Hybrid Wideband Beamforming for Sum Spectral Efficiency Maximization in Millimeter-Wave Relay-Assisted Multiuser MIMO Cognitive Radio Networks
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation and Contribution
- Considering a downlink wideband mm-wave relay-assisted MU-MIMO CRN-based communication network, a hybrid transceiver design is proposed that attempts to maximize the sum rate by taking the transmitted power and interference constraints into account. The optimization problem is formulated to maximize the sum rate of relay-assisted multiple SUs. This problem is quite complicated due to the constant modulus constraints and joint optimization of several complex matrix variables. To reduce the complexity associated with the solution of this problem, it is decomposed into two single-hop sum rate maximization sub-problems by exploiting the structural characteristics of DF relays and the notion of information theory.
- A decoupled design approach is applied to derive the analog RF and digital baseband processing components, where the focus of one sub-problem is to maximize the sum rate from the source to relay decoding, while the orientation of the other sub-problem is to maximize the sum rate from relay encoding to multiple SUs. Specifically, the target of sum rate maximization in each sub-problem is achieved through the RF beamforming solution. On the other hand, interference experienced by the PU and interference among transmitted data streams is minimized through digital baseband processing matrices. Furthermore, an endeavor is made to minimize the loss of information while solving each sub-problem.
- Simulation results are obtained under imperfect channel state information (CSI) by changing system parameters over a wide range. The proposed algorithm achieves performance close to fully digital beamforming, even in the presence of channel estimation errors. Also, minor degradation in performance occurs by increasing errors in imperfect channels in a gradual fashion. Finally, the effectiveness of the proposed scheme is evident from computer simulations.
2. System Model
2.1. Channel Model
2.2. Problem Formulation
3. Proposed Hybrid Beamforming Design
4. Complexity Analysis
5. Numerical Results
5.1. Spectral Efficiency Evaluation by Changing Number of Antennas, SUs, and Data Streams
5.2. Impact of Number of Users
5.3. Impact of Number of Antennas
5.4. Impact of Number of Data Streams
5.5. Performance Evaluation with Well-Known Hybrid Precoding Techniques
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1: Hybrid Wideband Transceiver for Sum Rate Maximization in mm-wave Relay-Assisted Multiuser MIMO Cognitive Radio Networks | |
1. | Initialization: Let Channel Matrix |
(a). | Hybrid precoding design from source-to-relay |
First stage: Analog RF beamforming | |
2. | Evaluate (31), and |
3. | Obtain phase-shift values for designing by solving the following optimization problem |
4. | The common analog RF combiner at the relay node is given as , |
5. | Evaluate , and . Obtain phase-shift values for designing by solving the optimization problem (44) |
6. | The design of is given as , VRF = [(vRF)[1], …, (vRF], (47) |
Second stage: Digital baseband processing components | |
7. | for each do |
8. | Calculate the equivalent baseband channel from source-to-relay |
9. | Perform SVD on to derive |
10. | |
11. | |
12. | end for |
(b). | Hybrid beamforming design from relay-to-SUs |
13. | Initialization: Channel Matrix |
First stage: Analog RF beamforming | |
14. | , (60), (61), |
15. | for each user do |
16. | Phase-shift values are extracted for designing by solving the optimization problem (62) |
17. | The design of is given by the following relation (63), (64) |
18. | end for |
19. | Design of analog precoder at relay node |
20. | ,, (70) |
21. | The phase-shift values for designing can be obtained by solving the following optimization problem (71) |
22. | The common relay analog beamformer is given as |
23. | |
Second stage: Digital baseband processing components | |
24. | for each do |
25. | for each do |
26. | Compute the right null-space of (75) |
27. | Perform SVD on to derive |
28. | |
29. | |
30. | end for |
31. | end for |
References
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, J.; Chen, Y.; Han, M.; Li, X. Optimal Hybrid Beamforming Design for Millimeter-Wave Massive Multi-User MIMO Relay Systems. IEEE Access 2019, 7, 157212–157225. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Wang, D.; Chen, D.; Song, B.; Guizani, N.; Yu, X.; Du, X. From IoT to 5G I-IoT: The next generation IoT-based intelligent algorithms and 5G technologies. IEEE Commun. Mag. 2018, 56, 114–120. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Lee, W.-Y.; Vuran, M.C.; Mohanty, S. A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 2008, 46, 40–48. [Google Scholar] [CrossRef]
- Rony, R.I.; Lopez-Aguilera, E.; Garcia-Villegas, E. Dynamic Spectrum Allocation Following Machine Learning-Based Traffic Predictions in 5G. IEEE Access 2021, 9, 143458–143472. [Google Scholar] [CrossRef]
- Sboui, L.; Ghazzai, H.; Massoud, Y. Integrating Cognitive Radio MIMO UAVs in Cellular Networks for 5G and Beyond. In Proceedings of the 2022 International Conference on Electrical, Computer, Communications, and Mechatronics Engineering (ICECCME), Maldives, Maldives, 16–18 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Sudani, H.; Thabit, A.A.; Dalveren, Y. Cognitive Radio and Its Applications in the New Trend of Communication System: A Review. In Proceedings of the 2022 5th International Conference on Engineering Technology and its Applications (IICETA), Al-Najaf, Iraq, 31 May–1 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 419–423. [Google Scholar] [CrossRef]
- Hemadeh, I.A.; Satyanarayana, K.; El-Hajjar, M.; Hanzo, L. Millimeter-Wave Communications: Physical Channel Models, Design Considerations, Antenna Constructions, and Link-Budget. IEEE Commun. Surv. Tutor. 2017, 20, 870–913. [Google Scholar] [CrossRef]
- Moghadam, N.N.; Fodor, G.; Bengtsson, M.; Love, D.J. On the Energy Efficiency of MIMO Hybrid Beamforming for Millimeter-Wave Systems with Nonlinear Power Amplifiers. IEEE Trans. Wirel. Commun. 2018, 17, 7208–7221. [Google Scholar] [CrossRef]
- Xing, C.; Zhao, X.; Wang, S.; Xu, W.; Ng, S.X.; Chen, S. Hybrid Transceiver Optimization for Multi-Hop Communications. IEEE J. Sel. Areas Commun. 2020, 38, 1880–1895. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Z.; Alexandropoulos, G.C.; Xiong, K.; Wei, L.; Yuen, C.; Zhang, Z.; Debbah, M. Multi-Hop RIS-Empowered Terahertz Communications: A DRL-Based Hybrid Beamforming Design. IEEE J. Sel. Areas Commun. 2021, 39, 1663–1677. [Google Scholar] [CrossRef]
- Xia, Q.; Jornet, J.M. Multi-Hop Relaying Distribution Strategies for Terahertz-Band Communication Networks: A Cross-Layer Analysis. IEEE Trans. Wirel. Commun. 2021, 21, 5075–5089. [Google Scholar] [CrossRef]
- Nasir, A.A.; Tuan, H.D.; Duong, T.Q.; Poor, H.V.; Hanzo, L. Hybrid Beamforming for Multi-User Millimeter-Wave Networks. IEEE Trans. Veh. Technol. 2020, 69, 2943–2956. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Tian, X.; Wang, Z.; Liu, Q. Iterative hybrid precoder and combiner design for mmWave MIMO-OFDM systems. Wirel. Netw. 2019, 25, 4829–4837. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications. IEEE Trans. Microw. Theory Tech. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Badrudeen, A.A.; Leow, C.Y.; Won, S. Performance Analysis of Hybrid Beamforming Precoders for Multiuser Millimeter Wave NOMA Systems. IEEE Trans. Veh. Technol. 2020, 69, 8739–8752. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Q.; Wu, Q.; Zhang, Y.; Jin, M.; Qiu, T. Energy-Efficient Hybrid Precoding with Low Complexity for mmWave Massive MIMO Systems. IEEE Access 2019, 7, 95021–95032. [Google Scholar] [CrossRef]
- Gupta, A.K.; Andrews, J.G.; Heath, R.W. On the Feasibility of Sharing Spectrum Licenses in mmWave Cellular Systems. IEEE Trans. Commun. 2016, 64, 3981–3995. [Google Scholar] [CrossRef]
- Rebato, M.; Boccardi, F.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Hybrid Spectrum Sharing in mmWave Cellular Networks. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 155–168. [Google Scholar] [CrossRef]
- Ghadikolaei, H.S.; Ghauch, H.; Fodor, G.; Skoglund, M.; Fischione, C. A Hybrid Model-Based and Data-Driven Approach to Spectrum Sharing in mmWave Cellular Networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1269–1282. [Google Scholar] [CrossRef]
- Li, G.; Irnich, T.; Shi, C. Coordination context-based spectrum sharing for 5G millimeter-wave networks. In Proceedings of the 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Oulu, Finland, 2–4 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 32–38. [Google Scholar]
- Shokri-Ghadikolaei, H.; Boccardi, F.; Fischione, C.; Fodor, G.; Zorzi, M. Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming. IEEE J. Sel. Areas Commun. 2016, 34, 2902–2917. [Google Scholar] [CrossRef]
- Vrontos, C.; Boccardi, F.; Armour, S.; Mellios, E.; Butler, J. Performance Evaluation of Spectrum Sharing in mmWave Cellular Networks using Ray-Tracing. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sangdeh, P.K.; Pirayesh, H.; Quadri, A.; Zeng, H. A Practical Spectrum Sharing Scheme for Cognitive Radio Networks: Design and Experiments. IEEE/ACM Trans. Netw. 2020, 28, 1818–1831. [Google Scholar] [CrossRef]
- Khoshkholgh, M.G.; Navaie, K.; Yanikomeroglu, H. Interference Management in Underlay Spectrum Sharing Using Indirect Power Control Signalling. IEEE Trans. Wirel. Commun. 2013, 12, 3264–3277. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Heath, R.W. Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems. IEEE Trans. Commun. 2016, 64, 1801–1818. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid Analog and Digital Beamforming for mmWave OFDM Large-Scale Antenna Arrays. IEEE J. Sel. Areas Commun. 2017, 35, 1432–1443. [Google Scholar] [CrossRef]
- Park, S.; Alkhateeb, A.; Heath, R.W. Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 2907–2920. [Google Scholar] [CrossRef]
- Dsouza, K.B.; Prasad, K.N.R.S.V.; Bhargava, V.K. Hybrid Precoding with Partially Connected Structure for Millimeter Wave Massive MIMO OFDM: A Parallel Framework and Feasibility Analysis. IEEE Trans. Wirel. Commun. 2018, 17, 8108–8122. [Google Scholar] [CrossRef]
- Yuan, H.; An, J.; Yang, N.; Yang, K.; Duong, T.Q. Low Complexity Hybrid Precoding for Multiuser Millimeter Wave Systems Over Frequency Selective Channels. IEEE Trans. Veh. Technol. 2018, 68, 983–987. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Chiu, M.-C.; Chao, C.-C. Sub-System SVD Hybrid Beamforming Design for Millimeter Wave Multi-Carrier Systems. IEEE Trans. Wirel. Commun. 2018, 18, 518–531. [Google Scholar] [CrossRef]
- Du, J.; Xu, W.; Zhao, C.; Vandendorpe, L. Weighted Spectral Efficiency Optimization for Hybrid Beamforming in Multiuser Massive MIMO-OFDM Systems. IEEE Trans. Veh. Technol. 2019, 68, 9698–9712. [Google Scholar] [CrossRef]
- Zilli, G.M.; Zhu, W.-P. Constrained Tensor Decomposition-Based Hybrid Beamforming for Mmwave Massive MIMO-OFDM Communication Systems. IEEE Trans. Veh. Technol. 2021, 70, 5775–5788. [Google Scholar] [CrossRef]
- Tsinos, C.G.; Maleki, S.; Chatzinotas, S.; Ottersten, B. Hybrid analog-digital transceiver designs for cognitive radio millimeter-wave systems. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1785–1789. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.-C.; Zhang, J.; Letaief, K.B. Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef]
- El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef]
- Vázquez, M.A.; Blanco, L.; Pérez-Neira, A.I. Hybrid Analog–Digital Transmit Beamforming for Spectrum Sharing Backhaul Networks. IEEE Trans. Signal Process. 2018, 66, 2273–2285. [Google Scholar] [CrossRef]
- Xu, L.; Sun, L.; Xia, G.; Liu, T.; Shu, F.; Zhang, Y.; Wang, J. Secure Hybrid Digital and Analog Precoder for mmWave Systems with Low-Resolution DACs and Finite-Quantized Phase Shifters. IEEE Access 2019, 7, 109763–109775. [Google Scholar] [CrossRef]
- Kong, Z.; Song, J.; Wang, C.; Chen, H.; Hanzo, L. Hybrid Analog-Digital Precoder Design for Securing Cognitive Millimeter Wave Networks. IEEE Trans. Inf. Forensics Secur. 2020, 16, 4019–4034. [Google Scholar] [CrossRef]
- Tsinos, C.G.; Chatzinotas, S.; Ottersten, B. Hybrid Analog-Digital Transceiver Designs for Multi-User MIMO mmWave Cognitive Radio Systems. IEEE Trans. Cogn. Commun. Netw. 2019, 6, 310–324. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.H. AF relaying for millimeter wave communication systems with hybrid RF/baseband MIMO processing. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 5838–5842. [Google Scholar] [CrossRef]
- Xue, X.; Bogale, T.E.; Wang, X.; Wang, Y.; Long, B.L. Hybrid analog-digital beamforming for multiuser MIMO millimeter wave relay systems. In Proceedings of the 2015 IEEE/CIC International Conference on Communications in China (ICCC), Shenzhen, China, 2–4 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Xue, X.; Wang, Y.; Dai, L.; Masouros, C. Relay Hybrid Precoding Design in Millimeter-Wave Massive MIMO Systems. IEEE Trans. Signal Process. 2018, 66, 2011–2026. [Google Scholar] [CrossRef]
- Chatterjee, I.; Singh, J.; Srivastava, S.; Jagannatham, A.K. Frequency selective hybrid beamforming and optimal power loading for multiuser millimeter wave cognitive radio networks. IEEE Access 2023, 11, 96052–96067. [Google Scholar] [CrossRef]
- Singh, J.; Chatterjee, I.; Srivastava, S.; Agrahari, A.; Jagannatham, A.K.; Hanzo, L. Hybrid Transceiver Design and Optimal Power Allocation for the Cognitive mmWave Multiuser MIMO Downlink Relying on Limited Feedback. IEEE Open J. Veh. Technol. 2023, 4, 241–256. [Google Scholar] [CrossRef]
- Nouri, M.; Behroozi, H.; Bastami, H.; Moradikia, M.; Jafarieh, A.; Abdelhadi, A.; Han, Z. Hybrid precoding based on active learning for mmWave massive MIMO communication systems. IEEE Trans. Commun. 2023, 71, 3043–3058. [Google Scholar] [CrossRef]
- Audu, W.M.; Oyerinde, O.O. Modified User Grouping and Hybrid Precoding for Information Decoding and Energy Harvesting in Hardware Impaired Point-To-Point MM-Wave Massive MIMO NOMA. IEEE Access 2023, 11, 33741–33756. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, P.; Li, J.; Chen, J.; Wang, Y. Tensor-Train Decomposition-Based Hybrid Beamforming for Millimeter-Wave Massive Multiple-Input Multiple-Output/Free-Space Optics in Unmanned Aerial Vehicles with Reconfigurable Intelligent Surface Networks. Photonics 2023, 10, 1183. [Google Scholar] [CrossRef]
- Molu, M.M.; Xiao, P.; Khalily, M.; Cumanan, K.; Zhang, L.; Tafazolli, R. Low-Complexity and Robust Hybrid Beamforming Design for Multi-Antenna Communication Systems. IEEE Trans. Wirel. Commun. 2017, 17, 1445–1459. [Google Scholar] [CrossRef]
- Jiang, L.; Jafarkhani, H. mmWave Amplify-and-Forward MIMO Relay Networks with Hybrid Precoding/Combining Design. IEEE Trans. Wirel. Commun. 2019, 19, 1333–1346. [Google Scholar] [CrossRef]
- Ni, W.; Dong, X. Hybrid Block Diagonalization for Massive Multiuser MIMO Systems. IEEE Trans. Commun. 2015, 64, 201–211. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; Chih-Lin, I.; Heath, R.W. Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems with Large Antenna Arrays. IEEE J. Sel. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
, , , , , , and | Transpose, conjugate transpose, Frobenius norm, element-wise phase, element-wise modulus, column, and first columns of a matrix , respectively. |
Identity matrix of order | |
Field of complex numbers | |
Field of real numbers | |
Complex Gaussian distribution with mean and covariance matrix | |
and | Determinant and trace of a matrix |
Block diagonal matrix with sub-matrices | |
Expectation operator |
Algorithms | Complexity |
---|---|
Proposed | |
Hybrid Precoding [29] | |
Hybrid Beamforming [33] |
Parameters | Values |
---|---|
Number of data streams | |
Number of RF chains | |
Number of antennas | |
Number of data transmission paths | |
Number of frequency sub-carriers | |
Carrier frequency | |
Number of secondary users |
Algorithms | Number of Antennas | Sum Spectral Efficiency (%) | ||
---|---|---|---|---|
Proposed (perfect CSI) | , | 6 | 3 | 94.66 |
Proposed with | , | 6 | 3 | 90.93 |
Proposed in [38] | , | 6 | 3 | 85.14 |
Proposed in [37] | , | 6 | 3 | 83.41 |
Algorithms | Number of Antennas | Sum Spectral Efficiency (%) | ||
---|---|---|---|---|
Proposed (perfect CSI) | , | 5 | 4 | 95.14 |
Proposed with | , | 5 | 4 | 92.62 |
Proposed in [38] | , | 5 | 4 | 80.50 |
Proposed in [37] | , | 5 | 4 | 78.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, Z.; Mustafa, H.M.T.; Baik, J.-I.; Adnan, M.; Awan, W.M.; Song, H.-K. Hybrid Wideband Beamforming for Sum Spectral Efficiency Maximization in Millimeter-Wave Relay-Assisted Multiuser MIMO Cognitive Radio Networks. Mathematics 2023, 11, 4939. https://doi.org/10.3390/math11244939
Abbasi Z, Mustafa HMT, Baik J-I, Adnan M, Awan WM, Song H-K. Hybrid Wideband Beamforming for Sum Spectral Efficiency Maximization in Millimeter-Wave Relay-Assisted Multiuser MIMO Cognitive Radio Networks. Mathematics. 2023; 11(24):4939. https://doi.org/10.3390/math11244939
Chicago/Turabian StyleAbbasi, Zunira, Hafiz Muhammad Tahir Mustafa, Jung-In Baik, Muhammad Adnan, Waqar Majeed Awan, and Hyoung-Kyu Song. 2023. "Hybrid Wideband Beamforming for Sum Spectral Efficiency Maximization in Millimeter-Wave Relay-Assisted Multiuser MIMO Cognitive Radio Networks" Mathematics 11, no. 24: 4939. https://doi.org/10.3390/math11244939
APA StyleAbbasi, Z., Mustafa, H. M. T., Baik, J.-I., Adnan, M., Awan, W. M., & Song, H.-K. (2023). Hybrid Wideband Beamforming for Sum Spectral Efficiency Maximization in Millimeter-Wave Relay-Assisted Multiuser MIMO Cognitive Radio Networks. Mathematics, 11(24), 4939. https://doi.org/10.3390/math11244939