A Parallel Compact Gannet Optimization Algorithm for Solving Engineering Optimization Problems
Abstract
:1. Introduction
- For the shortcomings of memory occupation and convergence efficiency of the GOA, this paper proposes a GOA with a combined strategy of parallel and compact, and the improved algorithm is called the PCGOA.
- Two new parallel communication strategies are proposed in parallel strategies to improve the performance of the algorithm.
- In this paper the proposed parallel compact GOA uses the test function CEC2013 to compare with some traditional algorithms, such as PSO algorithm, SCA algorithm, PMVO algorithm, etc. It is proved that the PCGOA has better performance.
- The improved GOA algorithm was applied to five engineering optimization problems, and the results indicated that not only the convergence speed was improved, but also a large amount of computer memory was saved.
2. Related Works
2.1. Gannet Optimization Algorithm
Algorithm 1: GOA |
2.2. Compact Scheme
3. Parallel and Compact GOA
3.1. Two Proposed Parallel Communication Strategies and cGOA
3.2. Hibrid Parallel and Compact GOA
- 1.
- Dividing the entire population into 5 groups and initializing for each group, where = 10, = 0, .
- 2.
- Generating the solution via , generating the corresponding solution X via of each group.
- 3.
- Compare X and of each group, and select the and of each group by [, ] = compete(X, ).
- 4.
- X of each group performs the position update formula of the GOA to generate .
- 5.
- Updating the and updating the optimal solution for each group and the global optimal solution according to Equation (16).
- 6.
- If the insufficiency condition is met, the algorithm is finalized, otherwise repeat Step 2 to Step 5.
Algorithm 2: PCGOA |
4. Experiments
4.1. Selection of Comparison Algorithm and Its Parameter Setting
4.2. Convergence Analysis
4.3. Algorithm Memory Analysis
5. Engineering Design Problems
5.1. Constraint Handling
5.2. Tension Spring Design
5.3. Pressure Vessel Design
5.4. Welded Beam Design
5.5. Speed Reducer Design
5.6. Car Side Impact Design
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boussaïd, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117. [Google Scholar] [CrossRef]
- Pan, J.S.; Sun, X.X.; Chu, S.C.; Abraham, A.; Yan, B. Digital watermarking with improved SMS applied for QR code. Eng. Appl. Artif. Intell. 2021, 97, 104049. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Bai, Q. Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 2010, 3, 180. [Google Scholar] [CrossRef] [Green Version]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1470–1477. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Parpinelli, R.S.; Lopes, H.S.; Freitas, A.A. Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 2002, 6, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional Computing and Natural Computation, Milan, Italy, 1–5 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249. [Google Scholar]
- Yang, X.S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim. 2014, 46, 1222–1237. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Basset, M.; Shawky, L.A. Flower pollination algorithm: A comprehensive review. Artif. Intell. Rev. 2019, 52, 2533–2557. [Google Scholar] [CrossRef]
- Song, P.C.; Chu, S.C.; Pan, J.S.; Yang, H. Simplified Phasmatodea population evolution algorithm for optimization. Complex Intell. Syst. 2022, 8, 2749–2767. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Prayogo, D. Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput. Struct. 2014, 139, 98–112. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Prayogo, D. Symbiotic organisms search algorithm: Theory, recent advances and applications. Expert Syst. Appl. 2019, 119, 184–209. [Google Scholar] [CrossRef]
- Pan, J.S.; Zhang, L.G.; Wang, R.B.; Snášel, V.; Chu, S.C. Gannet Optimization Algorithm: A new metaheuristic algorithm for solving engineering optimization problems. Math. Comput. Simul. 2022, 202, 343–373. [Google Scholar] [CrossRef]
- Pan, J.S.; Liu, N.; Chu, S.C.; Lai, T. An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems. Inf. Sci. 2021, 561, 304–325. [Google Scholar] [CrossRef]
- Chu, S.C.; Du, Z.G.; Peng, Y.J.; Pan, J.S. Fuzzy hierarchical surrogate assists probabilistic particle swarm optimization for expensive high dimensional problem. Knowl. Based Syst. 2021, 220, 106939. [Google Scholar] [CrossRef]
- Xue, Y.; Jiang, J.; Zhao, B.; Ma, T. A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput. 2018, 22, 2935–2952. [Google Scholar] [CrossRef]
- Mareli, M.; Twala, B. An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inform. 2018, 14, 107–115. [Google Scholar] [CrossRef]
- Xue, Y.; Zhu, H.; Liang, J.; Słowik, A. Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification. Knowl. Based Syst. 2021, 227, 107218. [Google Scholar] [CrossRef]
- Harik, G.R.; Lobo, F.G.; Goldberg, D.E. The compact genetic algorithm. IEEE Trans. Evol. Comput. 1999, 3, 287–297. [Google Scholar] [CrossRef]
- Mininno, E.; Neri, F.; Cupertino, F.; Naso, D. Compact differential evolution. IEEE Trans. Evol. Comput. 2010, 15, 32–54. [Google Scholar] [CrossRef]
- Yu, L.; Zheng, Q.; Zhewen, S. Compact Particle Swarm Optimization Algorithm. J. Xian Jiaotong Univ. 2006, 40, 883. [Google Scholar]
- Larra naga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 2. [Google Scholar]
- Nguyen, T.T.; Pan, J.S.; Dao, T.K. A compact bat algorithm for unequal clustering in wireless sensor networks. Appl. Sci. 2019, 9, 1973. [Google Scholar] [CrossRef] [Green Version]
- Bronshtein, I.N.; Semendyayev, K.A. Handbook of Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Cody, W.J. Rational Chebyshev approximations for the error function. Math. Comput. 1969, 23, 631–637. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA; American Institute of Physics: College Park, MD, USA, 1964; Volume 55.
- Nguyen, T.T.; Pan, J.S.; Dao, T.K. An improved flower pollination algorithm for optimizing layouts of nodes in wireless sensor network. IEEE Access 2019, 7, 75985–75998. [Google Scholar] [CrossRef]
- Bäck, T. Parallel optimization of evolutionary algorithms. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Krakov, Poland, 11–15 September 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 418–427. [Google Scholar]
- Censor, Y.; Zenios, S.A. Parallel Optimization: Theory, Algorithms, and Applications; Oxford University Press on Demand: Oxford, UK, 1997. [Google Scholar]
- Lalwani, S.; Sharma, H.; Satapathy, S.C.; Deep, K.; Bansal, J.C. A survey on parallel particle swarm optimization algorithms. Arab. J. Sci. Eng. 2019, 44, 2899–2923. [Google Scholar] [CrossRef]
- Chu, S.C.; Xu, X.W.; Yang, S.Y.; Pan, J.S. Parallel fish migration optimization with compact technology based on memory principle for wireless sensor networks. Knowl. Based Syst. 2022, 241, 108124. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.S.; Chu, S.C. A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access 2020, 8, 32018–32030. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.-p. An effective differential evolution with level comparison for constrained engineering design. Struct. Multidiscip. Optim. 2010, 41, 947–963. [Google Scholar]
- Shadravan, S.; Naji, H.R.; Bardsiri, V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, S.; Jia, W. A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng. Appl. Artif. Intell. 2019, 85, 254–268. [Google Scholar] [CrossRef]
- Lykouris, T.; Syrgkanis, V.; Tardos, É. Learning and efficiency in games with dynamic population. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, Arlington, VI, USA, 10–12 January 2016; pp. 120–129. [Google Scholar]
- Marklund, P.O.; Nilsson, L. Optimization of a car body component subjected to side impact. Struct. Multidiscip. Optim. 2001, 21, 383–392. [Google Scholar] [CrossRef]
Func_Num | PCGOA | GOA | AO | BOA | PSO | SCA | PMVO | CS | |
---|---|---|---|---|---|---|---|---|---|
1 | Mean | −1.40 × 10 | −1.40 × 10 | 4.80 × 10 | 5.29 × 10 | 1.54 × 10 | 1.85 × 10 | −1.40 × 10 | −1.40 × 10 |
Std | 7.28 × 10 | 7.96 × 10 | 1.44 × 10 | 5.59 × 10 | 3.19 × 10 | 2.72 × 10 | 5.08 × 10 | 3.79 × 10 | |
2 | Mean | 1.88 × 10 | 2.62 × 10 | 1.63 × 10 | 5.19 × 10 | 3.51 × 10 | 2.51 × 10 | 1.83 × 10 | 1.37 × 10 |
Std | 4.55 × 10 | 1.07 × 10 | 6.79 × 10 | 4.64 × 10 | 1.24 × 10 | 4.51 × 10 | 3.57 × 10 | 4.14 × 10 | |
3 | Mean | 5.53 × 10 | 3.88 × 10 | 3.00 × 10 | 6.73 × 10 | 1.77 × 10 | 1.88 × 10 | 2.58 × 10 | −1.00 × 10 |
Std | 2.05 × 10 | 7.23 × 10 | 1.19 × 10 | 2.47 × 10 | 4.69 × 10 | 4.65 × 10 | 1.05 × 10 | 7.56 × 10 | |
4 | Mean | 8.44 × 10 | 4.76 × 10 | 5.89 × 10 | 5.54 × 10 | 6.72 × 10 | 6.28 × 10 | 4.23 × 10 | 8.58 × 10 |
Std | 2.00 × 10 | 7.26 × 10 | 3.66 × 10 | 2.45 × 10 | 1.10 × 10 | 1.41 × 10 | 1.59 × 10 | 9.94 × 10 | |
5 | Mean | −9.99 × 10 | −9.88 × 10 | 1.03 × 10 | 3.32 × 10 | 2.41 × 10 | 3.22 × 10 | −9.00 × 10 | −1.00 × 10 |
Std | 2.03 × 10 | 1.37 × 10 | 6.18 × 10 | 7.68 × 10 | 1.67 × 10 | 6.30 × 10 | 4.05 × 10 | 3.52 × 10 | |
6 | Mean | −8.77 × 10 | −7.42 × 10 | 8.60 × 10 | 1.29 × 10 | 1.32 × 10 | 1.55 × 10 | −8.22 × 10 | −8.63 × 10 |
Std | 2.81 × 10 | 3.51 × 10 | 2.47 × 10 | 2.60 × 10 | 2.10 × 10 | 4.18 × 10 | 2.13 × 10 | 1.75 × 10 | |
7 | Mean | −6.90 × 10 | −6.86 × 10 | −4.99 × 10 | 9.36 × 10 | −6.57 × 10 | −5.95 × 10 | −6.81 × 10 | −6.60 × 10 |
Std | 4.05 × 10 | 4.28 × 10 | 4.67 × 10 | 5.72 × 10 | 7.07 × 10 | 1.14 × 10 | 3.59 × 10 | 1.84 × 10 | |
8 | Mean | −6.79 × 10 | −6.79 × 10 | −6.79 × 10 | −6.79 × 10 | −6.79 × 10 | −6.79 × 10 | −6.79 × 10 | −6.79 × 10 |
Std | 4.68 × 10 | 4.83 × 10 | 6.52 × 10 | 4.29 × 10 | 6.58 × 10 | 5.31 × 10 | 6.70 × 10 | 4.58 × 10 | |
9 | Mean | −5.69 × 10 | −5.65 × 10 | −5.59 × 10 | −5.58 × 10 | −5.63 × 10 | −5.57 × 10 | −5.73 × 10 | −5.68 × 10 |
Std | 2.83 × 10 | 4.72 × 10 | 2.80 × 10 | 1.50 × 10 | 4.46 × 10 | 8.34 × 10 | 2.77 × 10 | 1.19 × 10 | |
10 | Mean | −4.96 × 10 | −2.95 × 10 | 4.59 × 10 | 7.77 × 10 | 2.57 × 10 | 2.31 × 10 | −4.93 × 10 | −4.98 × 10 |
Std | 9.91 × 10 | 3.31 × 10 | 3.85 × 10 | 1.10 × 10 | 4.61 × 10 | 4.76 × 10 | 2.39 × 10 | 2.13 × 10 | |
11 | Mean | −1.80 × 10 | −2.25 × 10 | 2.46 × 10 | 4.95 × 10 | −1.20 × 10 | 9.51 × 10 | −3.02 × 10 | −2.93 × 10 |
Std | 7.14 × 10 | 3.68 × 10 | 4.89 × 10 | 6.31 × 10 | 3.91 × 10 | 5.17 × 10 | 2.77 × 10 | 1.88 × 10 | |
12 | Mean | −2.99 × 10 | −1.65 × 10 | 4.74 × 10 | 5.27 × 10 | 1.31 × 10 | 2.10 × 10 | −2.20 × 10 | −1.16 × 10 |
Std | 1.16 × 10 | 4.40 × 10 | 7.30 × 10 | 1.01 × 10 | 1.01 × 10 | 4.31 × 10 | 4.24 × 10 | 2.67 × 10 | |
13 | Mean | 4.09 × 10 | 1.48 × 10 | 3.64 × 10 | 6.17 × 10 | 3.43 × 10 | 2.44 × 10 | 2.55 × 10 | 1.55 × 10 |
Std | 5.15 × 10 | 6.85 × 10 | 7.71 × 10 | 6.01 × 10 | 7.76 × 10 | 3.17 × 10 | 6.13 × 10 | 3.24 × 10 | |
14 | Mean | 4.07 × 10 | 3.94 × 10 | 5.44 × 10 | 8.29 × 10 | 4.45 × 10 | 7.97 × 10 | 2.78 × 10 | 3.41 × 10 |
Std | 5.83 × 10 | 5.53 × 10 | 7.96 × 10 | 3.12 × 10 | 6.54 × 10 | 5.16 × 10 | 5.01 × 10 | 2.32 × 10 | |
15 | Mean | 4.52 × 10 | 5.77 × 10 | 5.49 × 10 | 8.05 × 10 | 4.65 × 10 | 8.25 × 10 | 5.52 × 10 | 5.10 × 10 |
Std | 9.84 × 10 | 1.03 × 10 | 7.32 × 10 | 3.44 × 10 | 5.09 × 10 | 4.09 × 10 | 8.36 × 10 | 2.32 × 10 | |
16 | Mean | 2.01 × 10 | 2.03 × 10 | 2.03 × 10 | 2.04 × 10 | 2.03 × 10 | 2.04 × 10 | 2.02 × 10 | 2.03 × 10 |
Std | 3.86 × 10 | 4.08 × 10 | 4.67 × 10 | 2.96 × 10 | 5.61 × 10 | 4.66 × 10 | 4.67 × 10 | 3.69 × 10 | |
17 | Mean | 5.01 × 10 | 4.76 × 10 | 1.00 × 10 | 1.22 × 10 | 6.79 × 10 | 9.61 × 10 | 5.14 × 10 | 4.92 × 10 |
Std | 7.87 × 10 | 2.67 × 10 | 8.93 × 10 | 4.38 × 10 | 6.80 × 10 | 6.87 × 10 | 3.84 × 10 | 2.35 × 10 | |
18 | Mean | 7.26 × 10 | 6.69 × 10 | 9.85 × 10 | 1.31 × 10 | 8.75 × 10 | 1.10 × 10 | 6.50 × 10 | 6.36 × 10 |
Std | 4.86 × 10 | 3.98 × 10 | 8.54 × 10 | 5.94 × 10 | 1.10 × 10 | 7.91 × 10 | 4.16 × 10 | 1.79 × 10 | |
19 | Mean | 5.14 × 10 | 5.56 × 10 | 8.45 × 10 | 4.61 × 10 | 5.53 × 10 | 2.23 × 10 | 5.15 × 10 | 5.13 × 10 |
Std | 5.16 × 10 | 7.21 × 10 | 4.45 × 10 | 1.17 × 10 | 1.10 × 10 | 1.61 × 10 | 3.67 × 10 | 2.67 × 10 | |
20 | Mean | 6.15 × 10 | 6.13 × 10 | 6.15 × 10 | 6.15 × 10 | 6.15 × 10 | 6.15 × 10 | 6.15 × 10 | 6.14 × 10 |
Std | 6.75 × 10 | 1.15 × 10 | 1.33 × 10 | 2.23 × 10 | 1.33 × 10 | 3.04 × 10 | 6.43 × 10 | 5.62 × 10 | |
21 | Mean | 1.01 × 10 | 1.02 × 10 | 2.49 × 10 | 3.21 × 10 | 2.80 × 10 | 2.88 × 10 | 1.02 × 10 | 9.62 × 10 |
Std | 6.96 × 10 | 7.70 × 10 | 4.68 × 10 | 5.29 × 10 | 1.64 × 10 | 1.11 × 10 | 8.94 × 10 | 3.82 × 10 | |
22 | Mean | 6.06 × 10 | 4.53 × 10 | 7.24 × 10 | 9.61 × 10 | 4.67 × 10 | 8.48 × 10 | 6.51 × 10 | 5.19 × 10 |
Std | 1.07 × 10 | 7.75 × 10 | 1.02 × 10 | 3.29 × 10 | 8.62 × 10 | 3.10 × 10 | 1.35 × 10 | 3.75 × 10 | |
23 | Mean | 7.98 × 10 | 7.14 × 10 | 7.47 × 10 | 9.71 × 10 | 6.32 × 10 | 9.11 × 10 | 6.68 × 10 | 6.83 × 10 |
Std | 9.87 × 10 | 6.57 × 10 | 9.50 × 10 | 3.56 × 10 | 1.26 × 10 | 4.26 × 10 | 6.99 × 10 | 3.30 × 10 | |
24 | Mean | 1.28 × 10 | 1.29 × 10 | 1.32 × 10 | 1.45 × 10 | 1.34 × 10 | 1.33 × 10 | 1.27 × 10 | 1.30 × 10 |
Std | 1.41 × 10 | 1.12 × 10 | 9.04 × 10 | 2.72 × 10 | 3.83 × 10 | 4.26 × 10 | 8.42 × 10 | 4.92 × 10 | |
25 | Mean | 1.40 × 10 | 1.39 × 10 | 1.43 × 10 | 1.44 × 10 | 1.49 × 10 | 1.43 × 10 | 1.37 × 10 | 1.41 × 10 |
Std | 1.61 × 10 | 6.66 × 10 | 9.56 × 10 | 2.79 × 10 | 1.63 × 10 | 3.28 × 10 | 1.49 × 10 | 4.09 × 10 | |
26 | Mean | 1.40 × 10 | 1.40 × 10 | 1.58 × 10 | 1.45 × 10 | 1.58 × 10 | 1.62 × 10 | 1.40 × 10 | 1.40 × 10 |
Std | 2.89 × 10 | 5.73 × 10 | 7.69 × 10 | 7.78 × 10 | 9.23 × 10 | 7.52 × 10 | 7.45 × 10 | 6.75 × 10 | |
27 | Mean | 2.41 × 10 | 2.52 × 10 | 2.70 × 10 | 3.06 × 10 | 2.46 × 10 | 2.77 × 10 | 2.12 × 10 | 2.43 × 10 |
Std | 9.90 × 10 | 8.95 × 10 | 6.41 × 10 | 6.26 × 10 | 1.27 × 10 | 4.34 × 10 | 1.24 × 10 | 1.83 × 10 | |
28 | Mean | 1.72 × 10 | 1.79 × 10 | 5.17 × 10 | 6.12 × 10 | 4.68 × 10 | 4.79 × 10 | 1.74 × 10 | 1.77 × 10 |
Std | 1.42 × 10 | 7.31 × 10 | 5.55 × 10 | 2.75 × 10 | 3.68 × 10 | 2.30 × 10 | 5.45 × 10 | 3.63 × 10 | |
win/=/los | 17/2/9 | 26/0/2 | 27/0/1 | 26/0/2 | 28/0/0 | 17/0/11 | 25/2/1 |
Function | GOA | AO | BOA | PSO | SCA | PMVO | CS |
---|---|---|---|---|---|---|---|
F1 | 1.40 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 |
F2 | 3.30 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 0.1212 | 1.83 × 10 |
F3 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 0.6776 | 6.39 × 10 |
F4 | 2.46 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 |
F5 | 1.31 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 |
F6 | 2.20 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 0.6776 | 1.71 × 10 |
F7 | 0.0757 | 4.40 × 10 | 1.83 × 10 | 1.40 × 10 | 1.83 × 10 | 1.73 × 10 | 0.5205 |
F8 | 2.20 × 10 | 1.01 × 10 | 1.01 × 10 | 0.1212 | 2.83 × 10 | 2.46 × 10 | 3.30 × 10 |
F9 | 0.6776 | 1.01 × 10 | 1.83 × 10 | 4.52 × 10 | 1.83 × 10 | 2.46 × 10 | 0.1212 |
F10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 4.40 × 10 | 1.83 × 10 |
F11 | 1.83 × 10 | 1.73 × 10 | 1.83 × 10 | 3.12 × 10 | 2.46 × 10 | 1.83 × 10 | 7.69 × 10 |
F12 | 1.31 × 10 | 2.20 × 10 | 1.83 × 10 | 2.20 × 10 | 2.20 × 10 | 2.20 × 10 | 0.4274 |
F13 | 3.30 × 10 | 2.46 × 10 | 1.83 × 10 | 4.40 × 10 | 5.83 × 10 | 3.61 × 10 | 0.1041 |
F14 | 2.20 × 10 | 3.61 × 10 | 1.83 × 10 | 0.3447 | 1.83 × 10 | 0.4727 | 0.7337 |
F15 | 2.83 × 10 | 0.1405 | 1.83 × 10 | 0.3847 | 1.83 × 10 | 5.80 × 10 | 2.83 × 10 |
F16 | 2.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 0.1405 | 1.83 × 10 |
F17 | 1.83 × 10 | 4.40 × 10 | 1.83 × 10 | 0.1620 | 1.83 × 10 | 1.40 × 10 | 0.0640 |
F18 | 1.31 × 10 | 1.83 × 10 | 1.83 × 10 | 3.30 × 10 | 1.83 × 10 | 0.2413 | 0.1212 |
F19 | 0.5205 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 4.40 × 10 | 0.0140 |
F20 | 0.6764 | 1.49 × 10 | 1.49 × 10 | 1.73 × 10 | 7.28 × 10 | 7.71 × 10 | 2.83 × 10 |
F21 | 1.71 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 0.1620 | 1.83 × 10 |
F22 | 1.83 × 10 | 0.3075 | 1.83 × 10 | 7.57 × 10 | 2.46 × 10 | 0.2730 | 0.4727 |
F23 | 0.6776 | 1.71 × 10 | 1.83 × 10 | 0.6776 | 1.83 × 10 | 3.12 × 10 | 0.1212 |
F24 | 7.28 × 10 | 3.12 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 0.9097 |
F25 | 7.69 × 10 | 7.69 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 3.30 × 10 | 1.40 × 10 |
F26 | 4.40 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 1.83 × 10 | 7.69 × 10 | 1.83 × 10 |
F27 | 1.40 × 10 | 1.31 × 10 | 1.83 × 10 | 4.40 × 10 | 1.83 × 10 | 3.30 × 10 | 2.11 × 10 |
F28 | 0.0890 | 9.11 × 10 | 1.83 × 10 | 9.11 × 10 | 0.1620 | 0.2365 | 0.6758 |
Algorithm | Name | Size | Bytes Class |
---|---|---|---|
PCGOA | |||
GOA | |||
PMVO | |||
CS |
PCGOA | 0.050 | 0.282 | 2 | 0.00282 |
GOA | 0.050 | 0.282 | 2 | 0.00282 |
PSO | 0.081 | 0.784 | 2.0809 | 0.02120 |
BOA | 0.050 | 0.282 | 2 | 0.00282 |
AO | 0.050 | 0.250 | 2.8712 | 0.00305 |
SCA | 0.050 | 0.282 | 2 | 0.00282 |
PMVO | 0.050 | 0.282 | 2 | 0.00282 |
PCGOA | 0.193 | 0.096 | 10.000 | 64.13 | 108.8280 |
GOA | 0.192 | 0.095 | 10.000 | 64.12 | 108.8980 |
PSO | 3.399 | 45.546 | 19.958 | 76.36 | 42,851.7246 |
BOA | 0.192 | 0.162 | 10.000 | 65.967 | 126.6560 |
AO | 0.194 | 0.095 | 10.090 | 64.537 | 113.9758 |
SCA | 0.195 | 0.107 | 10.000 | 65.569 | 114.0628 |
PMVO | 0.192 | 0.100 | 10.000 | 185.174 | 269.7348 |
PCGOA | 0.2056 | 3.4705 | 9.0455 | 0.2057 | 1.7258 |
GOA | 0.2050 | 3.4305 | 9.1833 | 0.2050 | 1.7380 |
PSO | 0.4193 | 4.8651 | 6.6427 | 0.4279 | 3.5247 |
BOA | 0.1894 | 6.7279 | 7.7389 | 0.3523 | 2.9854 |
AO | 0.1656 | 5.5263 | 9.1504 | 0.2052 | 1.9317 |
SCA | 0.2027 | 3.8820 | 8.9529 | 0.2160 | 1.8395 |
PMVO | 0.1921 | 3.7894 | 9.0467 | 0.2057 | 1.7470 |
PCGOA | 3.6 | 0.8 | 28 | 7.3 | 7.8 | 3.9 | 5.2847 | 201,613.2 |
GOA | 3.6 | 0.8 | 28 | 7.3 | 7.8 | 3.9 | 5.2847 | 201,613.2 |
PSO | 3.5524 | 0.7088 | 27.7911 | 7.4979 | 7.8804 | 3.7723 | 5.1926 | 585,169.9 |
BOA | 3.6 | 0.8 | 28 | 7.3 | 8.0241 | 3.9 | 5.5000 | 201,760.3 |
AO | 3.6 | 0.8 | 28 | 7.3 | 8.2965 | 3.9 | 5.3078 | 201,638.6 |
SCA | 3.6 | 0.8 | 28 | 7.3 | 7.8 | 3.9 | 5.2936 | 201,618.5 |
PMVO | 3.6 | 0.8 | 28 | 7.3 | 7.9512 | 3.9 | 5.2855 | 201,616.7 |
PCGOA | GOA | AO | BOA | PSO | SCA | PMVO | |
---|---|---|---|---|---|---|---|
0.500 | 0.500 | 0.514 | 0.500 | 0.638 | 0.500 | 0.500 | |
1.001 | 1.013 | 0.997 | 0.926 | 1.184 | 0.928 | 1.056 | |
0.500 | 0.500 | 0.526 | 0.500 | 0.618 | 0.500 | 0.500 | |
0.500 | 0.501 | 0.532 | 0.500 | 0.507 | 0.645 | 0.500 | |
0.500 | 0.500 | 0.659 | 0.681 | 0.625 | 0.500 | 0.507 | |
1.184 | 1.436 | 0.872 | 0.587 | 0.987 | 0.509 | 0.851 | |
0.500 | 0.500 | 0.500 | 0.560 | 0.969 | 0.500 | 0.504 | |
0.192 | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 | |
0.192 | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 | 0.192 | |
−8.419 | −5.597 | −12.897 | −26.948 | −16.715 | −30.000 | 4.384 | |
−0.614 | −3.464 | −14.472 | −12.508 | −11.029 | −4.106 | −1.477 | |
19.074 | 19.123 | 19.755 | 19.218 | 23.830 | 19.266 | 19.490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.-S.; Sun, B.; Chu, S.-C.; Zhu, M.; Shieh, C.-S. A Parallel Compact Gannet Optimization Algorithm for Solving Engineering Optimization Problems. Mathematics 2023, 11, 439. https://doi.org/10.3390/math11020439
Pan J-S, Sun B, Chu S-C, Zhu M, Shieh C-S. A Parallel Compact Gannet Optimization Algorithm for Solving Engineering Optimization Problems. Mathematics. 2023; 11(2):439. https://doi.org/10.3390/math11020439
Chicago/Turabian StylePan, Jeng-Shyang, Bing Sun, Shu-Chuan Chu, Minghui Zhu, and Chin-Shiuh Shieh. 2023. "A Parallel Compact Gannet Optimization Algorithm for Solving Engineering Optimization Problems" Mathematics 11, no. 2: 439. https://doi.org/10.3390/math11020439
APA StylePan, J.-S., Sun, B., Chu, S.-C., Zhu, M., & Shieh, C.-S. (2023). A Parallel Compact Gannet Optimization Algorithm for Solving Engineering Optimization Problems. Mathematics, 11(2), 439. https://doi.org/10.3390/math11020439