Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces
Abstract
:1. Introduction
1.1. Fundamentals of Fuzzy Normed Spaces
- 1)
- for
- 2)
- if and only if for all
- 3)
- if
- 4)
- 5)
- is a non-decreasing function on and
- 6)
- For is (upper semi) continuous on .
1.2. Fundamentals of Random Normed Spaces
- (I)
- for all if and only if ;
- (II)
- for all , and with ;
- (III)
- for all and .
2. General Solution of Bilateral Symmetric Additive Functional Equation
3. Classical Approach in Fuzzy Normed Spaces
Fixed Point Approach in Fuzzy Normed Spaces
4. Classical Approach in Random Normed Spaces
Fixed Point Approach in Random Normed Spaces
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiemsomboon, L.; Sintunavarat, W. On a new type of stability of a radical quadratic functional equation using Brzdek’s fixed point theorem. Acta Math. Hung. 2016, 151, 35–46. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Ghazanfari, A.G. On the stability of a radical cubic functional equation in quasi-β spaces. J. Fixed Point Theory Appl. 2016, 18, 843–853. [Google Scholar] [CrossRef]
- Almahalebi, M.; Chahbi, A. Approximate solution of P-radical functional equation in 2-Banach spaces. Acta Math. Sci. 2019, 39, 551–566. [Google Scholar] [CrossRef]
- EL-Fassi, I.I. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2019, 113, 675–687. [Google Scholar] [CrossRef]
- Guariglia, E.; Tamilvanan, K. On the stability of radical septic functional equations. Mathematics 2020, 8, 2229. [Google Scholar] [CrossRef]
- Ulam, S.M. Problems in Modern Mathematics; Chapter VI, Some Questions in Analysis: 1, Stability; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gaˇvrutaˇ, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Aczel, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Czerwik, S. Functional Equations and Inequalities in Several Variables; World Scientific: River Edge, NJ, USA, 2002. [Google Scholar]
- Debnath, P.; Konwar, N.; Radenovic, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences. In Forum for Interdisciplinary Mathematics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Todorcevic, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Cho, Y.J.; Jleli, M.; Mursaleen, M.; Samet, B.; Vetro, C. Advances in Metric Fixed Point Theory and Applications; Springer: Singapore, 2021. [Google Scholar]
- Brzdek, J.; Cieplinski, K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math. Sci. 2018, 38, 377–390. [Google Scholar] [CrossRef]
- Brzdek, J.; Caˇdariu, L.; Cieplinski, K. Fixed point theory and the Ulam stability. J. Funct. Spaces 2014, 2014, 829419. [Google Scholar] [CrossRef]
- Margolis, B.; Diaz, J.B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 126, 305–309. [Google Scholar]
- Mihet, D.; Saadati, R. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Chang, I.S.; Son, E. Stability of Cauchy additive functional equation in Fuzzy Banach Spaces. Math. Inequalities Appl. 2013, 16, 1123–1136. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.; Saha, M. Fixed points of mappings over a locally convex topological vector space and Ulam-Hyers stability of Fixed point problems. Novi Sad J. Math 2020, 50, 99–112. [Google Scholar] [CrossRef]
- Saha, P.; Samanta, T.K.; Mondal, P.; Choudhury, B.S.; De La Sen, M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy BSs. Mathematics 2020, 8, 974. [Google Scholar] [CrossRef]
- Alanazi, A.M.; Muhiuddin, G.; Tamilvanan, K.; Alenze, E.N.; Ebaid, A.; Loganathan, K. Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods. Mathematics 2020, 8, 1050. [Google Scholar] [CrossRef]
- Bae, J.H.; Park, W.G. Stability of Bi-Additive Mappings and Bi-Jensen Mappings. Symmetry 2021, 13, 1180. [Google Scholar] [CrossRef]
- Badora, R.; Brzdek, J.; Cieplinski, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdek, J.; El-hady, E.; Lesniak, Z. On Ulam Stability of Functional Equations in 2-Normed Spaces-A Survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
- Tamilvanan, K.; Alanazi, A.M.; Rassias, J.M.; Alkhaldi, A.H. Ulam Stabilities and Instabilities of Euler-Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces. Mathematics 2021, 9, 3063. [Google Scholar] [CrossRef]
- Tamilvanan, K.; Alanazi, A.M.; Alshehri, M.G.; Kafle, J. Hyers-Ulam Stability of Quadratic Functional Equation Based on Fixed Point Technique in BSs and Non-Archimedean BSs. Mathematics 2021, 9, 2575. [Google Scholar] [CrossRef]
- Cieplinski, K. Ulam stability of functional equations in 2-BSs via the fixed point method. J. Fixed Point Theory Appl. 2021, 23, 33. [Google Scholar] [CrossRef]
- Agilan, P.; Julietraja, K.; Fatima, N.; Vallinayagam, V.; Mlaiki, N.; Souayah, N. Direct and Fixed-Point Stability–Instability of Additive Functional Equation in Banach and Quasi-Beta Normed Spaces. Symmetry 2022, 14, 1700. [Google Scholar] [CrossRef]
- Agilan, P.; Julietraja, K.; Mlaiki, N.; Mukheimer, A. Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT). Symmetry 2022, 14, 2454. [Google Scholar] [CrossRef]
- Cheng, D.; Feng, J.E.; Lv, H. Solving Fuzzy Relational Equations Via Semitensor Product. IEEE Trans. Fuzzy Syst. 2012, 20, 390–396. [Google Scholar] [CrossRef]
- Sun, C.; Li, H. Parallel fuzzy relation matrix factorization towards algebraic formulation, universal approximation and interpretability of MIMO hierarchical fuzzy systems. Fuzzy Sets Syst. 2022, 450, 68–86. [Google Scholar] [CrossRef]
- Mudasir, Y.; Singh, D.; Chen, L.; Metwali, M. A study on the solutions of notable engineering models. Math. Model. Anal. 2022, 27, 492–509. [Google Scholar]
- Bag, T.; Samanta, S.K. Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 2003, 11, 687–705. [Google Scholar]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 2008, 159, 720–729. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Mirzavaziri, M.; Moslehian, M.S. Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 2008, 159, 730–738. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy approximately cubic mappings. Inf. Sci. 2008, 178, 3791–3798. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy almost quadratic functions. Results Math. 2008, 52, 161–177. [Google Scholar] [CrossRef]
- Chang, S.S.; Cho, Y.J.; Kang, S.M. Nonlinear Operator Theory in Probabilistic Metric Spaces; Nova Science Publishers: Huntington, NY, USA, 2001. [Google Scholar]
- Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; North-Holland Series in Probability and Applied Mathematics; North-Holland Publishing: New York, NY, USA, 1983. [Google Scholar]
- Sherstnev, A.N. On the notion of a random normed space. Dokl. Akad. Nauk. SSSR 1963, 149, 280283. (In Russian) [Google Scholar]
- Hadzic, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces. In Mathematics and Its Applications; Kluwer Academic: Dordrecht, The Netherlands, 2001; Volume 536. [Google Scholar]
- Hadzic, O.; Pap, E.; Budincevic, M. Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetika 2002, 38, 363–382. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agilan, P.; Almazah, M.M.A.; Julietraja, K.; Alsinai, A. Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces. Mathematics 2023, 11, 681. https://doi.org/10.3390/math11030681
Agilan P, Almazah MMA, Julietraja K, Alsinai A. Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces. Mathematics. 2023; 11(3):681. https://doi.org/10.3390/math11030681
Chicago/Turabian StyleAgilan, P., Mohammed M. A. Almazah, K. Julietraja, and Ammar Alsinai. 2023. "Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces" Mathematics 11, no. 3: 681. https://doi.org/10.3390/math11030681
APA StyleAgilan, P., Almazah, M. M. A., Julietraja, K., & Alsinai, A. (2023). Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces. Mathematics, 11(3), 681. https://doi.org/10.3390/math11030681