Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay
Abstract
:1. Introduction
2. Problem Statement and Basic Assumptions
3. Implicit–Explicit Difference Method
4. Residual of the Difference Method
5. Error Analysis
6. Numerical Experiments
7. Conclusions and Directions for Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arenas, A.; Gonzalez-Parra, G.; Caraballo, B. A nonstandard finite difference scheme for a nonlinear black-scholes equation. Math. Comput. Model. 2013, 57, 1663–1670. [Google Scholar] [CrossRef]
- Srivastava, V.; Kumar, S.; Awasthi, M.; Singh, B.K. Two-dimensional time fractional-order biological population model and its analytical solution. Egypt. J. Basic Appl. Sci. 2014, 1, 71–76. [Google Scholar] [CrossRef]
- Wu, J. Theory and Application of Partial Functional Differential Equations; Springer: New York, NY, USA, 1996; ISBN 978-1-4612-4050-1. [Google Scholar]
- Polyanin, A.; Sorokin, V.; Zhurov, A. Delay Ordinary and Partial Differential Equations; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-0-367-48691-4. [Google Scholar]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–77. [Google Scholar] [CrossRef]
- Chen, W.; Sun, H.; Zhang, X.; Korosak, D. Anomalous diffusion modeling by fractal and fractional dirivatives. Comput. Math. Appl. 2010, 59, 1754–1758. [Google Scholar] [CrossRef]
- Bellman, R.E.; Kalaba, R.E. Quasilinearization and Nonlinear Boundary-Value Problems; American Elsevier Publishing Company: New York, NY, USA, 1965; ISBN 978-0444000040. [Google Scholar]
- He, J.H. Periodic solution and bifurcations of delay-differential equations. Phys. Lett. A 2004, 347, 228–230. [Google Scholar] [CrossRef]
- Temimi, H.; Ansari, A.R.; Siddiqui, A.M. An approximate solution for the static beam problem and nonlinear integro-differential equations. Comput. Math. Appl. 2011, 62, 3132–3139. [Google Scholar] [CrossRef]
- Alesemi, M.; Iqbal, N.; Hamoud, A. The analysis of fractional-order proportional delay physical models via a novel transform. Complexity 2022, 2022, 2431533. [Google Scholar] [CrossRef]
- Ding, X.L.; Nieto, J.J.; Wang, X. Analytical solutions for fractional partial delay differential-algebraic equations with Dirichlet boundary conditions defined on a finite domain. Fract. Calc. Appl. Anal. 2022, 25, 408–438. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56, 80–90. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Burrage, K. Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 2012, 64, 2990–3007. [Google Scholar] [CrossRef]
- Tian, W.; Zhou, H.; Deng, W. A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 2015, 84, 1703–1727. [Google Scholar] [CrossRef]
- Tadjeran, C.; Meerschaert, M.M.; Scheffler, H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213, 205–213. [Google Scholar] [CrossRef]
- Jin, X.Q.; Lin, F.R.; Zhao, Z. Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 2015, 18, 469–488. [Google Scholar] [CrossRef]
- Lin, X.L.; Ng, M.K.; Sun, H.W. Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equations with variable diffusion coefficients. J. Sci. Comput. 2018, 75, 1102–1127. [Google Scholar] [CrossRef]
- Lin, X.L.; Ng, M.K. A fast solver for multidimensional time–space fractional diffusion equation with variable coefficients. Comput. Math. Appl. 2019, 78, 1477–1489. [Google Scholar] [CrossRef]
- Hendy, A.S.; Macias-Diaz, J.E. A Conservative scheme with optimal error estimates for a multidimensional space-fractional gross-pitaevskii equation. Int. J. Appl. Math. Comput. Sci. 2019, 29, 713–723. [Google Scholar] [CrossRef]
- Yue, X.; Shu, S.; Xu, X.; Bu, W.; Pan, K. Parallel-in-time multigrid for space–time finite element approximations of two-dimensional space-fractional diffusion equations. Comput. Math. Appl. 2019, 78, 3471–3484. [Google Scholar] [CrossRef]
- Saedshoar Heris, M.; Javidi, M. Second order difference approximation for a class of Riesz space fractional advection-dispersion equations with delay. arXiv 2021, arXiv:1811.10513. [Google Scholar] [CrossRef]
- Kamont, Z.; Kropielnicka, K. Implicit difference methods for evolution functional differential equations. Numer. Anal. Appl. 2011, 4, 294–308. [Google Scholar] [CrossRef]
- Pimenov, V.G.; Lozhnikov, A.B. Difference schemes for the numerical solution of the heat conduction equation with aftereffect. Proc. Steklov Inst. Math. 2011, 275, 137–148. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z. A linearized compact difference scheme for a class of nonlinear delay partial differetial equations. Appl. Math. Model. 2011, 37, 742–752. [Google Scholar] [CrossRef]
- Lekomtsev, A.; Pimenov, V. Convergence of the scheme with weights for the numerical solution of a heat conduction equation with delay for the case of variable coefficient of heat conductivity. Appl. Math. Comput. 2015, 256, 83–93. [Google Scholar] [CrossRef]
- Pimenov, V.G.; Hendy, A.S. An implicit numerical method for the solution of the fractional advection–diffusion equation with delay. Tr. Instituta Mat. Mekhaniki Uro RAN 2016, 22, 218–226. [Google Scholar] [CrossRef]
- Samarskii, A.A. The Theory of Difference Schemes; Marcel Dekker, Inc.: New York, NY, USA, 2001; ISBN 0-8247-0468-1. [Google Scholar]
- Lekomtsev, A.V. Convergence of the numerical method of solution of a quasilinear heat conduction equation with delay. Bull. Bashkir Univ. 2022, 27, 508–513. (In Russian) [Google Scholar] [CrossRef]
h | CPU Time | CPU Time | ||||
---|---|---|---|---|---|---|
1/10 | 0.0018366 | 10.5 | 0.0004972 | 10.58 | ||
1/20 | 0.0010279 | 0.8373 | 21.48 | 0.0001121 | 2.1490 | 22.01 |
1/40 | 0.0006285 | 0.7097 | 46.15 | 0.0000286 | 1.9707 | 45.3 |
1/80 | 0.0003550 | 0.8241 | 85.97 | 0.0000121 | 1.2410 | 91.37 |
1/10 | 0.0021382 | 10.38 | 0.0010900 | 10.34 | ||
1/20 | 0.0011889 | 0.8468 | 21.22 | 0.0004342 | 1.3279 | 22.01 |
1/40 | 0.0006387 | 0.8964 | 46.79 | 0.0001911 | 1.1840 | 46.82 |
1/80 | 0.0003381 | 0.9177 | 87.67 | 0.0000915 | 1.0625 | 91.36 |
1/10 | 0.0018265 | 10.82 | 0.0007493 | 11.6 | ||
1/20 | 0.0010647 | 0.7786 | 22.8 | 0.0002648 | 1.5006 | 23.31 |
1/40 | 0.0006357 | 0.7440 | 49.29 | 0.0001093 | 1.2766 | 50.35 |
1/80 | 0.0003505 | 0.8589 | 90.14 | 0.0000517 | 1.0801 | 91.9 |
CPU Time | CPU Time | |||||
---|---|---|---|---|---|---|
1/10 | 0.0090874 | 6.06 | 0.0053983 | 6.11 | ||
1/20 | 0.0043647 | 1.0580 | 11.85 | 0.0026669 | 1.0173 | 12.21 |
1/40 | 0.0021578 | 1.0163 | 25.73 | 0.0013375 | 0.9956 | 24.03 |
1/80 | 0.0010573 | 1.0292 | 53.18 | 0.0006651 | 1.0079 | 47.59 |
1/10 | 0.0089543 | 6.06 | 0.0053841 | 6.19 | ||
1/20 | 0.0043161 | 1.0529 | 11.81 | 0.0026605 | 1.0170 | 11.97 |
1/40 | 0.0021371 | 1.0141 | 23.73 | 0.0013344 | 0.9955 | 23.81 |
1/80 | 0.0010477 | 1.0284 | 46.94 | 0.0006635 | 1.0080 | 50.21 |
1/10 | 0.0090539 | 6.34 | 0.0053948 | 6.36 | ||
1/20 | 0.0043525 | 1.0567 | 11.96 | 0.0026653 | 1.0173 | 12.24 |
1/40 | 0.0021526 | 1.0158 | 24 | 0.0013367 | 0.9956 | 24.28 |
1/80 | 0.0010549 | 1.0290 | 52.18 | 0.0006647 | 1.0079 | 51.61 |
h | CPU Time | CPU Time | CPU Time | ||||||
---|---|---|---|---|---|---|---|---|---|
1/10 | 0.1327836 | 10.88 | 0.0163291 | 10.84 | 0.0161756 | 10.86 | |||
1/20 | 0.0848209 | 0.6466 | 22.37 | 0.0084232 | 0.9550 | 23.63 | 0.0053563 | 1.5945 | 22.25 |
1/40 | 0.0496605 | 0.7723 | 45.64 | 0.0064501 | 0.3850 | 45.86 | 0.0012954 | 2.0478 | 45.16 |
1/80 | 0.0272165 | 0.8676 | 88.34 | 0.0042617 | 0.5979 | 89.59 | 0.0002038 | 2.6682 | 89.98 |
1/160 | 0.0142327 | 0.9353 | 183.68 | 0.0026392 | 0.6913 | 181.5 | 0.0000177 | 3.5253 | 184.41 |
1/10 | 0.1208354 | 10.86 | 0.0630215 | 12.96 | 0.0338202 | 10.95 | |||
1/20 | 0.0573253 | 1.0757 | 21.81 | 0.0293685 | 1.1016 | 22.98 | 0.0103073 | 1.7142 | 22.39 |
1/40 | 0.0283827 | 1.0142 | 45.51 | 0.0142530 | 1.0430 | 48.22 | 0.0033612 | 1.6166 | 46.21 |
1/80 | 0.0140371 | 1.0157 | 91.01 | 0.0068465 | 1.0578 | 103.6 | 0.0013803 | 1.2840 | 93.87 |
1/160 | 0.0069495 | 1.0143 | 211.37 | 0.0033607 | 1.0266 | 214.66 | 0.0006030 | 1.1948 | 213.71 |
1/10 | 0.1309653 | 12.2 | 0.0334699 | 10.89 | 0.0225544 | 10.69 | |||
1/20 | 0.0756316 | 0.7921 | 21.72 | 0.0155466 | 1.1062 | 21.76 | 0.0095150 | 1.2451 | 22.15 |
1/40 | 0.0405079 | 0.9008 | 45.37 | 0.0080246 | 0.9541 | 48.38 | 0.0022931 | 2.0529 | 46.80 |
1/80 | 0.0208255 | 0.9599 | 88.38 | 0.0048249 | 0.7339 | 93.05 | 0.0007440 | 1.6239 | 103.1 |
1/160 | 0.0105022 | 0.9877 | 187.81 | 0.0028410 | 0.7641 | 228.31 | 0.0002780 | 1.4202 | 194.49 |
CPU Time | CPU Time | CPU Time | |||||||
---|---|---|---|---|---|---|---|---|---|
4/5 | 0.0720137 | 19.02 | 0.1187463 | 19.01 | 0.1384748 | 19.11 | |||
2/5 | 0.0257392 | 1.4843 | 37.1 | 0.0404585 | 1.5534 | 40.73 | 0.0477516 | 1.5360 | 39.37 |
1/5 | 0.0076767 | 1.7454 | 75.68 | 0.0135595 | 1.5771 | 75.78 | 0.0175075 | 1.4476 | 76.48 |
1/10 | 0.0033587 | 1.1926 | 146.81 | 0.0057564 | 1.2361 | 146.92 | 0.0072343 | 1.2751 | 148.69 |
4/5 | 0.0854511 | 18.88 | 0.1143785 | 18.66 | 0.1381228 | 18.69 | |||
2/5 | 0.0285708 | 1.5806 | 34.99 | 0.0389019 | 1.5559 | 39.05 | 0.0476415 | 1.5357 | 37.86 |
1/5 | 0.0085101 | 1.7473 | 69.53 | 0.0133773 | 1.5401 | 73.2 | 0.0174835 | 1.4462 | 73.06 |
1/10 | 0.0034246 | 1.3132 | 147.69 | 0.0056034 | 1.2554 | 213.85 | 0.0072249 | 1.2749 | 149.36 |
4/5 | 0.0807698 | 18.92 | 0.1173488 | 18.75 | 0.1383859 | 20.12 | |||
2/5 | 0.0271901 | 1.5707 | 39.05 | 0.0399303 | 1.5552 | 39.11 | 0.0477238 | 1.5359 | 37.5 |
1/5 | 0.0076571 | 1.8282 | 74.27 | 0.0135595 | 1.5582 | 75.78 | 0.0175015 | 1.4472 | 72.74 |
1/10 | 0.0035328 | 1.1160 | 146.64 | 0.0056925 | 1.2522 | 147.34 | 0.0072319 | 1.2750 | 144.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenov, V.; Lekomtsev, A. Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay. Mathematics 2023, 11, 3941. https://doi.org/10.3390/math11183941
Pimenov V, Lekomtsev A. Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay. Mathematics. 2023; 11(18):3941. https://doi.org/10.3390/math11183941
Chicago/Turabian StylePimenov, Vladimir, and Andrei Lekomtsev. 2023. "Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay" Mathematics 11, no. 18: 3941. https://doi.org/10.3390/math11183941
APA StylePimenov, V., & Lekomtsev, A. (2023). Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay. Mathematics, 11(18), 3941. https://doi.org/10.3390/math11183941