Backpropagated Neural Network Modeling for the Non-Fourier Thermal Analysis of a Moving Plate
Abstract
:1. Introduction
2. Mathematical Formulation
3. Finite Difference Scheme
4. Artificial Neural Network (ANN)
5. Result and Discussion
6. Final Remarks
- The transient thermal dispersion diminishes with an upsurge in the convection-conduction parameter’s magnitude. A hike in the scale of the radiation-conduction variable encourages a decrement in the thermal distribution.
- As the Peclet number heightens, the thermal dispersal improves in the moving plate.
- As the heat generation variable scale upsurges, the moving plate’s thermal distribution increases gradually.
- The transient temperature dispersion is improved when the thermal conductivity parameter’s magnitude improves.
- The variance in the thermal response of the non-Fourier model is influenced by the Vernotte number. A higher scale of this number indicates that the thermal wave is nearer to the plate’s initial side.
- The main reason for using the ANNS-LMBS to solve the HHC equation is that it has advantages such as continuous and differentiable approximate solutions, excellent interpolation features, and less memory.
- The unsteady thermal profile values of the moving plate were predicted using the data set using an artificial neural network model. The ANNS-LMBS model could accurately predict thermal values according to the analysis of the obtained MSE, coefficient of determination (R), and error rate values. The current interpretation revealed that the ANNS-LMBS methodology is a precise, useful, and practical technique for simulating the temperature distribution in the plate. The results indicated that the ANNS-LMBS is the best tool for predicting temperature values.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Length | Time | ||
Base temperature | Coordinate in x-direction | ||
Density | Temperature | ||
Specific heat capacity | Dimensionless thermal conductivity parameter | ||
Thermal conductivity | Surface emissivity | ||
Heat transfer coefficient | Dimensionless radiative sink parameter | ||
Thickness | Thermal conductivity at ambient temperature | ||
Dimensionless radiation–conduction parameter | Dimensionless time | ||
Speed of the plate | Dimensionless convective -sink temperature | ||
Ambient temperature | Width | ||
Internal heat generation | Dimensionless temperature | ||
Heat transfer coefficient | Peclet number | ||
Stefan-Boltzmann constant | Exponent constant | ||
Dimensionless convection–conduction parameter | Dimensionless heat generation parameter | ||
Dimensionless axial coordinate |
References
- Shams, M.; Asghar, S.; Asif Farooq, M. The Effect of Radiation and Porosity on MHD Nanofluid Flow and Heat Transfer across a Stretching Cylinder. Waves Random Complex Media 2022, 1–19. [Google Scholar] [CrossRef]
- Batool, S.; Rasool, G.; Alshammari, N.; Khan, I.; Kaneez, H.; Hamadneh, N. Numerical Analysis of Heat and Mass Transfer in Micropolar Nanofluids Flow through Lid Driven Cavity: Finite Volume Approach. Case Stud. Therm. Eng. 2022, 37, 102233. [Google Scholar] [CrossRef]
- M Metwally, A.S.; Khalid, A.; Khan, A.A.; Iskakova, K.; Gorji, M.R.; Ehab, M. Radiation Consequences on Sutterby Fluid over a Curved Surface. J. Eng. Thermophys. 2022, 31, 315–327. [Google Scholar] [CrossRef]
- Adnan. Heat Transfer Inspection in [(ZnO-MWCNTs)/Water-EG(50:50)]Hnf with Thermal Radiation Ray and Convective Condition over a Riga Surface. Waves Random Complex Media 2022, 1–15. [Google Scholar] [CrossRef]
- Varun Kumar, R.S.; Sowmya, G. A Novel Analysis for Heat Transfer Enhancement in a Trapezoidal Fin Wetted by MoS2 + Fe3O4 + NiZnFe2O4- Methanol Based Ternary Hybrid Nanofluid. Waves Random Complex Media 2022, 1–19. [Google Scholar] [CrossRef]
- Khan, S.U.; Usman; Raza, A.; Kanwal, A.; Javid, K. Mixed Convection Radiated Flow of Jeffery-Type Hybrid Nanofluid Due to Inclined Oscillating Surface with Slip Effects: A Comparative Fractional Model. Waves Random Complex Media 2022, 1–22. [Google Scholar] [CrossRef]
- Algehyne, E.A.; Abdelmohsen, S.A.M.; Gowda, R.J.P.; Kumar, R.N.; Abdelbacki, A.M.M.; Gorji, M.R.; Prasannakumara, B.C. Mathematical Modeling of Magnetic Dipole Effect on Convective Heat Transfer in Maxwell Nanofluid Flow: Single and Multi-Walled Carbon Nanotubes. Waves Random Complex Media 2022, 1–16. [Google Scholar] [CrossRef]
- Varun Kumar, R.; Sowmya, G.; Jagadeesha, K.C.; Prasannakumara, B.C.; Shehzad, S.A. Inspection of Thermal Distribution through a Porous Fin of Triangular Profile with Internal Heat Generation and Electromagnetic Field. Waves Random Complex Media 2022, 1–21. [Google Scholar] [CrossRef]
- Roy, P.K.; Mondal, H.; Raj, B. Analytical and Numerical Solution of the Longitudinal Porous Fin with Multiple Power-Law-Dependent Thermal Properties and Magnetic Effects. Heat Transf. 2022, 51, 2702–2722. [Google Scholar] [CrossRef]
- Kumar, R.S.V.; Kumar, R.N.; Sowmya, G.; Prasannakumara, B.C.; Sarris, I.E. Exploration of Temperature Distribution through a Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade Approximant. Symmetry 2022, 14, 690. [Google Scholar] [CrossRef]
- Gouran, S.; Ghasemi, S.E.; Mohsenian, S. Effect of Internal Heat Source and Non-Independent Thermal Properties on a Convective–Radiative Longitudinal Fin. Alex. Eng. J. 2022, 61, 8545–8554. [Google Scholar] [CrossRef]
- Sowmya, G.; Varun Kumar, R.S.; Alsulami, M.D.; Prasannakumara, B.C. Thermal Stress and Temperature Distribution of an Annular Fin with Variable Temperature-Dependent Thermal Properties and Magnetic Field Using DTM-Pade Approximant. Waves Random Complex Media 2022, 1–29. [Google Scholar] [CrossRef]
- Das, R.; Mishra, S.C.; Kumar, T.B.P.; Uppaluri, R. An Inverse Analysis for Parameter Estimation Applied to a Non-Fourier Conduction–Radiation Problem. Heat Transf. Eng. 2011, 32, 455–466. [Google Scholar] [CrossRef]
- Kundu, B.; Lee, K.-S. A Non-Fourier Analysis for Transmitting Heat in Fins with Internal Heat Generation. Int. J. Heat Mass Transf. 2013, 64, 1153–1162. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Li, X.-F. Thermal Performance of a Convective Functionally Graded Fin Using Fractional Non-Fourier Heat Conduction. J. Thermophys. Heat Transf. 2022, 36, 3–12. [Google Scholar] [CrossRef]
- Varun Kumar, R.S.; Sowmya, G.; Prasannakumara, B.C. Significance of Non-Fourier Heat Conduction in the Thermal Analysis of a Wet Semi-Spherical Fin with Internal Heat Generation. Waves Random Complex Media 2022, 1–17. [Google Scholar] [CrossRef]
- Ghasemi, M.H.; Hoseinzadeh, S.; Memon, S. A Dual-Phase-Lag (DPL) Transient Non-Fourier Heat Transfer Analysis of Functional Graded Cylindrical Material under Axial Heat Flux. Int. Commun. Heat Mass Transf. 2022, 131, 105858. [Google Scholar] [CrossRef]
- Jagadeesha, K.C.; Kumar, R.S.V.; Elattar, S.; Kumar, R.; Prasannakumara, B.C.; Khan, M.I.; Malik, M.Y. A Physical Depiction of a Semi-Spherical Fin Unsteady Heat Transfer and Thermal Analysis of a Fully Wetted Convective-Radiative Semi-Spherical Fin. J. Indian Chem. Soc. 2022, 99, 100457. [Google Scholar] [CrossRef]
- Sowmya, G.; Sarris, I.E.; Vishalakshi, C.S.; Kumar, R.S.V.; Prasannakumara, B.C. Analysis of Transient Thermal Distribution in a Convective–Radiative Moving Rod Using Two-Dimensional Differential Transform Method with Multivariate Pade Approximant. Symmetry 2021, 13, 1793. [Google Scholar] [CrossRef]
- Kausar, M.S.; Hussanan, A.; Waqas, M.; Mamat, M. Boundary Layer Flow of Micropolar Nanofluid towards a Permeable Stretching Sheet in the Presence of Porous Medium with Thermal Radiation and Viscous Dissipation. Chin. J. Phys. 2022, 78, 435–452. [Google Scholar] [CrossRef]
- Biswas, R.; Hossain, M.S.; Islam, R.; Ahmmed, S.F.; Mishra, S.R.; Afikuzzaman, M. Computational Treatment of MHD Maxwell Nanofluid Flow across a Stretching Sheet Considering Higher-Order Chemical Reaction and Thermal Radiation. J. Comput. Math. Data Sci. 2022, 4, 100048. [Google Scholar] [CrossRef]
- Mansoor, M.; Nawaz, Y.; Ul-Hassan, Q.M. Nonsimilar Numerical Analysis for the Mixed Convective Flow of Casson Fluid with Thermal Radiations and Chemical Reactions. Waves Random Complex Media 2022, 1–18. [Google Scholar] [CrossRef]
- Correa, E.D.; Quirino, J.M.; Sobral, R.L.; Corrêa, J.F.; Gama, R.M.S. An Analytical and a Numerical Method for Nonlinear Convection-Radiation Problems in Porous Fins. Adv. Math. Phys. 2022, 2022, e9033324. [Google Scholar] [CrossRef]
- Sowmya, G.; Lashin, M.M.A.; Khan, M.I.; Kumar, R.S.V.; Jagadeesha, K.C.; Prasannakumara, B.C.; Guedri, K.; Bafakeeh, O.T.; Mohamed Tag-ElDin, E.S.; Galal, A.M. Significance of Convection and Internal Heat Generation on the Thermal Distribution of a Porous Dovetail Fin with Radiative Heat Transfer by Spectral Collocation Method. Micromachines 2022, 13, 1336. [Google Scholar] [CrossRef]
- Ferdows, M.; Shamshuddin, M.D.; Salawu, S.O.; Zaimi, K. Numerical Simulation for the Steady Nanofluid Boundary Layer Flow over a Moving Plate with Suction and Heat Generation. SN Appl. Sci. 2021, 3, 264. [Google Scholar] [CrossRef]
- Varun Kumar, R.S.; Saleh, B.; Sowmya, G.; Afzal, A.; Prasannakumara, B.C.; Punith Gowda, R.J. Exploration of Transient Heat Transfer through a Moving Plate with Exponentially Temperature-Dependent Thermal Properties. Waves Random Complex Media 2022, 1–19. [Google Scholar] [CrossRef]
- Mabood, F.; Shamshuddin, M.D.; Mishra, S.R. Characteristics of Thermophoresis and Brownian Motion on Radiative Reactive Micropolar Fluid Flow towards Continuously Moving Flat Plate: HAM Solution. Math. Comput. Simul. 2022, 191, 187–202. [Google Scholar] [CrossRef]
- Arulmozhi, S.; Sukkiramathi, K.; Santra, S.S.; Edwan, R.; Fernandez-Gamiz, U.; Noeiaghdam, S. Heat and Mass Transfer Analysis of Radiative and Chemical Reactive Effects on MHD Nanofluid over an Infinite Moving Vertical Plate. Results Eng. 2022, 14, 100394. [Google Scholar] [CrossRef]
- Abellán García, J.; Fernández Gómez, J.; Torres Castellanos, N. Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks. Eur. J. Environ. Civ. Eng. 2022, 26, 2319–2343. [Google Scholar] [CrossRef]
- Bas, E.; Egrioglu, E.; Kolemen, E. Training Simple Recurrent Deep Artificial Neural Network for Forecasting Using Particle Swarm Optimization. Granul. Comput. 2022, 7, 411–420. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, P.; Rao, S.M.V. Artificial Neural Network Model for Single-Phase Real Gas Ejectors. Appl. Therm. Eng. 2022, 201, 117615. [Google Scholar] [CrossRef]
- Zhu, Y.; Newbrook, D.W.; Dai, P.; de Groot, C.H.K.; Huang, R. Artificial Neural Network Enabled Accurate Geometrical Design and Optimisation of Thermoelectric Generator. Appl. Energy 2022, 305, 117800. [Google Scholar] [CrossRef]
- Churyumov, A.; Kazakova, A.; Churyumova, T. Modelling of the Steel High-Temperature Deformation Behaviour Using Artificial Neural Network. Metals 2022, 12, 447. [Google Scholar] [CrossRef]
- Elahi, E.; Zhang, Z.; Khalid, Z.; Xu, H. Application of an Artificial Neural Network to Optimise Energy Inputs: An Energy- and Cost-Saving Strategy for Commercial Poultry Farms. Energy 2022, 244, 123169. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, I.; Fiza, M.; Hamadneh, N.N.; Fayz-Al-Asad, M.; Islam, S.; Khan, I.; Raja, M.A.Z.; Shoaib, M. MHD Boundary Layer Flow over a Stretching Sheet: A New Stochastic Method. Math. Probl. Eng. 2021, 2021, e9924593. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Shoaib, M.; Hussain, S.; Nisar, K.S.; Islam, S. Computational Intelligence of Levenberg-Marquardt Backpropagation Neural Networks to Study Thermal Radiation and Hall Effects on Boundary Layer Flow Past a Stretching Sheet. Int. Commun. Heat Mass Transf. 2022, 130, 105799. [Google Scholar] [CrossRef]
- Alhadri, M.; Raza, J.; Yashkun, U.; Lund, L.A.; Maatki, C.; Khan, S.U.; Kolsi, L. Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Simulations for Thermal Flow Hybrid Nanofluid Flow with Darcy-Forchheimer Effects. J. Indian Chem. Soc. 2022, 99, 100607. [Google Scholar] [CrossRef]
- Aziz, A.; Lopez, R.J. Convection-Radiation from a Continuously Moving, Variable Thermal Conductivity Sheet or Rod Undergoing Thermal Processing. Int. J. Therm. Sci. 2011, 50, 1523–1531. [Google Scholar] [CrossRef]
- Sun, Y.-S.; Ma, J.; Li, B.-W. Spectral Collocation Method for Convective–Radiative Transfer of a Moving Rod with Variable Thermal Conductivity. Int. J. Therm. Sci. 2015, 90, 187–196. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Li, B. Spectral Collocation Method for Transient Thermal Analysis of Coupled Conductive, Convective and Radiative Heat Transfer in the Moving Plate with Temperature Dependent Properties and Heat Generation. Int. J. Heat Mass Transf. 2017, 114, 469–482. [Google Scholar] [CrossRef]
- Sowmya, G.; Gamaoun, F.; Abdulrahman, A.; Varun Kumar, R.S.; Prasannakumara, B.C. Significance of Thermal Stress in a Convective-Radiative Annular Fin with Magnetic Field and Heat Generation: Application of DTM and MRPSM. Propuls. Power Res. 2022, in press. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Li, B. Simulation of Combined Conductive, Convective and Radiative Heat Transfer in Moving Irregular Porous Fins by Spectral Element Method. Int. J. Therm. Sci. 2017, 118, 475–487. [Google Scholar] [CrossRef]
Scenario | Case | Parameters | ||||
---|---|---|---|---|---|---|
1 | 1 | 1.0 | 1 | 0.5 | 0.4 | 0.6 |
2 | 1.5 | 1 | 0.5 | 0.4 | 0.6 | |
3 | 2.0 | 1 | 0.5 | 0.4 | 0.6 | |
4 | 2.5 | 1 | 0.5 | 0.4 | 0.6 | |
2 | 1 | 2 | 2 | 0.5 | 0.5 | 0.8 |
2 | 2 | 4 | 0.5 | 0.5 | 0.8 | |
3 | 2 | 6 | 0.5 | 0.5 | 0.8 | |
4 | 2 | 8 | 0.5 | 0.5 | 0.8 | |
3 | 1 | 1 | 1 | 0 | 0.5 | 0.8 |
2 | 1 | 1 | 0.5 | 0.5 | 0.8 | |
3 | 1 | 1 | 1.0 | 0.5 | 0.8 | |
4 | 1 | 1 | 2.0 | 0.5 | 0.8 | |
4 | 1 | 1 | 1 | 0.6 | −0.5 | 0.6 |
2 | 1 | 1 | 0.6 | 0 | 0.6 | |
3 | 1 | 1 | 0.6 | 0.1 | 0.6 | |
4 | 1 | 1 | 0.6 | 0.5 | 0.6 | |
5 | 1 | 2 | 1 | 0.5 | 0.5 | 0.2 |
2 | 2 | 1 | 0.5 | 0.5 | 0.4 | |
3 | 2 | 1 | 0.5 | 0.5 | 0.6 | |
4 | 2 | 1 | 0.5 | 0.5 | 0.8 |
FDM | ANNS-LMBS | AE | FDM | ANNS-LMBS | AE | |
---|---|---|---|---|---|---|
0 | 0.812250220 | 0.812221958 | 2.83 × 10−5 | 0.809322761 | 0.809281924 | 4.08 × 10−5 |
0.1 | 0.813692553 | 0.813705306 | 1.28 × 10−5 | 0.810623313 | 0.810632204 | 8.89 × 10−6 |
0.2 | 0.818006496 | 0.817984243 | 2.23 × 10−5 | 0.814534655 | 0.814516438 | 1.82 × 10−5 |
0.3 | 0.825283113 | 0.825274599 | 8.51 × 10−6 | 0.821203718 | 0.821198932 | 4.79 × 10−6 |
0.4 | 0.835759464 | 0.835756035 | 3.43 × 10−6 | 0.830956475 | 0.830948894 | 7.58 × 10−6 |
0.5 | 0.849827584 | 0.849812035 | 1.55 × 10−5 | 0.844315092 | 0.844312197 | 2.90 × 10−6 |
0.6 | 0.868065384 | 0.868057924 | 7.46 × 10−6 | 0.862040227 | 0.862010758 | 2.95 × 10−5 |
0.7 | 0.891297501 | 0.891316034 | 1.85 × 10−5 | 0.885207501 | 0.885198592 | 8.91 × 10−6 |
0.8 | 0.920692257 | 0.920685446 | 6.81 × 10−6 | 0.915326980 | 0.915346100 | 1.91 × 10−5 |
0.9 | 0.957904209 | 0.95792435 | 2.01 × 10−5 | 0.95451972 | 0.954524523 | 4.80 × 10−6 |
1 | 1 | 0.999839122 | 0.000160 | 1 | 0.999751562 | 0.000248 |
FDM | ANNS-LMBS | AE | FDM | ANNS-LMBS | AE | |
---|---|---|---|---|---|---|
0 | 0.808620769 | 0.808589918 | 3.09 × 10−5 | 0.792008172 | 0.791987589 | 2.06 × 10−5 |
0.3 | 0.820460881 | 0.820431403 | 2.95 × 10−5 | 0.792205657 | 0.79220541 | 2.47 × 10−7 |
0.5 | 0.843617899 | 0.843611429 | 6.47 × 10−6 | 0.796021708 | 0.79601664 | 5.07 × 10−6 |
0.7 | 0.884744316 | 0.884736074 | 8.24 × 10−6 | 0.827135282 | 0.827125088 | 1.02 × 10−5 |
0.9 | 0.954441409 | 0.954451688 | 1.03 × 10−5 | 0.930445038 | 0.930455714 | 1.07 × 10−5 |
1 | 1 | 0.999526803 | 0.000473 | 1 | 0.999553738 | 0.000446 |
Scenario | Case | Performance | Mu | Grad | Time (s) | Epochs | MSE | ||
---|---|---|---|---|---|---|---|---|---|
Training | Validation | Testing | |||||||
1 | 1 | 4.05 × 10−10 | 1 × 10−9 | 2.93 × 10−8 | <1 | 38 | 6.21 × 10−10 | 1.59 × 10−9 | 9.39 × 10−9 |
2 | 3.26 × 10−11 | 1 × 10−10 | 6.52 × 10−8 | 1 | 39 | 3.26 × 10−11 | 6.14 × 10−10 | 6.54 × 10−11 | |
3 | 2.92 × 10−11 | 1 × 10−10 | 8.57 × 10−8 | 2 | 48 | 2.92 × 10−11 | 5.11 × 10−10 | 5.22 × 10−11 | |
4 | 1.05 × 10−10 | 1 × 10−9 | 9.94 × 10−8 | 8 | 98 | 1.04 × 10−10 | 6.66 × 10−10 | 2.69 × 10−10 | |
2 | 1 | 1.59 × 10−10 | 1 × 10−9 | 9.95 × 10−8 | 7 | 94 | 1.58 × 10−10 | 2.80 × 10−9 | 7.04 × 10−10 |
2 | 9.00 × 10−11 | 1 × 10−9 | 9.57 × 10−8 | 13 | 121 | 8.99 × 10−11 | 2.70 × 10−10 | 1.29 × 10−10 | |
3 | 7.82 × 10−10 | 1 × 10−8 | 9.87 × 10−8 | 19 | 213 | 7.81 × 10−10 | 1.05 × 10−9 | 1.67 × 10−9 | |
4 | 1.33 × 10−10 | 1 × 10−9 | 9.71 × 10−8 | 10 | 114 | 1.33 × 10−10 | 5.73 × 10−10 | 1.06 × 10−8 | |
3 | 1 | 1.62 × 10−11 | 1 × 10−10 | 9.07 × 10−8 | 3 | 53 | 1.62 × 10−11 | 3.02 × 10−11 | 3.82 × 10−11 |
2 | 2.75 × 10−11 | 1 × 10−10 | 6.84 × 10−8 | 2 | 44 | 2.74 × 10−11 | 8.80 × 10−11 | 3.14 × 10−11 | |
3 | 7.52 × 10−11 | 1 × 10−10 | 2.35 × 10−9 | 1 | 40 | 7.51 × 10−11 | 2.06 × 10−10 | 3.42 × 10−11 | |
4 | 1.11 × 10−10 | 1 × 10−10 | 8.14 × 10−8 | 2 | 49 | 1.10 × 10−10 | 8.13 × 10−10 | 1.82 × 10−9 | |
4 | 1 | 4.09 × 10−11 | 1 × 10−10 | 9.64 × 10−8 | 4 | 60 | 4.09 × 10−11 | 5.35 × 10−9 | 7.14 × 10−10 |
2 | 2.23 × 10−11 | 1 × 10−10 | 7.07 × 10−8 | 5 | 72 | 2.82 × 10−11 | 2.38 × 10−10 | 4.17 × 10−11 | |
3 | 3.40 × 10−11 | 1 × 10−10 | 9.23 × 10−8 | 6 | 78 | 4.25 × 10−11 | 8.80 × 10−11 | 1.27 × 10−10 | |
4 | 4.43 × 10−12 | 1 × 10−11 | 6.71 × 10−8 | 2 | 47 | 4.42 × 10−12 | 4.30 × 10−12 | 9.39 × 10−12 | |
5 | 1 | 2.11 × 10−11 | 1 × 10−10 | 9.52 × 10−8 | 2 | 50 | 2.10 × 10−11 | 2.66 × 10−11 | 3.61 × 10−11 |
2 | 2.17 × 10−11 | 1 × 10−10 | 8.36 × 10−8 | 4 | 64 | 2.16 × 10−11 | 3.85 × 10−11 | 3.31 × 10−11 | |
3 | 2.77 × 10−11 | 1 × 10−10 | 8.78 × 10−8 | 7 | 81 | 2.77 × 10−11 | 5.23 × 10−11 | 7.25 × 10−11 | |
4 | 2.80 × 10−10 | 1 × 10−9 | 1.70 × 10−8 | 2 | 44 | 2.80 × 10−10 | 6.44 × 10−10 | 4.91 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varun Kumar, R.S.; Alsulami, M.D.; Sarris, I.E.; Prasannakumara, B.C.; Rana, S. Backpropagated Neural Network Modeling for the Non-Fourier Thermal Analysis of a Moving Plate. Mathematics 2023, 11, 438. https://doi.org/10.3390/math11020438
Varun Kumar RS, Alsulami MD, Sarris IE, Prasannakumara BC, Rana S. Backpropagated Neural Network Modeling for the Non-Fourier Thermal Analysis of a Moving Plate. Mathematics. 2023; 11(2):438. https://doi.org/10.3390/math11020438
Chicago/Turabian StyleVarun Kumar, R. S., M. D. Alsulami, I. E. Sarris, B. C. Prasannakumara, and Saurabh Rana. 2023. "Backpropagated Neural Network Modeling for the Non-Fourier Thermal Analysis of a Moving Plate" Mathematics 11, no. 2: 438. https://doi.org/10.3390/math11020438
APA StyleVarun Kumar, R. S., Alsulami, M. D., Sarris, I. E., Prasannakumara, B. C., & Rana, S. (2023). Backpropagated Neural Network Modeling for the Non-Fourier Thermal Analysis of a Moving Plate. Mathematics, 11(2), 438. https://doi.org/10.3390/math11020438