Joint Approximation of Analytic Functions by Shifts of Lerch Zeta-Functions
Abstract
:1. Introduction
2. Case of a Compact Group
3. Case of Absolute Convergence
4. Joint Limit Theorem
5. Proof of Approximation Theorems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lerch, M. Note sur la fonction . Acta Math. 1887, 11, 19–24. [Google Scholar] [CrossRef]
- Hurwitz, A. Einige Eigenschaften der Dirichletschen Funktionen , die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten. Zeitschrift Math. Phys. 1882, 27, 86–101. [Google Scholar]
- Laurinčikas, A.; Garunkštis, R. The Lerch Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph. D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph. D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Voronin, S.M. Analytic Properties of Arithmetic Objects. Doctoral Thesis, V.A. Steklov Math. Inst., Moscow, Russia, 1977. [Google Scholar]
- Voronin, S.M. Selected Works: Mathematics; Karatsuba, A.A., Ed.; Moscow State Technical Univ. Press: Moscow, Russia, 2006. [Google Scholar]
- Bitar, K.M.; Khuri, N.N.; Ren, H.C. Path integrals and Voronin’s theorem on the universality of the Riemann zeta-function. Ann. Phys. 1991, 211, 172–196. [Google Scholar] [CrossRef]
- Gutzwiller, M.C. Stochastic behavior in quantum scattering. Physica 1983, 7D, 341–355. [Google Scholar] [CrossRef]
- Matsumoto, K. A survey on the theory of universality for zeta and L-functions. In Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China– Japan Seminar (Fukuoka 2013); Series on Number Theory and its, Appl.; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; World Scientific Publishing Co.: Hackensack, NJ, USA; London, UK; Singapore; Beijing, China; Shanghai, China; Hong Kong, China; Taipei, Taiwan; Chennai, India, 2015; pp. 95–144. [Google Scholar]
- Laurinčikas, A. The universality of the Lerch zeta-function. Lith. Math. J. 1997, 37, 275–280. [Google Scholar] [CrossRef]
- Garunkštis, R. The universality theorem with weight for the Lerch zeta-function. In Analytic and Probabilistic Methods in Number Theory, Proc. 2nd Intern. Conf. in Honour of J. Kubilius (Palanga, Lithuania, 23–27 September 1996); Laurinčikas, A., Manstavičius, E., Stakėnas, V., Eds.; TEV: Vilnius, Lithuania; VSP: Utrecht, The Netherlands, 1997; pp. 59–67. [Google Scholar]
- Sourmelidis, A.; Steuding, J. On the value distribution of Hurwitz zeta-function with algebraic irrational parameter. Constr. Approx. 2022, 55, 829–860. [Google Scholar] [CrossRef]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math. vol. 1877; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007. [Google Scholar]
- Laurinčikas, A. “Almost” universality of the Lerch zeta-function. Math. Commun. 2019, 24, 107–118. [Google Scholar]
- Laurinčikas, A.; Matsumoto, K. The joint universality and the functional independence for Lerch zeta-functions. Nagoya Math. J. 2000, 157, 211–227. [Google Scholar] [CrossRef]
- Nakamura, T. The existence and the non-existence of joint t-universality for Lerch zeta-functions. J. Number Theory 2007, 125, 424–441. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Matsumoto, K. Joint value distribution theorems on Lerch zeta-functions. III. In Analytic and Probabilistic Methods in Number Theory; Laurinčikas, A., Manstavičius, E., Eds.; TEV: Vilnius, Lithuania, 2007; pp. 87–98. [Google Scholar]
- Laurinčikas, A. The joint universality of Lerch zeta-functions. Math. Notes 2010, 88, 386–394. [Google Scholar] [CrossRef]
- Mishou, H. Functional distribution for a collection of Lerch zeta-functions. J. Math. Soc. Jpn. 2014, 66, 1105–1126. [Google Scholar] [CrossRef]
- Lee, Y.; Nakamura, T.; Pańkowski, L. Joint universality for Lerch zeta-function. J. Math. Soc. Jpn. 2017, 69, 153–168. [Google Scholar] [CrossRef]
- Pańkowski. Hybrid universality theorem for L-functions without Euler product. Integral Transform. Spec. Funct. 2013, 24, 39–49. [Google Scholar] [CrossRef]
- Tychonoff, A. Über einen Funktionenraum. Math. Ann. 1935, 111, 762–766. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A.; Mikalauskaitė, T.; Šiaučiūnas, D. Joint Approximation of Analytic Functions by Shifts of Lerch Zeta-Functions. Mathematics 2023, 11, 752. https://doi.org/10.3390/math11030752
Laurinčikas A, Mikalauskaitė T, Šiaučiūnas D. Joint Approximation of Analytic Functions by Shifts of Lerch Zeta-Functions. Mathematics. 2023; 11(3):752. https://doi.org/10.3390/math11030752
Chicago/Turabian StyleLaurinčikas, Antanas, Toma Mikalauskaitė, and Darius Šiaučiūnas. 2023. "Joint Approximation of Analytic Functions by Shifts of Lerch Zeta-Functions" Mathematics 11, no. 3: 752. https://doi.org/10.3390/math11030752
APA StyleLaurinčikas, A., Mikalauskaitė, T., & Šiaučiūnas, D. (2023). Joint Approximation of Analytic Functions by Shifts of Lerch Zeta-Functions. Mathematics, 11(3), 752. https://doi.org/10.3390/math11030752