Developable Surfaces Foliated by General Ellipses in Euclidean Space R3
Abstract
:1. Introduction
2. Gaussian Curvatures
3. Proof of Theorem 1
3.1. When
3.1.1. When
3.1.2.
3.2. When , Then and
3.2.1.
3.2.2. When , Then
4. Proof of Theorem 2
4.1.
4.2.
5. Proof of Theorem 3
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Izumiya, S.; Saji, K.; Takeuchi, N. Circular surfaces. Adv. Geom. 2007, 7, 295–313. [Google Scholar] [CrossRef]
- Hui, S.K.; Chakraborty, D. Some types of Ricci solitons on (LCS) n-manifolds. J. Math. Sci. Adv. Appl. 2016, 37, 17. [Google Scholar]
- Enneper, A. Ueber die Cyclischen Flächen; Nach. Kőnigl. Ges. d. Wisseensch. Gőttingen Math. Phys. Kl; The Mathdoc Digital Mathematics Library: Grenoble, France, 1866; pp. 243–249. [Google Scholar]
- Enneper, A. Die cyclischen Flächen. Z. Math. Phys. 1869, 14, 393–421. [Google Scholar]
- Marsh, D. Applied Geometry for Computer Graphics and CAD; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Pottman, H.; Wallner, J. Computational Line Geometry; Springer: New York, NY, USA, 2001. [Google Scholar]
- Alluhaibi, N. Circular surfaces and singularities in Euclidean 3-space E3. AIMS Math. 2022, 7, 12671–12688. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for Timelike Developable Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.A.; Abdel-Baky, R.A. Spacelike Circular Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Nazra, S.H.; Abdel-Baky, R.A. Timelike Circular Surfaces and Singularities in Minkowski 3-Space. Symmetry 2022, 14, 1914. [Google Scholar] [CrossRef]
- Nazra, S.H.; Abdel-Baky, R.A. Singularities of Non-lightlike Developable Surfaces in Minkowski 3-Space. Mediterr. J. Math. 2023, 20, 45. [Google Scholar] [CrossRef]
- Riemann, B. Über die Flächen vom Kleinsten Inhalt bei Gegebener Begrenzung; Abh. Königl Ges. d. Wissensch. Göttingen Mathema C1; The Mathdoc Digital Mathematics Library: Grenoble, France, 1868; Volume 13, pp. 329–333. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, J.C.C. Cyclic surfaces of constant mean curvature. Nachr. Akad. Wiss. Gottingen Math. Phys. 1989, II 1, 1–5. [Google Scholar]
- Delaunay, C. Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pure Appl. 1841, 6, 309–320. [Google Scholar]
- López, R. Cyclic surfaces of constant Gauss curvature. Houston J. Math. 2001, 27, 799–805. [Google Scholar]
- López, R. On linear Weingarten surfaces. Int. J. Math. 2008, 19, 439–448. [Google Scholar] [CrossRef] [Green Version]
- López, R. Special Weingarten surfaces foliated by circles. Monatsh. Math. 2008, 154, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.T.; Hamdoon, F.M. Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space. Korean J. Math. 2017, 25, 537–554. [Google Scholar]
- Hilbert, D.A.; Cohn-Vossen, S. Geometry and the Imagination; American Mathematical Society: Now York, NY, USA, 1990. [Google Scholar]
- Ali, A.T.; Abdel, A.H.S.; Sorour, A.H. On some geometric properties of quadric surfaces in Euclidean space. Honam Math. J. 2016, 38, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.T. CMC Surfaces Foliated by Ellipses in Euclidean Space E3. Honam Math. J. 2018, 40, 701–718. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.T. Developable Surfaces Foliated by General Ellipses in Euclidean Space R3. Mathematics 2023, 11, 3200. https://doi.org/10.3390/math11143200
Ali AT. Developable Surfaces Foliated by General Ellipses in Euclidean Space R3. Mathematics. 2023; 11(14):3200. https://doi.org/10.3390/math11143200
Chicago/Turabian StyleAli, Ahmad T. 2023. "Developable Surfaces Foliated by General Ellipses in Euclidean Space R3" Mathematics 11, no. 14: 3200. https://doi.org/10.3390/math11143200