics
**2021**, 9, 2816. [Google Scholar] [CrossRef] - Tarasov, V.E. General non-local continuum mechanics: Derivation of balance equations. Mathematics
**2022**, 10, 1427. [Google Scholar] [CrossRef] - Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics
**2022**, 10, 3848. [Google Scholar] [CrossRef] - Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl.
**2023**, 609, 128366. [Google Scholar] [CrossRef] - Tarasov, V.E. Nonlocal classical theory of gravity: Massiveness of nonlocality and mass shielding by nonlocality. Eur. Phys. J. Plus.
**2022**, 137, 1336. [Google Scholar] [CrossRef] - Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Agrawal, O.P. Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl.
**2010**, 59, 1852–1864. [Google Scholar] [CrossRef] [Green Version] - Agrawal, O.P. Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal.
**2012**, 15, 700–711. [Google Scholar] [CrossRef] - Fernandez, A.; Fahad, H.M. Weighted fractional calculus: A general class of operators. Fractal Fract.
**2022**, 6, 208. [Google Scholar] [CrossRef] - Dimovski, I.H. Operational calculus for a class of differential operators. Compt. Rend. Acad. Bulg. Sci.
**1966**, 19, 1111–1114. [Google Scholar] - Luchko, Y. Operational method for fractional ordinary differential equations. In Handbook of Fractional Calculus with Applications; Volume 2: Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 91–118. [Google Scholar]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractiona derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal.
**2020**, 23, 610–634. [Google Scholar] [CrossRef] - Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Anal. Appl.
**2020**, 23, 211–223. [Google Scholar] [CrossRef] [Green Version] - Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Intern. J. Math. Sci.
**2003**, 57, 3609–3632. [Google Scholar] [CrossRef] [Green Version] - Abel, N.H. Auflösung einer mechanischen Aufgabe. Die Reine Angew. Math.
**1826**, 1, 153–157. [Google Scholar] - Abel, N.H. Oplösning af et par opgaver ved hjelp af bestemte integraler. Mag. Naturvidenskaberne
**1823**, 2, 2. [Google Scholar] - Al-Refai, M. Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function. Fract. Calc. Appl. Anal.
**2021**, 24, 1220–1230. [Google Scholar] [CrossRef] - Luchko, Y.; Gorenflo, R. An operational method for solving fractional differential equations. Acta Math. Vietnam.
**1999**, 24, 207–234. [Google Scholar] - Hilfer, R.; Luchko, Y. Desiderata for Fractional Derivatives and Integrals. Mathematics
**2019**, 7, 149. [Google Scholar] [CrossRef] [Green Version] - Kinash, N.; Janno, J. An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations. Mathematics
**2019**, 7, 1138. [Google Scholar] [CrossRef] [Green Version] - Al-Refai, M.; Luchko, Y. Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. J. Differ. Equ.
**2022**, 319, 312–324. [Google Scholar] [CrossRef] - Janno, J.; Kasemets, K. Identification of a kernel in an evolutionary integral equation occurring in subdiffusion. J. Inverse Ill-Posed Probl.
**2017**, 25, 777–798. [Google Scholar] [CrossRef] - Kinash, N.; Janno, J. Inverse problems for a generalized subdiffusion equation with final overdetermination. Math. Model. Anal.
**2019**, 24, 236–262. [Google Scholar] - Kochubei, A.N. General fractional calculus. In Handbook of Fractional Calculus with Applications; Volume 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 111–126. [Google Scholar]
- Kochubei, A.N. Equations with general fractional time derivatives. Cauchy problem. In Handbook of Fractional Calculus with Applications; Volume 2: Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 223–234. [Google Scholar]
- Kochubei, A.N.; Kondratiev, Y. Growth Equation of the General Fractional Calculus. Mathematics
**2019**, 7, 615. [Google Scholar] [CrossRef] [Green Version] - Sin, C.-S. Well-posedness of general Caputo-type fractional differential equations. Fract. Calc. Appl. Anal.
**2018**, 21, 819–832. [Google Scholar] [CrossRef] - Sin, C.-S. Cauchy problem for general time fractional diffusion equation. Fract. Calc. Appl. Anal.
**2020**, 23, 1545–1559. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Refai, M.; Luchko, Y.
The General Fractional Integrals and Derivatives on a Finite Interval. *Mathematics* **2023**, *11*, 1031.
https://doi.org/10.3390/math11041031

**AMA Style**

Al-Refai M, Luchko Y.
The General Fractional Integrals and Derivatives on a Finite Interval. *Mathematics*. 2023; 11(4):1031.
https://doi.org/10.3390/math11041031

**Chicago/Turabian Style**

Al-Refai, Mohammed, and Yuri Luchko.
2023. "The General Fractional Integrals and Derivatives on a Finite Interval" *Mathematics* 11, no. 4: 1031.
https://doi.org/10.3390/math11041031