The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator
Abstract
1. Introduction
2. Coefficient Bounds
3. Fekete–Szegö Inequalities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution. AIMS Math. 2020, 5, 7087–7106. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Ghanim, F.; Lupaş, A.A. Sandwich-type theorems for a family of non-Bazilevič functions involving a q-analog integral operator. Mathematics 2023, 11, 2479. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M. A class of harmonic (p,q)-starlike functions involving a generalized (p,q)-Bernardi integral operator. Probl. Anal. Issues Anal. 2023, 12, 17–36. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T. Fekete-Szego, inequalities for certain class of analytic functions connected with q-anlogue of Bessel function. J. Egypt. Math. Soc. 2019, 27, 42. [Google Scholar] [CrossRef]
- El-Deeb, S.M. Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function. Abstr. Appl. Anal. 2020, 2020, 8368951. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T. Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 2019, 7, 1185. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. A certain class of analytic functions of complex order connected with a q-analogue of integral operators. Miskolc Math. Notes 2020, 21, 417–433. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Akgül, A.; Sakar, F.M. A certain subclass of bi-univalent analytic functions introduced by means of the q-analogue of Noor integral operator and Horadam polynomials. Turk. J. Math. 2019, 43, 2275–2286. [Google Scholar] [CrossRef]
- Akgül, A.; Sakar, F.M. A new characterization of (P, Q)-Lucas polynomial coefficients of the bi-univalent function class associated with q-analogue of Noor integral operator. Afr. Mat. 2022, 33, 87. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; El-Matary, B.M. Subclasses of bi-univalent functions associated with q-confluent hypergeometric distribution based upon the Horadam polynomials. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 82–93. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1973. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Bulboacă, T. Bi-univalent functions of order U3b6 connected with (m,n)-Lucas polynomials. J. Math. Comput. Sci. 2023, 31, 433–447. [Google Scholar] [CrossRef]
- Lupaş, A.A.; El-Deeb, S.M. Subclasses of bi-univalent functions connected with integral operator based upon Lucas polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- Magesh, N.; El-Deeb, S.M.; Themangani, R. Classes of bi-univalent functions defined by convolution. South East Asian J. Math. Math. Sci. 2020, 16, 1–15. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Xu, Q.-H.; Gui, Y.-C.; Srivastava, H.M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 2012, 25, 990–994. [Google Scholar] [CrossRef]
- Noshiro, K. On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. Ser. 1934, 2, 129–155. [Google Scholar] [CrossRef]
- Yamaguchi, K. On functions satisfying ℜf(z)/z > 0. Proc. Am. Math. Soc. 1966, 17, 588–591. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; El-Deeb, S.M.; Aydoǧan, S.M.; Sakar, F.M. The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator. Mathematics 2023, 11, 3363. https://doi.org/10.3390/math11153363
Breaz D, El-Deeb SM, Aydoǧan SM, Sakar FM. The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator. Mathematics. 2023; 11(15):3363. https://doi.org/10.3390/math11153363
Chicago/Turabian StyleBreaz, Daniel, Sheza M. El-Deeb, Seher Melike Aydoǧan, and Fethiye Müge Sakar. 2023. "The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator" Mathematics 11, no. 15: 3363. https://doi.org/10.3390/math11153363
APA StyleBreaz, D., El-Deeb, S. M., Aydoǧan, S. M., & Sakar, F. M. (2023). The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator. Mathematics, 11(15), 3363. https://doi.org/10.3390/math11153363