Certain Results on Fuzzy p-Valent Functions Involving the Linear Operator
Abstract
:1. Introduction
2. Main Results
2.1. Inclusion Properties
2.2. Properties Involving Integral
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar]
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Michigan Math. J. 1981, 28, 157–171. [Google Scholar]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apul. 2012, 3, 55–64. [Google Scholar]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 2017, 12, 748–789. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babes-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
- Oros, G.I.; Oros, G. Briot-Bouquet fuzzy differential subordination. Anal. Univ. Oradea Fasc. Math. 2012, 19, 83–87. [Google Scholar]
- Haydar, E.A. On fuzzy differential subordination. Math. Moravica 2015, 19, 123–129. [Google Scholar] [CrossRef]
- Lupas, A.A. A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Lupas, A.A.; Oros, G. On special fuzzy differential subordinations using Salagean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Lupas, A.A. A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative. J. Comput. Anal. Appl. 2018, 25, 1116–1124. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. An. Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Wanas, A.K.; Majeed, A.H. Fuzzy differential subordination properties of analytic functions involving generalized differential operator. Sci. Int. 2018, 30, 297–302. [Google Scholar]
- Lupas, A.A.; Cãtas, A. Fuzzy Differential Subordination of the Atangana-Baleanu Fractional Integral. Symmetry 2021, 13, 1929. [Google Scholar]
- Lupas, A.A.; Shah, S.A.; Iambor, L.F. Fuzzy differential subordination and superordination results for q-analogue of multiplier transformation. AIMS Math. 2023, 8, 15569–15584. [Google Scholar]
- Oros, G.I. Fuzzy Differential Subordinations Obtained Using a Hypergeometric Integral Operator. Mathematics 2021, 20, 2539. [Google Scholar]
- Oros, G.I. New fuzzy differential subordinations. Comm. Fac. Sci. l’Univ. d’Ankara Ser. A1 Math. Stat. 2007, 70, 229–240. [Google Scholar]
- Oros, G.I. Univalence criteria for analytic functions obtained using fuzzy differential subordinations. Turk. J. Math. 2022, 46, 1478–1491. [Google Scholar]
- Shah, S.A.; Ali, E.E.; Maitlo, A.A.; Abdeljawad, T.; Albalahi, A.M. Inclusion results for the class of fuzzy α-convex functions. AIMS Math. 2022, 8, 1375–1383. [Google Scholar]
- Srivastava, H.M.; El-deeb, S.M. Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Lupas, A.A. Fuzzy differential subordinations associated with an integral operator. An. Univ. Oradea Fasc. Mat. 2020, 27, 133–140. [Google Scholar]
- El-Deeb, S.M.; Khan, N.; Arif, M.; Alburaikan, A. Fuzzy differential subordination for meromorphic function. Axioms 2022, 11, 534. [Google Scholar] [CrossRef]
- Shah, S.A.; Ali, E.E.; Catas, A.; Albalahi, A.M. On fuzzy differential subordination associated with q-difference operator. AIMS Math. 2023, 8, 6642–6650. [Google Scholar] [CrossRef]
- Azzam, A.F.; Shah, S.A.; Alburaikan, A.; El-Deeb, S.M. Certain Inclusion Properties for the Class of q-Analogue of Fuzzy α-Convex Functions. Symmetry 2023, 15, 509. [Google Scholar] [CrossRef]
- Azzam, A.A.; Shah, S.A.; Catas, A.; Cotîrla, L.-I. On Fuzzy Spiral-Like Functions Associated with the Family of Linear Operators. Fractal Fract. 2023, 7, 145. [Google Scholar] [CrossRef]
- Gal, S.G.; Ban, A.I. Elemente de Matematică Fuzzy; Editura Universităţii din Oradea: Romania, Balkans, 1996. (In Romanian) [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations Theory and Applications; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Liu, J.L. Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator. Integral Transform. Spec. Funct. 2008, 19, 893–901. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Certain families of series associated with the Hurwitz–Lerch Zeta function. Appl. Math. Comput. 2005, 170, 399–409. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function. Hacet. J. Math. Stat. 2010, 39, 265–272. [Google Scholar]
- Lin, S.D.; Srivastava, H.M. Some families of the Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
- Lin, S.D.; Srivastava, H.M.; Wang, P.Y. Some expansion formulas for a class of generalized Hurwitz–Lerch Zeta functions. Integral Transform. Spec. Funct. 2006, 17, 817–827. [Google Scholar] [CrossRef]
- Luo, Q.M.; Srivastava, H.M. Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials. J. Math. Anal. Appl. 2005, 30, 290–302. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. Ser. 2 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1969, 16, 755–758. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain oneparameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; Vivas-Cortez, M.; Ali Shah, S.; Albalahi, A.M. Certain Results on Fuzzy p-Valent Functions Involving the Linear Operator. Mathematics 2023, 11, 3968. https://doi.org/10.3390/math11183968
Ali EE, Vivas-Cortez M, Ali Shah S, Albalahi AM. Certain Results on Fuzzy p-Valent Functions Involving the Linear Operator. Mathematics. 2023; 11(18):3968. https://doi.org/10.3390/math11183968
Chicago/Turabian StyleAli, Ekram Elsayed, Miguel Vivas-Cortez, Shujaat Ali Shah, and Abeer M. Albalahi. 2023. "Certain Results on Fuzzy p-Valent Functions Involving the Linear Operator" Mathematics 11, no. 18: 3968. https://doi.org/10.3390/math11183968
APA StyleAli, E. E., Vivas-Cortez, M., Ali Shah, S., & Albalahi, A. M. (2023). Certain Results on Fuzzy p-Valent Functions Involving the Linear Operator. Mathematics, 11(18), 3968. https://doi.org/10.3390/math11183968