Implementation of Physical Reservoir Computing in a TaOx/FTO-Based Memristor Device
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.S.P. Stochastic learning in oxide binary synaptic deivce for neuromorphic system. Front. Neurosci. 2013, 7, 186. [Google Scholar] [CrossRef]
- Kang, D.; Jang, J.T.; Park, S.; Ansari, M.H.R.; Bae, J.H.; Choi, S.J.; Kim, D.H.; Kim, C.; Cho, S.; Kim, D.H. Threshold-Variation-Tolerant Coupling-Gate α-IGZO synaptic transistor for more reliably controllable hardware neuromorphic system. IEEE Access 2021, 9, 59345–59352. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’EV, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhou, Y.; et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [Google Scholar] [CrossRef]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory. J. Appl. Phys. 2006, 100, 051604. [Google Scholar] [CrossRef]
- Burr, G.W.; Breitwisch, M.J.; Franceschini, M.; Garetto, D.; Gopalakrishnan, K.; Jackson, B.; Kurdi, B.; Lam, C.; Lastras, L.A.; Padilla, A.; et al. Phase change memory technology. J. Vac. Sci. Technol. B 2010, 28, 223–262. [Google Scholar] [CrossRef]
- Fong, S.W.; Neumann, C.M.; Wong, H.S.P. Phase-change memory-Towards a storage-class memory. IEEE Trans. Electron Devices 2017, 64, 4374–4385. [Google Scholar] [CrossRef]
- Khvalkovskiy, A.V.; Apalkov, D.; Watts, S.; Chepulskii, R.; Beach, R.S.; Ong, A.; Tang, X.; Smith, A.D.; Butler, W.H.; Visscher, P.B.; et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D Appl. Phys. 2013, 46, 074001. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOX/TiN memristors with self-rectification. Chaos Solit. Fractals 2011, 150, 111223. [Google Scholar] [CrossRef]
- Pawar, P.S.; Tikke, R.S.; Patil, V.B.; Mullani, N.B.; Waifalkar, P.P.; Khot, K.V.; Teli, A.M.; Sheikh, A.D.; Dongale, T.D. A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method. Mater. Sci. Semicond. Process 2017, 71, 102–108. [Google Scholar] [CrossRef]
- Jeong, D.S.; Thomas, R.; Katiyar, R.S.; Scott, J.F.; Kohlstedt, H.; Petraru, A.; Hwang, C.S. Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 2012, 75, 076502. [Google Scholar] [CrossRef] [PubMed]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Ventra, M.D.; Pershin, Y.V. Memory materials: A unifying description. Mater. Today 2011, 14, 584–591. [Google Scholar] [CrossRef]
- Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R-Rep. 2014, 83, 1–59. [Google Scholar] [CrossRef]
- Kim, D.; Shin, J.; Kim, S. Resistive switching Resistive Switching Characteristics of ZnO-Based RRAM on Silicon Substrate. Metals 2021, 11, 1572. [Google Scholar] [CrossRef]
- Bae, D.; Lee, D.; Jung, J.; Kim, S.; Kim, H.D. Self-rectifying resistive switching characteristics of Ti/Zr3N2/p-Si capacitor for array applications. Ceram. Int. 2021, 47, 21943–21949. [Google Scholar] [CrossRef]
- Jeon, B.; Kim, S. Effect of ITO electrode on conductance quantization and multi-level cells in TiN/SiOX/ITO devices. Ceram. Int. 2023, 49, 424–430. [Google Scholar] [CrossRef]
- Li, Y.; Fang, P.; Fan, X.; Pei, Y. NiO-based memristor with three resistive switching modes. Semicond. Sci. Technol. 2020, 35, 055004. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Long, S.; Wang, W.; Wang, Q.; Zhang, M.; Zhang, S.; Li, Y.; Zuo, Q.; Yang, J.; et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 2009, 21, 045202. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Chung, D.; Lee, K.; Kim, S. Multi-level Cells and Quantized Conductance Characteristics of Al2O3-Based RRAM Device for Neuromorphic System. Nanoscale Res. Lett. 2022, 17, 84. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wu, C.Y.; Wu, C.Y.; Lee, T.C.; Yang, F.L.; Hu, C.; Tseng, T.Y. Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices. IEEE Electron. Device Lett. 2007, 28, 366–368. [Google Scholar] [CrossRef]
- Dongale, T.D.; Desai, N.D.; Khot, K.V.; Volos, C.K.; Bhosale, P.N.; Kamat, R.K. An electronic synapse device based on TiO2 thin film memristor. J. Nanoelectron. Optoelectron. 2018, 13, 68–75. [Google Scholar] [CrossRef]
- Yang, Y.; Sheridan, P.; Lu, W. Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 2012, 100, 203112. [Google Scholar] [CrossRef]
- Yang, J.J.; Zhang, M.X.; Strachan, J.P.; Miao, F.; Pickett, M.D.; Kelley, R.D.; Ribeiro, G.M.; Williams, R.D. High switching endurance in TaOX memristive devices. Appl. Phys. Lett. 2010, 97, 232102. [Google Scholar] [CrossRef]
- Torrezan, A.C.; Strachan, J.P.; Ribeiro, G.M.; Williams, R.D. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 2011, 22, 485203. [Google Scholar] [CrossRef]
- Prakash, A.; Jana, D.; Maikap, S. TaOx -based resistive switching memories: Prospective and challenges. Nanoscale Res. Lett. 2013, 8, 1–17. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-X/TaO2-X bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef]
- Chen, C.; Song, C.; Yang, J.; Zeng, F.; Pan, F. Oxygen migration induced resistive switching effect and its thermal stability in W/TaOX/Pt structure. Appl. Phys. Lett. 2012, 100, 253509. [Google Scholar] [CrossRef]
- Bishop, S.M.; Bakhru, H.; Capulong, J.O.; Cady, N.C. Influence of the SET current on the resistive switching properties of tantalum oxide created by oxygen implantation. Appl. Phys. Lett. 2012, 100, 142111. [Google Scholar] [CrossRef]
- Gu, T.; Tada, T.; Watanabe, S. Conductive path formation in the Ta2O5 atomic switch: First-principles analyses. ACS Nano 2010, 4, 6477–6482. [Google Scholar] [CrossRef]
- Odagawa, A.; Katoh, Y.; Kanzawa, Y.; Wei, Z.; Mikawa, T.; Muraoka, S.; Takagi, T. Electroforming and resistance-switching mechanism in a magnetite thin film. Appl. Phys. Lett. 2007, 91, 133503. [Google Scholar] [CrossRef]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Chen, P.H.; Su, Y.T.; Chang, F.C. Stabilizing Resistive Switching Characteristics by Inserting Indium-Tin-Oxide Layer as Oxygen Ion Reservoir in HfO2-Based Resistive Random Access Memory. IEEE. Trans. Electron. Devices 2019, 66, 1276–1280. [Google Scholar] [CrossRef]
- Chiang, K.K.; Chen, J.S.; Wu, J.J. Aluminum Electrode Modulated Bipolar Resistive Switching of Al/Fuel-Assisted NiOX/ITO Memory Devices Modeled with a Dual-Oxygen-Reservoir Structure. ACS Appl. Mater. Interfaces 2012, 4, 4237–4245. [Google Scholar] [CrossRef]
- Chang, W.Y.; Huang, H.W.; Wang, W.T.; Hou, C.H.; Chueh, Y.L.; He, J.H. High uniformity of resistive switching characteristics in a Cr/ZnO/Pt device. J. Electrochem. Soc. 2012, 159, G29–G32. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Y.X.; Liu, L.F.; Xu, N.; Wang, Y.; Liu, X.Y.; Han, R.Q.; Kang, J.F. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices. J. Appl. Phys. 2009, 105, 061630. [Google Scholar] [CrossRef]
- Chen, S.C.; Chang, T.C.; Chen, S.Y.; Chen, C.W.; Chen, S.C.; Sze, S.M.; Tsai, M.J.; Kao, J.K.; Huang, F.Y. Bipolar resistive switching of chromium oxide for resistive random access memory. Solid-State Electron. 2011, 62, 40–43. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Ta, H.K.T.; Park, S.; Phan, T.B.; Pham, N.K. Resistive switching effect and magnetic properties of iron oxide nanoparticles embedded-polyvinyl alcohol film. RSC Adv. 2020, 10, 12900–12907. [Google Scholar] [CrossRef]
- Bear, M.F.; Conners, B.W.; Paradiso, M.A. Neuroscience: Exploring the Brain; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Kirkwood, A.; Rioult, M.G.; Bear, M.F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 1996, 381, 526–528. [Google Scholar] [CrossRef]
- Yang, R.; Huang, H.M.; Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Adv. Electron. Mater. 2019, 5, 1900287. [Google Scholar] [CrossRef]
- Nicholls, J.G.; Martin, A.R.; Fuchs, P.A.; Brown, D.A.; Diamond, M.E.; Weisblat, D.A. From Neuron to Brain; Sinauer Associates: Sunderland, MA, USA, 2012. [Google Scholar]
- Wang, Z.; Yin, M.; Zhang, T.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale 2016, 8, 14015–14022. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Park, S.; Jang, J.; Lee, D.; Woo, J.; Cha, E.; Lee, S.; Park, J.; Song, J.; Koo, Y.; et al. Hardware implementation of associative memory characteristics with analogue-type resistive-switching device. Nanotechnology 2014, 25, 495204. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Kim, S. Self-Rectifying Resistive Switching and Short-Term Memory Characteristics in Pt/HfO2/TaOX/TiN Artificial Synaptic Device. Nanomaterials 2020, 10, 2159. [Google Scholar] [CrossRef]
- Wang, W.; Covi, E.; Milozzi, A.; Farronato, M.; Ricci, S.; Sbandati, S.; Pedretti, G.; Lemini, D. Neuromorphic motion detection and orientation selectivity by volatile resistive switching memories. Adv. Intell. Syst. 2021, 3, 2000224. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Yu, Y.; Li, Y.; Li, Q.; Li, T.; Zhao, H.; Li, Z.; Bing, P.; Yao, J. Resistive switching memory based on polyvinyl alcohol-graphene oxide hybrid material for the visual perception nervous system. Mater. Des. 2022, 223, 111218. [Google Scholar] [CrossRef]
- Caporale, N.; Dan, Y. Spike timing–dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef]
- Munakata, Y.; Pfaffly, J. Hebbian learning and development. Dev. Sci. 2004, 7, 141–148. [Google Scholar] [CrossRef]
- Ku, B.; Abbas, Y.; Kim, S.; Sokolov, A.S.; Jeon, Y.R.; Choi, C. Improved resistive switching and synaptic characteristics using Ar plasma irradiation on the Ti/HfO2 interface. J. Alloys Compd. 2019, 797, 277–283. [Google Scholar] [CrossRef]
- Ryu, H.; Choi, J.; Kim, S. Voltage Amplitude-Controlled Synaptic Plasticity from Complementary Resistive Switching in Alloying HfOX with AlOX-Based RRAM. Metals 2020, 10, 1410. [Google Scholar] [CrossRef]
- Tanaka, G.; Yamane, T.; Heroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123. [Google Scholar] [CrossRef]
- Du, C.; Cai, F.; Zidan, M.A.; Ma, W.; Lee, S.H.; Lu, W.D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204. [Google Scholar] [CrossRef]
- Mao, J.Y.; Zheng, Z.; Xiong, Z.Y.; Huang, P.; Ding, G.L.; Wang, R.; Wang, Z.P.; Yang, J.Q.; Zhou, Y.; Zhai, T.; et al. Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 2020, 71, 104616. [Google Scholar] [CrossRef]
- Milano, G.; Pedretti, G.; Montano, K.; Ricci, S.; Hashemkhani, S.; Boarino, L.; Lemini, D.; Ricciardi, C. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2021, 21, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Anna, N.M.; Nikita, V.P.; Vsevolod, A.K.; Silvia, B.; Anton, A.M.; Andrey, D.T.; Aleksandr, A.N.; Sergey, A.Z.; Yulia, N.M.; Matteo, P.; et al. Combination of Organic-Based Reservoir Computing and Spiking Neuromorphic Systems for a Robust and Efficient Pattern Classification. Adv. Intell. Syst. 2023, 5, 2200407. [Google Scholar]
- Kim, D.; Shin, J.; Kim, S. Implementation of reservoir computing using volatile WOX-based memristor. Appl. Surf. Sci. 2022, 599, 153876. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Burr, G.W.; Hwang, C.S.; Wang, K.L.; Xia, Q.; Yang, J.J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Fan, Z.; Dong, S.; Chen, Y.; Qin, M.; Zeng, M.; Lu, X.; Zhou, G.; Gao, X.; et al. All-ferroelectric implementation of reservoir computing. Nat. Commun. 2023, 14, 3585. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, W. Nanoscale resistive switching devices: Mechanisms and modeling. Nanoscale 2013, 5, 10076–10092. [Google Scholar] [CrossRef]
- Munjal, S.; Khare, N. Electroforming free controlled bipolar resistive switching in Al/CoFe2O4/FTO device with self-compliance effect. Appl. Phys. Lett. 2018, 112, 073502. [Google Scholar] [CrossRef]
- Pandey, V.; Nehla, P.; Munjal, S. Controlled Self Compliance Filamentary Memory Behavior in Al/NiFe2O4/FTO Resistive Switching Device. Proc. Nat. Acad. Sci. India A 2023, 93, 1–7. [Google Scholar] [CrossRef]
- Pandey, V.; Adiba, A.; Ahmad, T.; Nehla, P.; Munjal, S. Forming-free bipolar resistive switching characteristics in Al/Mn3O4/FTO RRAM device. J. Phys. Chem. Solids 2022, 165, 110689. [Google Scholar] [CrossRef]
- Huang, Y.J.; Chao, S.C.; Lien, D.H.; Wen, C.Y.; He, J.H.; Lee, S.C. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions. Sci. Rep. 2016, 6, 23945. [Google Scholar] [CrossRef]
- Ju, D.; Kim, J.H.; Kim, S. Highly uniform resistive switching characteristics of Ti/TaOX/ITO memristor devices for neuromorphic system. J. Alloys Compd. 2023, 961, 170920. [Google Scholar] [CrossRef]
- Ma, Y.; Li, D.; Herzing, A.A.; Cullen, D.A.; Sneed, B.T.; More, K.L.; Nuhfer, N.T.; Bain, J.A.; Skowronski, M. Formation of the Conducting Filament in TaOX-Resistive Switching Devices by Thermal-Gradient-Induced Cation Accumulation. ACS Appl. Mater. Interfaces 2018, 10, 23187–23197. [Google Scholar] [CrossRef] [PubMed]
- Kurnia, F.; Liu, C.; Jung, C.U.; Lee, B.W. The evolution of conducting filaments in forming-free resistive switching Pt/TaOX/Pt structures. Appl. Phys. Lett. 2013, 102, 152902. [Google Scholar] [CrossRef]
- Zhu, X.; Su, W.; Liu, Y.; Hu, B.; Pan, L.; Lu, W.; Zhang, J.; Li, R.W. Observation of conductance quantization in oxide-based resistive switching memory. Adv. Mater. 2012, 24, 3941–3946. [Google Scholar] [CrossRef]
- Kim, H.J.; Baek, Y.J.; Choi, Y.J.; Kang, C.J.; Lee, H.H.; Kim, M.H.; Kim, K.B.; Yoon, T.S. Digital versus analog resistive switching depending on the thickness of nickel oxide nanoparticle assembly. RCS Adv. 2013, 3, 20978–20983. [Google Scholar] [CrossRef]
- Nicholls, J.G.; Martin, A.R.; Wallace, B.G.; Fuchs, P.A. From Neuron to Brain; Oxford University Press: Oxford, UK, 2001; p. 271. [Google Scholar]
- Lin, Y.; Zeng, T.; Xu, H.; Wang, Z.; Zhao, X.; Liu, W.; Ma, J.; Liu, Y. Transferable and Flexible Artificial Memristive Synapse Based on WOX Schottky Junction on Arbitrary Substrates. Adv. Electron. Mater. 2018, 4, 1800373. [Google Scholar] [CrossRef]
- Zhang, S.R.; Zhou, L.; Mao, J.Y.; Ren, Y.; Yang, J.Q.; Yang, G.H.; Zhu, X.; Han, S.T.; Roy, V.A.L.; Zhou, Y. Artificial synapse emulated by charge trapping-based resistive switching device. Adv. Mater. Technol. 2019, 4, 1800342. [Google Scholar] [CrossRef]
- Hauser, H.; Ijspeert, A.J.; Füchslin, R.M.; Pfeifer, R.; Maass, W. The role of feedback in morphological computation with compliant bodies. Biol. Cybern. 2012, 106, 595–613. [Google Scholar] [CrossRef]
- Wyffels, F.; Schrauwen, B. A comparative study of reservoir computing strategies for monthly time series prediction. Neurocomputing 2010, 73, 1958–1964. [Google Scholar] [CrossRef]
- Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S. Optoelectronic reservoir computing. Sci. Rep. 2012, 2, 287. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, D.; Ahn, J.; Ho, J.; Kim, S.; Chung, D. Implementation of Physical Reservoir Computing in a TaOx/FTO-Based Memristor Device. Mathematics 2023, 11, 4325. https://doi.org/10.3390/math11204325
Ju D, Ahn J, Ho J, Kim S, Chung D. Implementation of Physical Reservoir Computing in a TaOx/FTO-Based Memristor Device. Mathematics. 2023; 11(20):4325. https://doi.org/10.3390/math11204325
Chicago/Turabian StyleJu, Dongyeol, Junyoung Ahn, Jungwoo Ho, Sungjun Kim, and Daewon Chung. 2023. "Implementation of Physical Reservoir Computing in a TaOx/FTO-Based Memristor Device" Mathematics 11, no. 20: 4325. https://doi.org/10.3390/math11204325
APA StyleJu, D., Ahn, J., Ho, J., Kim, S., & Chung, D. (2023). Implementation of Physical Reservoir Computing in a TaOx/FTO-Based Memristor Device. Mathematics, 11(20), 4325. https://doi.org/10.3390/math11204325