Defect-Band Splitting of a One-Dimensional Phononic Crystal with Double Defects for Bending-Wave Excitation
Abstract
:1. Introduction
2. Target System Description
3. Transfer-Matrix- and S-Parameter-Based Analytical Approaches
3.1. Transfer-Matrix-Method-Based Prediction in Dispersion Analysis
3.2. Prediction in Wave-Excitation Analysis
4. Finite-Element-Method-Based Validation
4.1. Evaluation Setting
4.2. Validation Results in Dispersion Analysis
4.3. Validation Results in Wave-Excitation Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Modeling Setting and Assumption
Appendix B
Comsol Setting
References
- Kennedy, J.; Lim, C. Machine learning and deep learning in phononic crystals and metamaterials: A review. Mater. Today Commun. 2022, 33, 104606. [Google Scholar]
- Muhammad; Lim, C. From photonic crystals to seismic metamaterials: A review via phononic crystals and acoustic metamaterials. Arch. Comput. Methods Eng. 2022, 29, 1137–1198. [Google Scholar] [CrossRef]
- Jo, S.-H.; Yoon, H.; Shin, Y.C.; Youn, B.D. Revealing defect-mode-enabled energy localization mechanisms of a one-dimensional phononic crystal. Int. J. Mech. Sci. 2022, 215, 106950. [Google Scholar] [CrossRef]
- Geng, Q.; Fong, P.-K.; Ning, J.; Shao, Z.; Li, Y. Thermally-induced transitions of multi-frequency defect wave localization and energy harvesting of phononic crystal plate. Int. J. Mech. Sci. 2022, 222, 107253. [Google Scholar] [CrossRef]
- Park, S.; Jeon, W. Ultra-wide low-frequency band gap in a tapered phononic beam. J. Sound Vib. 2021, 499, 115977. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, Y.; Zuo, Y.; Qiu, L.; Dong, M.; Ye, J.; Yang, J. Band gap and experimental study in phononic crystals with super-cell structure. Results Phys. 2019, 13, 102200. [Google Scholar] [CrossRef]
- He, Z.; Zhang, G.; Chen, X.; Cong, Y.; Gu, S.; Hong, J. Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates. Int. J. Mech. Sci. 2023, 239, 107892. [Google Scholar] [CrossRef]
- Reetz, C.; Fischer, R.; Assumpcao, G.G.; McNally, D.P.; Burns, P.S.; Sankey, J.C.; Regal, C.A. Analysis of membrane phononic crystals with wide band gaps and low-mass defects. Phys. Rev. Appl. 2019, 12, 044027. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.; Liu, Y. Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals. Phys. Rev. E 2004, 69, 066609. [Google Scholar] [CrossRef]
- Aly, A.H.; Mehaney, A. Phononic crystals with one-dimensional defect as sensor materials. Indian J. Phys. 2017, 91, 1021–1028. [Google Scholar] [CrossRef]
- Jo, S.-H.; Shin, Y.C.; Choi, W.; Yoon, H.; Youn, B.D.; Kim, M. Double defects-induced elastic wave coupling and energy localization in a phononic crystal. Nano Converg. 2021, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Wang, T.; Wu, L.; Li, Y. Defect coupling behavior and flexural wave energy harvesting of phononic crystal beams with double defects in thermal environments. J. Phys. D Appl. Phys. 2021, 54, 225501. [Google Scholar] [CrossRef]
- Habib, M.; Lantgios, I.; Hornbostel, K. A review of ceramic, polymer and composite piezoelectric materials. J. Phys. D Appl. Phys. 2022, 55, 423002. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.; Qi, H.; Chen, J. High-electromechanical performance for high-power piezoelectric applications: Fundamental, progress, and perspective. Prog. Mater. Sci. 2022, 127, 100944. [Google Scholar] [CrossRef]
- Thomes, R.L.; Beli, D.; Sugino, C.; Erturk, A.; Junior, C.D.M. Programmable moving defect for spatiotemporal wave localization in piezoelectric metamaterials. Phys. Rev. Appl. 2023, 19, 064031. [Google Scholar] [CrossRef]
- Thomes, R.L.; Beli, D.; Junior, C.D.M. Space–time wave localization in electromechanical metamaterial beams with programmable defects. Mech. Syst. Signal Process. 2022, 167, 108550. [Google Scholar] [CrossRef]
- Jo, S.-H.; Youn, B.D. An explicit solution for the design of a target-frequency-customized, piezoelectric-defect-introduced phononic crystal for elastic wave energy harvesting. J. Appl. Phys. 2021, 130, 184902. [Google Scholar] [CrossRef]
- Jo, S.-H.; Youn, B.D. An improved analytical model that considers lateral effects of a phononic crystal with a piezoelectric defect for elastic wave energy harvesting. Int. J. Mech. Sci. 2021, 205, 106593. [Google Scholar] [CrossRef]
- Lee, G.; Park, J.; Choi, W.; Ji, B.; Kim, M.; Rho, J. Multiband elastic wave energy localization for highly amplified piezoelectric energy harvesting using trampoline metamaterials. Mech. Syst. Signal Process. 2023, 200, 110593. [Google Scholar] [CrossRef]
- Park, H.W.; Seung, H.M.; Choi, W.; Kim, M.; Oh, J.H. Highly tunable low frequency metamaterial cavity for vibration localization. Sci. Rep. 2022, 12, 9714. [Google Scholar] [CrossRef]
- Aly, A.H.; Nagaty, A.; Mehaney, A. One-dimensional phononic crystals that incorporate a defective piezoelectric/piezomagnetic as a new sensor. Eur. Phys. J. B 2018, 91, 211. [Google Scholar] [CrossRef]
- Aly, A.H.; Nagaty, A.; Mehaney, A. Thermal properties of one-dimensional piezoelectric phononic crystal. Eur. Phys. J. B 2018, 91, 251. [Google Scholar] [CrossRef]
- Jin, H.; Gao, X.; Ren, K.; Liu, J.; Qiao, L.; Liu, M.; Chen, W.; He, Y.; Dong, S.; Xu, Z. Review on piezoelectric actuators based on high-performance piezoelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3057–3069. [Google Scholar] [CrossRef] [PubMed]
- Aabid, A.; Hrairi, M.; Mohamed Ali, S.J.; Ibrahim, Y.E. Review of piezoelectric actuator applications in damaged structures: Challenges and opportunities. ACS Omega 2023, 8, 2844–2860. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.-H.; Lee, D.; Yoon, H.; Youn, B.D. Double piezoelectric defects in phononic crystals for ultrasonic transducers. J. Phys. D Appl. Phys. 2023, 56, 74002. [Google Scholar] [CrossRef]
- Jo, S.-H.; Youn, B.D. Enhanced ultrasonic wave generation using energy-localized behaviors of phononic crystals. Int. J. Mech. Sci. 2022, 228, 107483. [Google Scholar] [CrossRef]
- Jo, S.; Lee, D. Flexural-wave-generation using a phononic crystal with a piezoelectric defect. Appl. Math. Mech. 2023, 44, 1241–1262. [Google Scholar] [CrossRef]
- Grover, S.; Moddel, G. Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers. Solid-State Electron. 2012, 67, 94–99. [Google Scholar] [CrossRef]
- Haynes, M.; Moghaddam, M. Multipole and S-parameter antenna and propagation model. IEEE Trans. Antennas Propag. 2010, 59, 225–235. [Google Scholar] [CrossRef]
- Ali, A.; Pasha, R.A.; Elahi, H.; Sheeraz, M.A.; Bibi, S.; Hassan, Z.U.; Eugeni, M.; Gaudenzi, P. Investigation of deformation in bimorph piezoelectric actuator: Analytical, numerical and experimental approach. Integr. Ferroelectr. 2019, 201, 94–109. [Google Scholar] [CrossRef]
- Asadi Dereshgi, H.; Dal, H.; Sayan, M.E. Analytical analysis of a circular unimorph piezoelectric actuator in the range of low voltages and pressures. Microsyst. Technol. 2020, 26, 2453–2464. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 2009, 18, 025009. [Google Scholar] [CrossRef]
- Gao, X.; Yang, J.; Wu, J.; Xin, X.; Li, Z.; Yuan, X.; Shen, X.; Dong, S. Piezoelectric actuators and motors: Materials, designs, and applications. Adv. Mater. Technol. 2020, 5, 1900716. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Deng, J.; Tian, X.; Gao, X. Development of a two-DOF inertial rotary motor using a piezoelectric actuator constructed on four bimorphs. Mech. Syst. Signal Process. 2021, 149, 107213. [Google Scholar] [CrossRef]
- Zhou, W.; Lim, C. Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves. Int. J. Mech. Sci. 2019, 159, 359–372. [Google Scholar]
- Liang, X.; Wang, T.; Jiang, X.; Liu, Z.; Ruan, Y.; Deng, Y. A numerical method for flexural vibration band gaps in a phononic crystal beam with locally resonant oscillators. Crystals 2019, 9, 293. [Google Scholar] [CrossRef]
- Guo, Y.; Li, L.; Chuang, K.-C. Analysis of bending waves in phononic crystal beams with defects. Crystals 2018, 8, 21. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Y.; Ni, Z.-Q.; Zhang, Z.-M.; Jiang, L.-H. A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams. Phys. B Condens. Matter 2012, 407, 4579–4583. [Google Scholar] [CrossRef]
- Yu, P.; Wang, L.; Zhang, S.; Jin, J. Transfer matrix modeling and experimental verification of forked piezoelectric actuators. Int. J. Mech. Sci. 2022, 232, 107604. [Google Scholar] [CrossRef]
- Boiangiu, M.; Ceausu, V.; Untaroiu, C.D. A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section. J. Vib. Control 2016, 22, 2591–2602. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.K.; Kim, Y.Y. Elastic metamaterial-based impedance-varying phononic bandgap structures for bandpass filters. J. Sound Vib. 2015, 353, 58–74. [Google Scholar] [CrossRef]
- Lucklum, R.; Ke, M.; Zubtsov, M. Two-dimensional phononic crystal sensor based on a cavity mode. Sens. Actuators B Chem. 2012, 171, 271–277. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, H.S.; Ma, P.S.; Kim, Y.Y. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality. J. Appl. Phys. 2016, 120, 104902. [Google Scholar] [CrossRef]
- Kweun, J.M.; Lee, H.J.; Oh, J.H.; Seung, H.M.; Kim, Y.Y. Transmodal Fabry-Pérot resonance: Theory and realization with elastic metamaterials. Phys. Rev. Lett. 2017, 118, 205901. [Google Scholar] [CrossRef] [PubMed]
- Wang, G. Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory. J. Intell. Mater. Syst. Struct. 2013, 24, 226–239. [Google Scholar] [CrossRef]
- Erturk, A. Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 2012, 106, 214–227. [Google Scholar] [CrossRef]
- Hosseini, R.; Hamedi, M. Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J. Micromechanics Microengineering 2015, 25, 125008. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Yan, Z.; Hajj, M.R. Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 2013, 22, 025016. [Google Scholar] [CrossRef]
- Ghannadiasl, A.; Ajirlou, S.K. Forced vibration of multi-span cracked Euler–Bernoulli beams using dynamic Green function formulation. Appl. Acoust. 2019, 148, 484–494. [Google Scholar] [CrossRef]
- Mazilu, T. Numerically stable form of Green’s function for a free-free uniform Timoshenko beam. Mathematics 2022, 11, 86. [Google Scholar] [CrossRef]
- Ni, Z.-Q.; Zhang, Y.; Jiang, L.-H.; Han, L. Bending vibration band structure of phononic crystal beam by modified transfer matrix method. Int. J. Mod. Phys. B 2014, 28, 1450093. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, C.I.; Kim, K.; Kim, Y.Y. Meta-ring for enhancing emission efficiency of omnidirectional SH waves. Int. J. Mech. Sci. 2023, 251, 108354. [Google Scholar] [CrossRef]
- Kim, S.Y.; Oh, Y.B.; Lee, J.S.; Kim, Y.Y. Anomalous mode-converting reflection of elastic waves using strip-type metagratings. Mech. Syst. Signal Process. 2023, 186, 109867. [Google Scholar] [CrossRef]
- Hosseinkhani, A.; Ebrahimian, F.; Younesian, D.; Moayedizadeh, A. Defected meta-lattice structures for the enhanced localized vibrational energy harvesting. Nano Energy 2022, 100, 107488. [Google Scholar] [CrossRef]
- Shao, H.; Chen, G.; He, H. Elastic wave localization and energy harvesting defined by piezoelectric patches on phononic crystal waveguide. Phys. Lett. A 2021, 403, 127366. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.-H.; Lee, D.; Youn, B.D. Defect-Band Splitting of a One-Dimensional Phononic Crystal with Double Defects for Bending-Wave Excitation. Mathematics 2023, 11, 3852. https://doi.org/10.3390/math11183852
Jo S-H, Lee D, Youn BD. Defect-Band Splitting of a One-Dimensional Phononic Crystal with Double Defects for Bending-Wave Excitation. Mathematics. 2023; 11(18):3852. https://doi.org/10.3390/math11183852
Chicago/Turabian StyleJo, Soo-Ho, Donghyu Lee, and Byeng D. Youn. 2023. "Defect-Band Splitting of a One-Dimensional Phononic Crystal with Double Defects for Bending-Wave Excitation" Mathematics 11, no. 18: 3852. https://doi.org/10.3390/math11183852
APA StyleJo, S.-H., Lee, D., & Youn, B. D. (2023). Defect-Band Splitting of a One-Dimensional Phononic Crystal with Double Defects for Bending-Wave Excitation. Mathematics, 11(18), 3852. https://doi.org/10.3390/math11183852