A Method of Lung Organ Segmentation in CT Images Based on Multiple Residual Structures and an Enhanced Spatial Attention Mechanism
Abstract
:1. Introduction
2. Related Work
2.1. U-Shaped Structure
2.2. Residual Connections
2.3. Gated Attention Mechanisms
3. Proposed Method
3.1. Structure of Multiple Concatenation Module
3.2. Multi-Scale Residual Learning Module
3.3. Improved Gated Attention Mechanism
3.4. Loss Function
4. Experimental Results and Discussions
4.1. Evaluation Metrics
4.2. Ablation Study
4.3. Comparison Experiments
4.4. Visual Comparison of Experimental Results
4.5. Heatmap Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, D.; Anand, R.S. A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 2017, 31, 116–126. [Google Scholar] [CrossRef]
- Mazouzi, S.; Guessoum, Z. A fast and fully distributed method for region-based image segmentation. J. Real-Time Image Process. 2021, 18, 793–806. [Google Scholar] [CrossRef]
- Badshah, N.; Atta, H.; Shah, S.I.A.; Attaullah, S.; Ullah, M. New local region based model for the segmentation of medical images. IEEE Access 2020, 8, 175035–175053. [Google Scholar] [CrossRef]
- Xiang, D.; Bagci, U.; Jin, C.; Shi, F.; Zhu, W.; Yao, J.; Sonka, M.; Chen, X. CorteXpert: A model-based method for automatic renal cortex segmentation. Med. Image Anal. 2017, 42, 257–273. [Google Scholar] [CrossRef]
- Liang, Y.; Fu, J. Watershed algorithm for medical image segmentation based on morphology and total variation model. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1954019. [Google Scholar] [CrossRef]
- Lee, S.; Lee, A.; Hong, M. Cardiac CT Image Segmentation for Deep Learning–Based Coronary Calcium Detection Using K-Means Clustering and Grabcut Algorithm. Comput. Syst. Sci. Eng. 2023, 46, 2543–2554. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, H.; Lin, X.; Yang, M. A novel image segmentation method based on fast density clustering algorithm. Eng. Appl. Artif. Intell. 2018, 73, 92–110. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Hu, F.; Wang, D. A lung dense deep convolution neural network for robust lung parenchyma segmentation. IEEE Access 2020, 8, 93527–93547. [Google Scholar] [CrossRef]
- Park, B.; Park, H.; Lee, S.M.; Seo, J.B.; Kim, N. Lung segmentation on HRCT and volumetric CT for diffuse interstitial lung disease using deep convolutional neural networks. J. Digit. Imaging 2019, 32, 1019–1026. [Google Scholar] [CrossRef]
- An, F.P.; Liu, X.W. Medical image segmentation algorithm based on feedback mechanism convolutional neural network. Biomed. Signal Process. Control 2019, 53, 101589. [Google Scholar]
- Li, J.; Chen, H.; Li, Y.; Peng, Y. A novel network based on densely connected fully convolutional networks for segmentation of lung tumors on multi-modal MR images. In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing, Dublin, Ireland, 16–18 October 2019; pp. 1–5. [Google Scholar]
- Lu, Y.; Lu, G.M.; Li, J.X.; Zhang, D. Fully shared convolutional neural networks. Neural Comput. Appl. 2021, 33, 8635–8648. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Part III 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Shaziya, H.; Shyamala, K.; Zaheer, R. Automatic lung segmentation on thoracic CT scans using U-net convolutional network. In Proceedings of the 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018; pp. 643–647. [Google Scholar]
- Li, X.M.; Chen, H.; Qi, X.J.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Damseh, R.; Cheriet, F.; Lesage, F. Fully convolutional DenseNets for segmentation of microvessels in two-photon microscopy. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 June 2018; pp. 661–665. [Google Scholar]
- Qamar, S.; Jin, H.; Zheng, R.; Ahamd, P.; Usama, M. A variant form of 3D-UNet for infant brain segmentation. Future Gener. Comput. Syst. 2020, 108, 613–623. [Google Scholar] [CrossRef]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a discriminative feature network for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1857–1866. [Google Scholar]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Chen, Y.; Kalantidis, Y.; Li, J.; Yan, S.; Feng, J. A2-nets: Double attention networks. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada, 3–8 December 2018. [Google Scholar]
- Liu, J.J.; Hou, Q.; Cheng, M.M.; Wang, C.; Feng, J. Improving convolutional networks with self-calibrated convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10096–10105. [Google Scholar]
- Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global second-order pooling convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3024–3033. [Google Scholar]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 603–612. [Google Scholar]
- Tay, C.P.; Roy, S.; Yap, K.H. Aanet: Attribute attention network for person re-identifications. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7134–7143. [Google Scholar]
- Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to attend: Convolutional triplet attention module. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3139–3148. [Google Scholar]
- Fang, X.; Yan, P. Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans. Med. Imaging 2020, 39, 3619–3629. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, J.; Xu, Y.; Wong, D.W.K.; Liu, J.; Cao, X. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 2018, 37, 1597–1605. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 269–284. [Google Scholar]
- Zhang, P.; Liu, W.; Lei, Y.; Lu, H.; Yang, X. Cascaded context pyramid for full-resolution 3D semantic scene completion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7801–7810. [Google Scholar]
- Huang, G.; Liu, S.; Van, L.; Weinberger, K.Q. Condensenet: An efficient densenet using learned group convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2752–2761. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, H.; Cao, P.; Wang, J.; Zaiane, O.R. Uctransnet: Rethinking the skip connections in u-net from a channel-wise perspective with transformer. Proc. AAAI Conf. Artif. Intell. 2022, 36, 2441–2449. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wang, S.; Liang, T.; Zhao, Q.; Tang, Z.; Ling, H. Cbnet: A novel composite backbone network architecture for object detection. Proc. AAAI Conf. Artif. Intell. 2020, 34, 11653–11660. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Valanarasu, J.M.J.; Patel, V.M. Unext: Mlp-based rapid medical image segmentation network. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022; Part V; Springer Nature Switzerland: Cham, Switzerland, 2022; pp. 23–33. [Google Scholar]
- Valanarasu, J.M.J.; Oza, P.; Hacihaliloglu, I.; Patel, V.M. Medical transformer: Gated axial-attention for medical image segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–1 October 2021; Part I 24; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 36–46. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589. [Google Scholar]
- Setio, A.A.A.; Traverso, A.; De Bel, T.; Berens, M.S.; Van Den Bogaard, C.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Zhao, H. Automatic Lung Segmentation Algorithm on Chest X-ray Images Based on Fusion Variational Auto-Encoder and Three-Terminal Attention Mechanism. Symmetry 2021, 13, 814. [Google Scholar] [CrossRef]
- Kim, M.; Lee, B.-D. Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network. Sensors 2021, 21, 369. [Google Scholar] [CrossRef] [PubMed]
- Jalali, Y.; Fateh, M.; Rezvani, M.; Abolghasemi, V.; Anisi, M.H. ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation. Sensors 2021, 21, 268. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Lehman, M.; Ramachandran, P. Autosegmentation of lung computed tomography datasets using deep learning U-Net architecture. J. Cancer Res. Ther. 2023, 19, 289–298. [Google Scholar] [PubMed]
U-Net | MCRU-Net | MRAU-Net | MCAU-Net | MCRAU-Net | |
---|---|---|---|---|---|
IOULeft-Lung | 98.43 ± 0.22 | 98.1 ± 0.18 | 98.32 ± 0.18 | 98.23 ± 0.19 | 98.49 ± 0.16 |
IOURight-Lung | 98.49 ± 0.13 | 98.59 ± 0.17 | 98.51 ± 0.17 | 98.47 ± 0.16 | 98.52 ± 0.18 |
IOUTrachea | 80.74 ± 1.61 | 81.37 ± 1.71 | 82.37 ± 1.68 | 82.64 ± 1.82 | 84.53 ± 1.77 |
mIOU | 94.6 ± 0.45 | 94.41 ± 0.46 | 94.71 ± 0.43 | 94.78 ± 0.45 | 95.29 ± 0.42 |
RecallLeft-Lung | 99.18 ± 0.18 | 98.98 ± 0.23 | 99.02 ± 0.19 | 98.98 ± 0.22 | 99.26 ± 0.21 |
RecallRight-Lung | 99.29 ± 0.18 | 99.2 ± 0.18 | 99.1 ± 0.18 | 99.23 ± 0.19 | 99.31 ± 0.18 |
RecallTrachea | 95.32 ± 0.82 | 95.0 ± 1.01 | 94.58 ± 0.98 | 94.83 ± 1.01 | 95.54 ± 1.14 |
PrecisionLeft-Lung | 99.23 ± 0.18 | 99.1 ± 0.25 | 99.29 ± 0.30 | 99.24 ± 0.22 | 99.28 ± 0.34 |
PrecisionRight-Lung | 99.19 ± 0.12 | 99.38 ± 0.13 | 99.4 ± 0.18 | 99.23 ± 0.15 | 99.22 ± 0.13 |
PrecisionTrachea | 84.13 ± 1.53 | 85.16 ± 1.52 | 86.34 ± 1.48 | 86.55 ± 1.44 | 88 ± 1.4 |
MPA | 98.42 ± 0.26 | 98.47 ± 0.28 | 98.15 ± 0.32 | 98.23 ± 0.33 | 98.48 ± 0.36 |
ACC | 99.65 ± 0.14 | 99.76 ± 0.1 | 99.77 ± 0.11 | 99.76 ± 0.09 | 99.78 ± 0.04 |
U-Net | Vgg16-UNet | Resnet50-UNet | UneXt | TransUNet | UCTransNet | MCRAU-Net | |
---|---|---|---|---|---|---|---|
IOULeft-Lung | 98.43 ± 0.22 | 98.14 ± 0.34 | 98.38 ± 0.32 | 98.1 ± 0.21 | 98.47 ± 0.17 | 98.52 ± 0.17 | 98.49 ± 0.16 |
IOURight-Lung | 98.49 ± 0.13 | 98.29 ± 0.14 | 98.47 ± 0.33 | 98.19 ± 0.25 | 98.4 ± 0.19 | 98.6 ± 0.22 | 98.52 ± 0.18 |
IOUTrachea | 80.74 ± 1.61 | 79.1 ± 3.56 | 80.04 ± 2.93 | 75.26 ± 5.42 | 82.04 ± 2.08 | 82.91 ± 2.28 | 84.53 ± 1.77 |
mIOU | 94.6 ± 0.45 | 93.75 ± 0.99 | 94.14 ± 0.77 | 92.73 ± 1.41 | 94.59 ± 0.51 | 94.88 ± 0.61 | 95.29 ± 0.42 |
RecallLeft-Lung | 99.18 ± 0.18 | 99.07 ± 0.14 | 99.23 ± 0.34 | 98.92 ± 0.22 | 99.15 ± 0.19 | 99.22 ± 0.19 | 99.26 ± 0.21 |
RecallRight-Lung | 99.29 ± 0.18 | 99.13 ± 0.17 | 99.19 ± 0.11 | 99 ± 0.35 | 99.32 ± 0.17 | 99.3 ± 0.18 | 99.31 ± 0.18 |
RecallTrachea | 95.32 ± 0.82 | 95.75 ± 1.04 | 96.42 ± 1.68 | 94.74 ± 1.17 | 95.67 ± 1.08 | 95.71 ± 0.92 | 95.54 ± 1.14 |
PrecisionLeft-Lung | 99.23 ± 0.18 | 99.05 ± 0.31 | 99.23 ± 0.12 | 99.16 ± 0.28 | 99.3 ± 0.13 | 99.26 ± 0.11 | 99.28 ± 0.34 |
PrecisionRight-Lung | 99.19 ± 0.12 | 99.15 ± 0.19 | 99.03 ± 0.43 | 99.17 ± 0.31 | 99.07 ± 0.23 | 99.21 ± 0.13 | 99.22 ± 0.13 |
PrecisionTrachea | 84.13 ± 1.53 | 79.87 ± 6.56 | 82.87 ± 3.39 | 78.62 ± 6 | 85.16 ± 2.45 | 85.91 ± 2.27 | 88 ± 1.4 |
MPA | 98.42 ± 0.26 | 98.44 ± 0.28 | 98.04 ± 0.92 | 98.1 ± 0.26 | 98.48 ± 0.32 | 98.51 ± 0.31 | 98.48 ± 0.36 |
ACC | 99.65 ± 0.14 | 99.66 ± 0.02 | 99.69 ± 0.02 | 99.63 ± 0.05 | 99.69 ± 0.03 | 99.72 ± 0.02 | 99.78 ± 0.04 |
Parameters | 34.52 M | 24.89 M | 43.93 M | 1.47 M | 105.32 M | 65.6 M | 48.5 M |
U-Net | UneXt | TransUNet | UCTransNet | MCRAU-Net | |
---|---|---|---|---|---|
DICE | 97.67 ± 0.25 | 97.86 ± 0.23 | 96.69 ± 0.25 | 97.9 ± 0.20 | 98.01 ± 0.18 |
IOU | 95.54 ± 0.26 | 95.61 ± 0.32 | 94.14 ± 0.29 | 95.78 ± 0.24 | 96.17 ± 0.22 |
VOE | 0.0435 ± 0.045 | 0.0389 ± 0.057 | 0.057 ± 0.049 | 0.0432 ± 0.043 | 0.0372 ± 0.031 |
RVD | 0.0079 ± 0.0038 | 0.0068 ± 0.002 | 0.0265 ± 0.0031 | 0.0151 ± 0.0029 | 0.0053 ± 0.0026 |
ASSD | 0.439 ± 0.18 | 0.288 ± 0.15 | 1.06 ± 0.32 | 0.2946 ± 0.19 | 0.2278 ± 0.12 |
MSD | 83.64 ± 8.86 | 68.96 ± 10.32 | 86.28 ± 15.32 | 78.58 ± 9.68 | 63.07 ± 7.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, C.; Zhang, Y.; Li, J. A Method of Lung Organ Segmentation in CT Images Based on Multiple Residual Structures and an Enhanced Spatial Attention Mechanism. Mathematics 2023, 11, 4483. https://doi.org/10.3390/math11214483
Wang L, Zhang C, Zhang Y, Li J. A Method of Lung Organ Segmentation in CT Images Based on Multiple Residual Structures and an Enhanced Spatial Attention Mechanism. Mathematics. 2023; 11(21):4483. https://doi.org/10.3390/math11214483
Chicago/Turabian StyleWang, Lingfei, Chenghao Zhang, Yu Zhang, and Jin Li. 2023. "A Method of Lung Organ Segmentation in CT Images Based on Multiple Residual Structures and an Enhanced Spatial Attention Mechanism" Mathematics 11, no. 21: 4483. https://doi.org/10.3390/math11214483
APA StyleWang, L., Zhang, C., Zhang, Y., & Li, J. (2023). A Method of Lung Organ Segmentation in CT Images Based on Multiple Residual Structures and an Enhanced Spatial Attention Mechanism. Mathematics, 11(21), 4483. https://doi.org/10.3390/math11214483