On the Properties of λ-Prolongations and λ-Symmetries
Abstract
:1. Introduction
2. Preliminaries and Geometric Properties for -Symmetries
2.1. Equation, Solutions and Symmetries
2.2. Local Coordinates
2.3. -Prolongations
2.4. Explicit n-Order Equation
- (1)
- We suppose that, for some the vector field is a λ-symmetry of Equation . Then,for some where Y is the -order λ-prolongation of X, and denotes the Lie bracket.
- (2)
- Conversely, ifis a vector field defined on such thatfor some then the vector fielddefined on is a λ-symmetry of the Equation (4), and X is the -order λ-prolongation of v.
3. First Integral of System of Ordinary Differential Equation
4. Quotient Manifold, Relationship between -Symmetry and Symmetry
5. Reduction of System of Explicit Ordinary Differential Equations
6. Involution of -Prolonged Sets of Vector Fields
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alekseevsky, A.D.V.; Vinogradov, A.M.; Lychagin, V.V. Basic Ideas and Concepts of Differential Geometry; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Bhuvaneswari, A.; Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. On the complete integrability of a nonlinear oscillator from group theoretical perspective. J. Math. Phys. 2012, 53, 073504. [Google Scholar] [CrossRef]
- Cicogna, G.; Gaeta, G. Symmetry and Perturbation Theory in Nonlinear Dynamics; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Olver, P.J. Application of Lie Groups to Differential Equations; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Olver, P.J. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA; London, UK, 1982. [Google Scholar]
- Stephani, H. Differential Equations: Their Solution Using Symmetries; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- González-López, A. Symmetry and integrability by quadratures of ordinary differential equations. Phys. Lett. A 1988, 133, 190–194. [Google Scholar]
- Gónzalez-Gascón, F.; González-López, A. Newtonian systems of differential equations, integrable via quadratures, with trivial group of point symmetries. Phys. Lett. A 1988, 129, 153–156. [Google Scholar] [CrossRef]
- Meleshko, S.V.; Moyo, S.; Muriel, C.; Romero, J.L.; Guha, P.; Choudhury, A.G. On first integrals of second-order ordinary differential equation. J. Eng. Math. 2013, 82, 17–30. [Google Scholar]
- Zhao, X.F.; Li, Y. The Reduction, First Integral and Kam Tori for n-Dimensional Volume-Preserving Systems. J. Dyn. Diff. Equation 2023, 1–20. [Google Scholar] [CrossRef]
- Muriel, C.; Romero, J.L. New methods of reduction for ordinary differential equations. IMA J. Appl. Math. 2001, 66, 111–125. [Google Scholar]
- Muriel, C.; Romero, J.L. Integrating factors and λ-symmetries. J. Nonlinear Math. Phys. 2008, 15, 300–309. [Google Scholar] [CrossRef]
- Muriel, C.; Romero, J.L. First integrals, integrating factors and λ-symmetries of second-order differential equations. J. Phys. A Math. Theor. 2009, 42, 365207. [Google Scholar] [CrossRef]
- Pan-Collantes, A.J.; Ruiz, A.; Muriel, C.; Romero, J.L. C∞-symmetries of distributions and integrability. J. Differ. Equation 2023, 348, 126–153. [Google Scholar]
- Pucci, E.; Saccomandi, G. On the reduction methods for ordinary differential equations. J. Phys. A Math. Gen. 2002, 35, 6145–6155. [Google Scholar]
- Yasar, E. λ-symmetries, nonlocal transformations and first integrals to a class of Painlevé-Gambier equations. Math. Methods Appl. Sci. 2012, 35, 684–692. [Google Scholar] [CrossRef]
- Zhang, J. A relationship between λ-symmetries and first integrals for ordinary differential equations. Math. Methods Appl. Sci. 2019, 42, 6139–6154. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y. Symmetries and first integrals of differential equations. Acta Appl. Math. 2008, 103, 147–159. [Google Scholar] [CrossRef]
- Cicogna, G.; Gaeta, G.; Walcher, S. A generalization of λ-symmetry reduction for systems of ODEs: σ-symmetries. J. Phys. A 2012, 45, 355205. [Google Scholar] [CrossRef]
- Zhao, X.F.; Li, Y. σ-Symmetries and First Integral of Differential Equations. J. Lie Theory 2024, in press. 34. [Google Scholar]
- Cicogna, G.; Gaeta, G. Noether theorem for μ-symmetries. J. Phys. A Math. Theor. 2007, 40, 11899–11921. [Google Scholar] [CrossRef]
- Morando, P. Deformation of Lie derivative and μ-symmetries. J. Phy. A Math. Theor. 2007, 40, 11547–11559. [Google Scholar] [CrossRef]
- Malik, S.; Hashemi, M.S.; Kumar, S.; Rezazadeh, H.; Mahmoud, W.; Osman, M.S. Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electron. 2023, 55, 8. [Google Scholar] [CrossRef]
- De Lara, M.C. Geometric and symmetry properties of a nondegenerate diffusion process. Ann. Probab. 1995, 23, 1557–1604. [Google Scholar] [CrossRef]
- Gaeta, G. W-symmetries of Ito stochastic differential equations. J. Math. Phys. 2019, 60, 053501. [Google Scholar] [CrossRef]
- Glover, J. Symmetry groups and translation invariant representations of Markov processes. Ann. Probab. 1991, 19, 562–586. [Google Scholar] [CrossRef]
- Glover, J.; Mitro, J. Symmetries and functions of Markov process. Ann. Probab. 1990, 18, 655–668. [Google Scholar] [CrossRef]
- De Vecchi, F.C.; Morando, P.; Ugolini, S. Symmetries of stochastic differential equation: A geometric approach. J. Math. Phy. 2016, 57, 123508. [Google Scholar] [CrossRef]
- De Vecchi, F.C.; Morando, P.; Ugolini, S. A note on symmetries of diffusions with a martingale problem approach. Stoch. Dyn. 2019, 19, 1950011. [Google Scholar] [CrossRef]
- Dorodnitsyn, V. Applications of Lie Groups to Difference Equations; Differential and Integral Equations and Their Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Levi, D.; Winternitz, P.; Yamilov, R.I. Continuous Symmetries and Integrability of Discrete Equations; American Mathematical Society: Providence, RI, USA, 2022. [Google Scholar]
- Muriel, C.; Romero, J.L. C∞ symmetries and nonsolvable symmetry algebras. IMA J. Appl. Math. 2001, 66, 477–498. [Google Scholar] [CrossRef]
- Von Westenholz, C. Differential Forms in Mathematical Physics; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Sherring, J.; Prince, G. Geometric aspects of reduction of order. Trans. Am. Math. Soc. 1992, 334, 433–453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, X.; Pang, Y. On the Properties of λ-Prolongations and λ-Symmetries. Mathematics 2023, 11, 4113. https://doi.org/10.3390/math11194113
Li W, Li X, Pang Y. On the Properties of λ-Prolongations and λ-Symmetries. Mathematics. 2023; 11(19):4113. https://doi.org/10.3390/math11194113
Chicago/Turabian StyleLi, Wenjin, Xiuling Li, and Yanni Pang. 2023. "On the Properties of λ-Prolongations and λ-Symmetries" Mathematics 11, no. 19: 4113. https://doi.org/10.3390/math11194113
APA StyleLi, W., Li, X., & Pang, Y. (2023). On the Properties of λ-Prolongations and λ-Symmetries. Mathematics, 11(19), 4113. https://doi.org/10.3390/math11194113