Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications
Abstract
:1. Introduction and Preliminaries
- GA-s-CF, if
- GA-Q-CF, if
- GA-P-CF, if
2. The Jensen–Mercer Inequality for GA--Convex Functions and Its Subclasses
3. Generalized Weighted Hermite–Hadamard–Mercer Inequalities for GA--Convex Functions and Its Subclasses
Special Cases for GA-s-Convex (GA-Q-Convex and GA-P-Convex) Functions
4. Hermite–Hadamard–Mercer Inequality for GA--Convex Functions via Hadamard Fractional Integrals (HFI)
5. Weighted Hermite–Hadamard–Mercer Inequality for GA--Convex Functions via Hadamard Fractional Integrals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
JI | Jensen’s inequality |
JMI | Jensen-Mercer inequality |
CF | Convex function |
HHI | Hermite-Hadamard inequality |
s-CF | s-convex functions |
h-CF | h-convex functions |
GA-CF | GA-convex functions |
GA-s-CF | GA-s-convex functions |
GA-h-CF | GA-h-convex functions |
HFI | Hadamard-Fractional integral |
References
- Rahman, M.S.; Shaikh, A.A.; Bhunia, A.K. Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function. Comput. Ind. Eng. 2020, 147, 106634. [Google Scholar]
- Beckenbach, E.F. Convex functions. Bull. Am. Math. Soc. 1948, 54, 439–460. [Google Scholar]
- Peacaric, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Wu, Y.; Qi, F. Discussions on two integral inequalities of Hermite–Hadamard type for convex functions. J. Comput. Appl. Math. 2022, 406, 114049. [Google Scholar]
- Mohanapriya, A.; Ganesh, A.; Rajchakit, G.; Pinelas, S.; Govindan, V.; Unyong, B.; Gunasekaran, N. New generalization of Hermite–Hadamard type of inequalities for convex functions using Fourier integral transform. Thai J. Math. 2020, 18, 1051–1061. [Google Scholar]
- Godunova, E.K.; Levin, V.I. Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye inekotorye drugie vidy funkii. Vycislitel. Mat. I. Fiz. Mezvuzov. Sb. Nauc. Trudov. 1985, 9, 138–142. [Google Scholar]
- Dragomir, S.S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow. J. Math. 1995, 21, 335–341. [Google Scholar]
- Baloch, I.A.; Mughal, A.A.; Chu, Y.M.; Haq, A.U.; Sen, M.D.L. A variant of Jensen-type inequality and related results for harmonic convex functions. Aims Math. 2020, 5, 6404–6418. [Google Scholar]
- Breckner, W.W. Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Kirmaci, U.S.; Bakula, M.K.; Pecaric, J. Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 2007, 193, 26–35. [Google Scholar]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard–type inequalities for h-convex functions. J. Math. Inequal. 2008, 2, 265–272. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. 2010, 79, 265–272. [Google Scholar]
- Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Some integral inequalities for harmonic h-convex functions involving hypergeometric functions. Appl. Math. Comput. 2015, 252, 257–262. [Google Scholar]
- Cortez, M.J.V.; Hernandez, J.E.H. A variant of Jensen–Mercer Inequality for h–convex functions and Operator h-convex functions. Rev. MATUA ISSN 2017, 4, 1–15. [Google Scholar]
- Luo, C.; Wang, H.; Du, T. Fejer–Hermite–Hadamard type inequalities involving generalized h–convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar]
- Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3, 155–167. [Google Scholar]
- Niculescu, C.P. Convexity according to means. Math. Inequalities Appl. 2003, 6, 571–580. [Google Scholar]
- Dragomir, S.S. Some new inequalities of Hermite–Hadamard type for GA–convex functions. Ann. Univ. Mariae Curie Sect. A 2018, 72, 55–68. [Google Scholar]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Fejer type integral inequalities for geometrically-arithmetically-convex functions with applications. Filomat 2018, 32, 2193–2206. [Google Scholar]
- Iscan, I. Jensen-Mercer inequality for GA-convex functions and some related inequalities. J. Inequalities Appl. 2020, 2020, 212. [Google Scholar]
- Tunc, M.E.V.L.U.T. On Hadamard type inequalities for s-geometrically convex functions. RGMIA Res. Rep. Collect. 2012, 15, 1–6. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some inequalities for geometrically arithmetically h-convex functions. Creat. Math. Inf. 2014, 23, 193–200. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, pp. 69–102. [Google Scholar]
- Iscan, I. New general integral inequalities for quasi–geometrically convex functions via fractional integrals. J. Inequalities Appl. 2013, 2013, 491. [Google Scholar]
- Chen, F. Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar]
- Kunt, M.; Iscan, I. Fractional Hermite–Hadamard–Fejér type inequalities for GA–convex functions. Turk. J. Inequal. 2018, 2, 1–20. [Google Scholar]
- Set, E.; Butt, S.I.; Akdemir, A.O.; Karaoglan, A.; Abdeljawad, T. New integral inequalities for differentiable convex functions via Atangana–Baleanu fractional integral operators. Chaos Solitons Fractals 2021, 143, 110554. [Google Scholar]
- Butt, S.I.; Yousaf, S.; Akdemir, A.O.; Dokuyucu, M.A. New Hadamard–type integral inequalities via a general form of fractional integral operators. Chaos Solitons Fractals 2021, 148, 111025. [Google Scholar]
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L. Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications. J. Inequalities Appl. 2022, 2022, 1–18. [Google Scholar]
- Sahoo, S.K.; Hamed, Y.S.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K. New midpoint type Hermite–Hadamard–Mercer inequalities pertaining to Caputo–Fabrizio fractional operators. Alex. Eng. J. 2022, 65, 689–698. [Google Scholar]
- Xu, P.; Butt, S.I.; Yousaf, S.; Aslam, A.; Zia, T.J. Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel. Alex. Eng. J. 2022, 61, 4837–4846. [Google Scholar]
- Faisal, S.; Adil Khan, M.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New “Conticrete” Hermite–Hadamard–Jensen–Mercer Fractional Inequalities. Symmetry 2022, 14, 294. [Google Scholar]
- Vivas–Cortez, M.; Saleem, M.S.; Sajid, S.; Zahoor, M.S.; Kashuri, A. Hermite–Jensen–Mercer–Type Inequalities via Caputo–Fabrizio Fractional Integral for h–Convex Function. Fractal. Fract. 2021, 5, 269. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahad, A.; Ayesha; Wang, Y.; Butt, S.I. Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications. Mathematics 2023, 11, 278. https://doi.org/10.3390/math11020278
Fahad A, Ayesha, Wang Y, Butt SI. Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications. Mathematics. 2023; 11(2):278. https://doi.org/10.3390/math11020278
Chicago/Turabian StyleFahad, Asfand, Ayesha, Yuanheng Wang, and Saad Ihsaan Butt. 2023. "Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications" Mathematics 11, no. 2: 278. https://doi.org/10.3390/math11020278
APA StyleFahad, A., Ayesha, Wang, Y., & Butt, S. I. (2023). Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications. Mathematics, 11(2), 278. https://doi.org/10.3390/math11020278