Next Article in Journal
Multi-View Learning-Based Fast Edge Embedding for Heterogeneous Graphs
Next Article in Special Issue
A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems
Previous Article in Journal
A New Method for Commercial-Scale Water Purification Selection Using Linguistic Neural Networks
Previous Article in Special Issue
Generalized Equilibrium Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A New Extension of CJ Metric Spaces—Partially Controlled J Metric Spaces

1
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
2
Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(13), 2973; https://doi.org/10.3390/math11132973
Submission received: 6 June 2023 / Revised: 29 June 2023 / Accepted: 30 June 2023 / Published: 3 July 2023

Abstract

:
This article introduces the concept of partially controlled J metric spaces; in particular, the J metric space with self-distance is not necessarily zero, which is important in computer science. We prove the existence of a unique fixed point for linear and nonlinear contractions, provide some examples to prove the existence of this metric space, and present some important applications in fractional differential equations, i.e., “Riemann–Liouville derivatives”.

1. Introduction

In 1922, Banach [1] introduced the theory of fixed points; this theory has been further developed through generalizations of linear and nonlinear contractions [2,3]. Generalizations have been made for metric spaces, such as the b metric space and its generalization [4], as well as the J metric space [5], and many more such as [6]. However, all of these extensions assume that the self-distance is zero.
In 1994, Matthews suggested the concept of “non-zero self-distance” to help researchers in the computer science field, where the self-distance in many applications is not necessarily zero. Matthews introduced the concept of partial metric spaces in two dimensions; in 2012, Sedgi [7] introduced the S metric space (the ordinary metric space in three dimensions), where the self-distance is zero. In 2014, Mlaiki introduced  S p  (the partial S metric space) [8], where the self-distance is not necessarily zero, and is in three dimensions.
This fixed theory has many applications in economics, such as game theory, for finding equilibrium points and optimization problems [9]. It is very interesting and useful in the existence of orbits and the study of dynamical systems [9]. Moreover, in mathematics, it has significant applications, especially in solving nonlinear hybrid differential equations [10,11], and it is also used to solve some nontrivial equations [12], which has motivated researchers to work further on the fixed point theory.
In 2022, Souayah introduced J metric spaces [5], where the self-distance equals zero. However, the triangle inequality includes a constant c that is greater than zero and a limit of the supremum for certain sequences  { α n }  that converge to certain values in the metric space, leading to important applications. In 2022, Aiadi introduced the controlled J metric space as a generalization of the J metric space [13]; they replaced the constant c in the J metric space with a function f. They proved the existence and the uniqueness of the fixed point for linear and nonlinear self-mapping contractions, and they put forward certain applications for solving the linear system.
In this paper, after checking the importance of “non-zero self-distance” for computer science, and how most applications in data science and computer science need self-distance to not necessarily be zero [14,15], we introduce the partially controlled J metric space, which is a generalization of the controlled J metric space, where the self-distance is not necessarily zero. When the self-distance is zero, it will be a special case of a “partial controlled J metric space”; we provide examples to prove the existence of the defined metric space and the uniqueness of self-mapping (linear and non-linear contractions). At the end of this paper, we present important applications in fractional differential equations, specifically the “Riemann–Liouville derivatives”, which represent the most significant extensions of ordinary calculus, with other definitions being considered as special cases.

2. Preliminaries

First, we start by recalling some basic definitions of partial metric spaces.
Definition 1
([16]). Let  p : Υ × Υ R + , where Υ is a nonempty set and it is denoted as a partial metric on Υ if for any  Φ , Ψ , Ω Υ  the following conditions hold true:
(P1)
Φ = Ψ  if and only if  p ( Φ , Φ ) = p ( Ψ , Ψ ) = p ( Φ , Ψ ) ;
(P2)
p ( Φ , Φ ) p ( Φ , Ψ ) ;
(P3)
p ( Φ , Ψ ) = p ( Ψ , Φ ) ;
(P4)
p ( Φ , Ψ ) p ( Φ , Ω ) + p ( Ψ , Ω ) p ( Ω , Ω ) .
Definition 2
([5]). Consider a nonempty set Υ, and a function  J : Υ 3 [ 0 , + ) . Let us define the set,
S ( J , Υ , ϕ ) = { { ϕ n } Υ : lim n + J ( ϕ , ϕ , ϕ n ) = 0 }
for all  ϕ Υ .
Definition 3
([5]). Let Υ be a nonempty set and  J : Υ 3 [ 0 , + ) , which satisfies the conditions below:
(i)
J ( Φ , Ψ , Ω ) = 0  implies  Φ = Ψ = Ω  for any  Φ , Ψ , Ω Υ .
(ii)
There are some  K > 0 , where for each  ( Φ , Ψ , Ω ) Υ 3  and  { ν n } S ( J , δ , ν )
J ( Φ , Ψ , Ω ) K lim sup n + J ( Φ , Φ , ν n ) + J ( Ψ , Ψ , ν n ) + J ( Ω , Ω , ν n ) .
Then,  ( Υ , J )  is defined as a J metric space. In addition, if  J ( Φ , Φ , Ψ ) = J ( Ψ , Ψ , Φ )  for each  Φ , Ψ Υ ,  the pair  ( Υ , J )  is defined as a symmetric J metric space.
Definition 4
([13]). Let Υ be a set with at least one element and  C J : Υ 3 [ 0 , + )  fulfill the following conditions:
(i)
C J ( Φ , Ψ , Ω ) = 0  implies  Φ = Ψ = Ω  for all  Φ , Ψ , Ω Υ .
(ii)
There exists a function  θ : Υ 3 [ 0 , + ) , and  α n S ( C J , Y , ϕ ) ,
C J ( Φ , Ψ , Ω ) θ ( Φ , Ψ , Ω ) lim sup n + ( C J ( Φ , Φ , α n ) + C J ( Ψ , Ψ , α n ) + C J ( Ω , Ω , α n ) ) .
Then,  ( Υ , C J )  is defined as  C J  metric space. In addition, if
C J ( Φ , Φ , Ψ ) = C J ( Ψ , Ψ , Φ ) .
For each  Φ , Ψ Υ , then  ( Υ , C J )  is defined as a symmetric  C J  metric space.

3. Main Result

In this section, we generalize both metric spaces [partial and J metric spaces] to obtain the new extension defined below as partially controlled metric space.
Definition 5.
Let Υ be a nonempty set and a function  P J : Υ 3 [ 0 , + ) . Then the set is defined as follows:
S ( P J , Υ , Φ ) = { { Φ n } Υ : lim n + P J ( Φ , Φ , Φ n ) = P J ( Φ , Φ , Φ ) = lim n + P J ( Φ n , Φ n , Φ n ) }
for each  Φ Υ .
Definition 6.
Let Υ be a nonempty set and a function  P J : Υ 3 [ 0 , + )  is said to be a partially controlled J metric space if, for all  Φ , Ψ , Ω Υ  the following conditions hold
(i)
Φ = Ψ = Ω  if  P J ( Φ , Φ , Φ ) = P J ( Ψ , Ψ , Ψ ) = P J ( Ω , Ω , Ω ) = P J ( Ψ , Φ , Ω ) .
(ii)
P J ( Φ , Φ , Φ ) P J ( Φ , Φ , Ψ ) .
(iii)
There exists a continuous function  θ : Υ 3 [ 0 , + ) , and  μ n S ( P J , Y , Φ ) , such that for all  Ψ , Φ , Ω Υ  we have
P J ( Φ , Ψ , Ω ) θ ( Φ , Ψ , Ω ) . lim sup n + ( P J ( Φ , Φ , μ n ) + P J ( Ψ , Ψ , μ n ) + P J ( Ω , Ω , μ n ) ) .
Then,  ( Υ , P J )  is defined as a  P J  metric space. In addition, if
P J ( Φ , Φ , Ψ ) = P J ( Ψ , Ψ , Φ ) ,
for each  Φ , Ψ Υ ,  then  ( Υ , P J )  is defined as a symmetric  P J  metric space.
Remark 1.
This symmetry hypothesis does not necessarily mean that
P J ( Φ , Ψ , Ω ) = P J ( Ψ , Ω , Φ ) = P J ( Ω , Ψ , Φ ) =
We will start by presenting some properties in the topology of  P J  metric spaces.
Definition 7.
(1)
Let  ( Υ , P J )  be a  P J  metric space. A sequence  { Φ n } Υ  converges to an element  Φ Υ  if and only if
lim n + P J ( Φ n , Φ n , Φ n )  =  P J ( Φ , Φ , Φ )  =  lim n + P J ( Φ n , Φ n , Φ )  =  lim n + P J ( Φ , Φ , Φ n )
(2)
Let  ( Υ , P J )  be a  P J  metric space. A sequence  { Φ n } Υ  is called Cauchy if and only if
lim n , m + P J ( Φ n , Φ n , Φ m )  exists and it is finite.
(3)
A  P J  metric space is denoted as complete if each Cauchy sequence in Υ is convergent.
Remark 2.
In a  P J  space, the limit is not necessarily unique.
In the following proposition, we show that the limit is unique if and only if  θ ( Φ , Ψ , Ω ) 1 3 .
Proposition 1.
In a  P J space,  ( Υ , P J ) , if  { Φ n }  is convergent, and  θ ( Φ , Ψ , Ω ) 1 3  for all  Φ , Ψ , Ω Υ ,  then it converges to only one element.
Proof. 
Let us assume that  { Φ n }  converges to  Φ 1  and  Φ 2 .  By using the definition of convergence,
P J ( Φ 1 , Φ 1 , Φ 1 ) = lim n + P J ( Φ n , Φ n , Φ n ) = P J ( Φ 2 , Φ 2 , Φ 2 ) ,
P J ( Φ 1 , Φ 1 , Φ 2 ) θ ( Φ 1 , Φ 1 , Φ 2 ) . lim sup n + 2 P J ( Φ 1 , Φ 1 , Φ n ) + P J ( Φ 2 , Φ 2 , Φ n ) 1 3 lim sup n + 2 P J ( Φ 1 , Φ 1 , Φ n ) + P J ( Φ 2 , Φ 2 , Φ n ) = 1 3 ( 2 P J ( Φ 1 , Φ 1 , Φ 1 ) + P J ( Φ 2 , Φ 2 , Φ 2 ) ) = P J ( Φ 1 , Φ 1 , Φ 1 ) .
Thus,  P J ( Φ 1 , Φ 1 , Φ 2 ) P J ( Φ 1 , Φ 1 , Φ 1 ) = P J ( Φ 2 , Φ 2 , Φ 2 ) ) .  On the other hand, by the definition of the metric spaces, we have  P J ( Φ 1 , Φ 1 , Φ 1 ) P J ( Φ 1 , Φ 1 , Φ 2 ) .  Hence,  Φ 1 = Φ 2  is desired. □
Definition 8.
Let  ( Υ , ψ )  and  ( Λ , ϕ )  be  P J  metric spaces and Γ is said to be a continuous function  Γ : Υ Λ  at  α Υ  if for every  ϵ > 0  there is a  δ > 0 , such that for all  x Υ , ψ ( x , x , α ) < δ  implies  ϕ ( Γ ( x ) , Γ ( x ) , Γ ( α ) ) < ϵ .
Definition 9.
Let  ( Υ , P J )  be a partially controlled J metric space and  Φ 0 Υ ϵ > 0  is the  P J  open ball, and  P J  is the closed ball of radius λ with centered  Φ 0  are
B P J ( Φ 0 , ϵ ) = { Φ Υ : P J ( Φ 0 , Φ 0 , Φ ) P J ( Φ 0 , Φ 0 , Φ 0 ) < ϵ }
B P J [ Φ 0 , ϵ ] = { Φ Υ : P J ( Φ 0 , Φ 0 , Φ ) P J ( Φ 0 , Φ 0 , Φ 0 ) ϵ }
Example 1.
Let  Υ = [ 0 , + )  and  P J : Υ 3 [ 0 , + )  be defined by
P J ( Φ , Ψ , Ω ) = m a x { Φ , Ψ , Ω } ,
for all  Φ , Ψ , Ω [ 0 , + ) .
(1)
P J ( Φ , Φ , Φ ) = P J ( Ψ , Ψ , Ψ ) = P J ( Ω , Ω , Ω ) , which means that
m a x ( Φ , Φ , Φ ) = m a x ( Ψ , Ψ , Ψ ) = m a x ( Ω , Ω , Ω ) , which implies that  Φ = Ψ = Ω .
(2)
Due to  Φ , Ψ , Ω [ 0 , + ) , then  P J ( Φ , Φ , Φ ) = Φ P J ( Φ , Φ , Ω ) = m a x ( Φ , Φ , Ω ) .
(3)
Let
θ ( Φ , Ψ , Ω ) = Φ + Ψ , if Φ , Ψ are even and Ω = 2 n + 1 Ψ , if Φ , Ψ are odd and Ω = 2 n 1 , otherwise .
P J ( Φ , Ψ , Ω ) = m a x { Φ , Ψ , Ω }
m a x ( Φ , Ψ , Ω ) θ ( Φ , Ψ , Ω ) lim sup n + P J ( Φ , Φ , Φ n ) + P J ( Ψ , Ψ , Φ n ) + P J ( Ω , Ω , Φ n ) .
To show this, note that for  Φ n = Φ + 1 n S ( P J , Y , Φ )  and  Φ , Ψ , Ω Υ , and using the fact that  θ ( Φ , Ψ , Ω ) 1 , we deduce
θ ( Φ , Ψ , Ω ) lim sup n + P J ( Φ , Φ , Φ n ) + P J ( Ψ , Ψ , Φ n ) + P J ( Ω , Ω , Φ n ) lim sup n + P J ( Φ , Φ , Φ n ) + P J ( Ψ , Ψ , Φ n ) + P J ( Ω , Ω , Φ n ) = Φ + m a x { Ψ , Φ } + m a x { Ω , Φ } m a x { Φ , Ψ , Ω } = P J ( Φ , Ψ , Ω ) .
Therefore, the third condition is satisfied as required. This example shows and proves the existence of the new metric space.
Theorem 1.
Let  ( Υ , P J )  be a partial complete symmetric  P J  metric space and  φ : Υ Υ  be a continuous map satisfying
P J ( φ Φ , φ Ψ , φ Ω ) Q ( P J ( Φ , Ψ , Ω ) ) for all Φ , Ψ , Ω Υ ,
where  Q : [ 0 , + ) [ 0 , + )  is an increasing continuous function, such that
lim n + Q n ( t ) = 0 for each fixed t > 0 .
For every  Φ Υ , let  M ( P J , φ , Φ ) = sup P J ( Φ , Φ , φ j Φ ) : j N { 0 } . If there exists  Φ 0 Υ , such that  M ( P j , φ , Φ 0 )  is finite, then φ has a unique fixed point in Υ.
Proof. 
To prove the existence and the uniqueness of the fixed point, let us define
{ Φ n } n 0 X
as
( Φ 1 = φ Φ 0 ) , ( Φ 2 = φ Φ 1 ) , , ( Φ n = φ n Φ 0 ) . n = 1 , 2 ,
Let us start by showing that  { Φ n }  is a Cauchy sequence.
For every pair  n , m N  and  n < m  by applying (2)
P J ( Φ n , Φ n , Φ m ) = P J ( φ Φ n 1 , φ Φ n 1 , φ Φ m 1 ) Q P J ( Φ n 1 , Φ n 1 , Φ m 1 ) = Q P J ( φ Φ n 2 , φ Φ n 2 , φ Φ m 2 ) Q 2 P J ( Φ n 2 , Φ n 2 , Φ m 2 ) Q n P J ( Φ 0 , Φ 0 , Φ m n ) .
Assume that  m = n + q  is for some constant  q N  to obtain
P J ( Φ n , Φ n , Φ m ) Q n P J ( Φ 0 , Φ 0 , Φ q )
and by using the definition of M and the properties of  M ( P J , φ , Φ 0 ) , we have
P J ( Φ n , Φ n , Φ n + q ) = P J ( φ Φ n 1 , φ Φ n 1 , φ Φ n + q 1 ) Q P J ( Φ n 1 , Φ n 1 , Φ n + q 1 ) = Q ( M ( P J , φ , Φ n + q 1 ) Q n ( M ( P J , φ , Φ 0 )
By applying the limit in (3) as  n +  and  M ( P J , φ , Φ 0 ) < + , we have
lim n + P J ( Φ n , Φ n , Φ m ) = 0 .
So, that  { Φ n }  is a Cauchy sequence in  Υ .
Due to the completeness definition,  { Φ n }  converges to a  Φ Υ , which means
lim n + P J ( Φ n , Φ n , Φ n ) = P J ( Φ , Φ , Φ ) = lim n + P J ( Φ n , Φ n , Φ ) = lim n + P J ( Φ , Φ , Φ n )
Secondly, we will attempt to prove the existence of the fixed point; that is
P J ( Φ , Φ , Φ ) = P J ( φ Φ , φ Φ , φ Φ ) .
We will start with
P J ( Φ , Φ , φ Φ ) θ ( Φ , Φ , φ Φ ) lim sup n + ( 2 P J ( Φ , Φ , Φ n + 1 ) + P J ( φ Φ , φ Φ , Φ n + 1 ) ) = θ ( Φ , Φ , φ Φ ) lim sup n + ( 2 P J ( Φ n + 1 , Φ n + 1 , Φ n + 1 ) + P J ( φ Φ , φ Φ , φ Φ n ) ) = θ ( Φ , Φ , φ Φ ) lim sup n + ( 2 P J ( φ Φ n , φ Φ n , φ Φ n ) + P J ( φ Φ , φ Φ , φ Φ n ) ) 3 θ ( Φ , Φ , φ Φ ) lim sup n + Q ( P J ( Φ n , Φ n , Φ n ) 3 θ ( Φ , Φ , φ Φ ) lim sup n + Q n P J ( Φ 0 , Φ 0 , Φ 0 ) .
Since
lim n + Q n ( t ) = 0 ,
which implies that
P J ( Φ , Φ , φ Φ ) = 0 .
Similarly, it can be shown that  P J ( φ Φ , φ Φ , φ Φ ) = 0 .
By applying the second condition of the  P J  metric space
P J ( Φ , Φ , φ Φ ) P J ( Φ , Φ , Φ ) .
Which gives that
P J ( Φ , Φ , Φ ) = P J ( φ Φ , φ Φ , φ Φ ) = P J ( Φ , Φ , Φ ) = 0 ,
Φ = φ Φ
That is the definition of the fixed point.
The uniqueness of the fixed point is left to be proven. Assume that there are two fixed points,  Φ 1  and  Φ 2 , we need to show that  Φ 1  =  Φ 2 .
Because both are fixed points, then
P J ( Φ 1 , Φ 1 , Φ 1 ) = P J ( φ Φ 1 , φ Φ 1 , φ Φ 1 ) ,
and
P J ( Φ 2 , Φ 2 , Φ 2 ) = P J ( φ Φ 2 , φ Φ 2 , φ Φ 2 ) .
Let us take
P J ( Φ 1 , Φ 1 , Φ 2 ) = P J ( φ Φ 1 , φ Φ 1 , φ Φ 2 ) . Q ( P J ( Φ 1 , Φ 1 , Φ 2 )
Apply this property n times to obtain
P J ( Φ 1 , Φ 1 , Φ 2 ) Q n ( P J ( φ Φ 1 , φ Φ 1 , φ Φ 2 ) .
As
lim n + Q n ( t ) = 0 P J ( Φ 1 , Φ 1 , Φ 2 ) = 0
and by using the second condition of the  P J  metric space, then
P J ( Φ 1 , Φ 1 , Φ 1 ) P J ( Φ 1 , Φ 1 , Φ 2 ) = 0 .
Similarly, it can be shown that  P J ( Φ 2 , Φ 2 , Φ 1 ) = 0 . From
P J ( Φ 2 , Φ 2 , Φ 2 ) P J ( Φ 2 , Φ 2 , Φ 1 ) = 0 .
we have
P J ( Φ 2 , Φ 2 , Φ 2 ) = P J ( Φ 1 , Φ 1 , Φ 1 ) = 0 .
Thus, as desired,  φ  has a unique fixed point in  Υ . □
Example 2.
Let  Υ = [ 0 , + )  and  P J : Υ 3 [ 0 , + )  be defined by
P J ( Φ , Ψ , Ω ) = m a x { Φ , Ψ , Ω } ,
for all  Φ , Ψ , Ω [ 0 , + ) .
Let  Q ( t ) = t 1 + t .  Note that,
Q 2 ( t ) = t 1 + t 1 + t 1 + t = t 1 + 2 t , Q 3 ( t ) = t 1 + 2 t 1 + t 1 + 2 t = t 1 + 3 t .
Now, by induction on n, we can easily deduce that
Q n ( t ) = t 1 + n t .
Hence,
lim n + Q n ( t ) = 0 .
Next, let  φ ( x ) = x 1 + x .
(1)
P J  is a symmetric and complete partially controlled J metric space.
(2)
P J ( φ Φ , φ Ψ , φ Ω ) Q ( P J ( Φ , Ψ , Ω ) ) , because
max Φ 1 + Φ , Ψ 1 + Ψ , Ω 1 + Ω max { Φ , Ψ , Ω } 1 + max { Φ , Ψ , Ω } , for all Φ , Ψ , Ω 0 .
This is an example that φ has a unique fixed point in Υ.
Theorem 2.
Let  ( Υ , P J )  be a complete symmetric  P J  metric space and φ :   Υ Υ  be a mapping that satisfies
P J ( φ Φ , φ Ψ , φ Ω ) ϕ ( Φ , Ψ , Ω ) P J ( Φ , Ψ , Ω ) for all Φ , Ψ , Ω Υ ,
ϕ :   Υ 3 ( 0 , 1 ) , is a given mapping satisfying  ϕ ( φ Φ , φ Ψ , φ Ω ) ) ϕ ( Φ , Ψ , Ω ) , and  φ : Υ Υ . For every  Φ Υ , let  M ( P J , φ , Φ ) = sup P J ( Φ , Φ , φ j Φ ) : j N { 0 }  and
M ( P J , φ , Φ ) = sup ϕ ( φ i Φ , φ i Φ , φ j Φ ) : i , j N { 0 } .
If there exists  Φ 0 Υ , such that  M ( P j , φ , Φ 0 )  is finite, and  M ( P j , φ , Φ 0 ) < 1 , then ϕ has a unique fixed point in Υ.
Proof. 
We build a sequence  { Φ n } as follows  { Φ n = φ n Φ 0 }  .
Let us start by proving that  { Φ n }  is a Cauchy sequence. For any natural numbers,  n , m , we assume that  n < m  and we can assume that there exists  q N , where  m = n + q :
P J ( Φ n , Φ n , Φ m ) = P J ( φ Φ n 1 , φ Φ n 1 , φ Φ m 1 ) ϕ ( Φ n 1 , Φ n 1 , Φ m 1 ) P J ( Φ n 1 , Φ n 1 , Φ m 1 ) ϕ n ( Φ 0 , Φ 0 , Φ q ) P J ( Φ 0 , Φ 0 , Φ q ) .
Since  P J ( Φ 0 , Φ 0 , Φ q ) M ( P J , φ , Φ 0 ) < +  and  ϕ ( Φ 0 , Φ 0 , Φ q ) M ( P J , φ , Φ 0 ) < 1 , we have
P J ( Φ n , Φ n , Φ m ) M ( P J , φ , Φ 0 ) n M ( P J , φ , Φ 0 ) .
Taking  n +  and noting that  M ( P J , φ , Φ 0 ) n 0 , we have
lim n , m + P J ( Φ n , Φ n , Φ m ) = 0 .
so  { Φ n }  is a Cauchy sequence.
Then, by the completeness definition of  Υ , there is a  Φ Υ , such that
lim n + P J ( Φ n , Φ n , Φ n ) = P J ( Φ , Φ , Φ ) = lim n + P J ( Φ n , Φ n , Φ ) = lim n + P J ( Φ , Φ , Φ n ) .
We will show that  Φ  is a fixed point of  φ . From (13),
P J ( Φ , Φ , φ Φ ) = θ ( Φ , Φ , φ Φ ) . lim sup n + ( 2 P J ( Φ , Φ , Φ n + 1 ) + P J ( φ Φ , φ Φ , Φ n + 1 ) ) = θ ( Φ , Φ , φ Φ ) . lim sup n + ( 2 P J ( Φ n + 1 , Φ n + 1 , Φ n + 1 ) + P J ( φ Φ , φ Φ , φ Φ n ) ) = θ ( Φ , Φ , φ Φ ) . lim sup n + ( 2 P J ( φ Φ n , φ Φ n , φ Φ n ) + P J ( φ Φ , φ Φ , φ Φ n ) ) θ ( Φ , Φ , φ Φ ) . lim sup n + ( 2 ϕ ( Φ n , Φ n , Φ n ) P J ( Φ n , Φ n , Φ n ) + ϕ ( Φ , Φ , Φ n ) P J ( Φ , Φ , Φ n ) ) θ ( Φ , Φ , φ Φ ) . lim sup n + ( 2 P J ( Φ n , Φ n , Φ n ) + P J ( Φ , Φ , Φ n ) ) = 3 θ ( Φ , Φ , φ Φ ) . lim sup n + P J ( Φ n , Φ n , Φ n ) = 3 θ ( Φ , Φ , φ Φ ) . lim sup n + P J ( φ Φ n 1 , φ Φ n 1 , φ Φ n 1 ) 3 θ ( Φ , Φ , φ Φ ) . lim sup n + ϕ ( Φ n 1 , Φ n 1 , Φ n 1 ) . P J ( Φ n 1 , Φ n 1 , Φ n 1 ) 3 θ ( Φ , Φ , φ Φ ) ϕ n 1 ( Φ n 1 , Φ n 1 , Φ n 1 ) . ( P J ( Φ 0 , Φ 0 , Φ 0 ) ) 3 θ ( Φ , Φ , φ Φ ) M ( P J , φ , Φ 0 ) n 1 . ( P J ( Φ 0 . Φ 0 , Φ 0 ) )
and by using the property  M ( P J , φ , Φ 0 ) < 1 .
P J ( Φ , Φ , φ Φ ) = 0 .
Similarly, it can be shown that  P J ( φ Φ , φ Φ , φ Φ ) = 0 . Now, by using the property of the metric space
0 = P J ( Φ , Φ , φ Φ ) P J ( Φ , Φ , Φ ) .
and then
P J ( Φ , Φ , Φ ) = P J ( φ Φ , φ Φ , φ Φ ) = 0 .
This takes us to the result
Φ = φ Φ
Finally, we need to prove the uniqueness of the fixed point. Assume that there are two fixed points,  Φ 1  and  Φ 2 , we plan to show that  Φ 1 = Φ 2 .
Because both are fixed points, then
P J ( Φ 1 , Φ 1 , Φ 1 ) = P J ( φ Φ 1 , φ Φ 1 , φ Φ 1 ) ) ,
and
P J ( Φ 2 , Φ 2 , Φ 2 ) = P J ( φ Φ 2 , φ Φ 2 , φ Φ 2 ) ) .
Let us start with
P J ( Φ 1 , Φ 1 , Φ 2 ) = P J ( φ Φ 1 , φ Φ 1 , φ Φ 2 ) ϕ ( Φ 1 , Φ 1 , Φ 2 ) ( P J ( Φ 1 , Φ 1 , Φ 2 ) )
Apply this property n times to obtain
P J ( Φ 1 , Φ 1 , Φ 2 ) ϕ n ( Φ 1 , Φ 1 , Φ 2 ) ( P J ( Φ 1 , Φ 1 , Φ 2 )
as
lim n + ϕ n ( Φ 1 , Φ 1 , Φ 2 ) = 0 .
due to
ϕ : Υ 3 ( 0 , 1 )
and by using the second condition of the  P J  metric space, then
P J ( Φ 1 , Φ 1 , Φ 1 ) P J ( Φ 1 , Φ 1 , Φ 2 ) = 0 .
Similarly, it can be shown that  P J ( Φ 2 , Φ 2 , Φ 1 ) = 0 . From
P J ( Φ 2 , Φ 2 , Φ 2 ) P J ( Φ 2 , Φ 2 , Φ 1 ) = 0 ,
we have
P J ( Φ 2 , Φ 2 , Φ 2 ) = P J ( Φ 1 , Φ 1 , Φ 1 ) .
Thus,  φ  has a unique fixed point in  Υ , as desired. □
Theorem 3.
Let  ( Υ , P J )  be a complete symmetric  P J -metric space,  φ : Υ Υ  is a continuous map, where:
P J ( φ Φ , φ Ψ , φ Ω ) a P J ( Φ , Ψ , Ω ) + b P J ( Φ , φ Φ , φ Φ ) + c P J ( Ψ , φ Ψ , φ Ψ ) + d P J ( Ω , φ Ω , φ Ω ) .
for each  Φ , Ψ , Ω Υ  and
0 < a + b < 1 c d
0 < a < 1 .
For every  Φ Υ , let  M ( P J , φ , Φ ) = sup P J ( Φ , Φ , φ j Φ ) : j N { 0 } . If there exists  Φ 0 Υ , such that  M ( P j , φ , Φ 0 ) < + , then  Φ 0  is a fixed point of φ in Υ.
Proof. 
Define  { Φ n = φ n Φ 0 }  be a sequence in  Υ . By (16), we have
P J ( Φ n , Φ n + 1 , Φ n + 1 ) = P J ( φ Φ n 1 , φ Φ n , φ Φ n ) a P J ( Φ n 1 , Φ n , Φ n ) + b P J ( Φ n 1 , Φ n , Φ n ) + c P J ( Φ n , Φ n + 1 , Φ n + 1 ) + d P J ( Φ n , Φ n + 1 , Φ n + 1 ) = ( a + b ) P J ( Φ n 1 , Φ n , Φ n ) + ( c + d ) P J ( Φ n , Φ n + 1 , Φ n + 1 ) .
Then,
P J ( Φ n , Φ n + 1 , Φ n + 1 ) a + b 1 c d P J ( Φ n 1 , Φ n , Φ n ) .
By taking  k = a + b 1 c d , then by using (17) we will have  0 < k < 1 .
P J ( Φ n , Φ n + 1 , Φ n + 1 ) k n P J ( Φ 0 , Φ 1 , Φ 1 ) ,
which gives
lim n + P J ( Φ n , Φ n + 1 , Φ n + 1 ) = 0 .
We denote  P J n = P J ( Φ n , Φ n + 1 , Φ n + 1 ) . For each  n , m N , and  n < m , there is a  q N , such that  m = n + q . We have
P J ( Φ n , Φ n , Φ m ) = P J ( Φ n , Φ n , Φ n + q ) = P J ( φ Φ n 1 , φ Φ n 1 , φ Φ n + q 1 ) a P J ( Φ n 1 , Φ n 1 , Φ n + p 1 ) + b P J ( Φ n 1 , Φ n , Φ n ) + c P J ( Φ n 1 , Φ n , Φ n ) + d P J ( Φ n + q 1 , Φ n + q , Φ n + q ) = a P J ( Φ n 1 , Φ n 1 , Φ n + q 1 ) + ( b + c ) P J n 1 + d P J n + q 1 a [ a P J ( Φ n 2 , Φ n 2 , Φ n + p 2 ) + ( b + c ) P J n 2 + d Φ P J n + q 2 ] + ( b + c ) P J n 1 + d P J n + q 1 = a 2 P J ( Φ n 2 , Φ n 2 , Φ n + q 2 ) + a ( b + c ) P J n 2 + a d Φ P J n + q 2 + ( b + c ) P J n 1 + d P J n + q 1 a n P J ( Φ 0 , Φ 0 , Φ q ) + ( b + c ) k = 1 n a k 1 P J n k + d k = 1 n a k 1 P J n + q k .
Since  a n P j ( Φ 0 , Φ 0 , Φ q ) a n M ( P J , φ , Φ 0 ) a < 1  and  M ( P J , φ , Φ 0 ) < + ,
lim n + a n P j ( Φ 0 , Φ 0 , Φ q ) = 0 .
As in the first paragraph, we have
P J n k = P J ( Φ n k , Φ n k + 1 , Φ n k + 1 ) l n k P J ( Φ 0 , Φ 1 , Φ 1 ) ,
where  l = a + b 1 c d < 1 . So,
k = 1 n a k 1 P J n k P J ( Φ 0 , Φ 1 , Φ 1 ) k = 1 n a k 1 l n k .
There are two cases, if  a l , then
k = 1 n a k 1 P J n k P J ( Φ 0 , Φ 1 , Φ 1 ) k = 1 n a k 1 l n k P J ( Φ 0 , Φ 1 , Φ 1 ) k = 1 n l n 1 P J ( Φ 0 , Φ 1 , Φ 1 ) n l n 1 .
Since  0 < l < 1 lim n + n l n 1 = 0 . So,
lim n + ( b + c ) k = 1 n a k 1 P J n k = 0 .
If  a > l , then
k = 1 n a k 1 P J n k P J ( Φ 0 , Φ 1 , Φ 1 ) k = 1 n a k 1 l n k P J ( Φ 0 , Φ 1 , Φ 1 ) k = 1 n a n 1 P J ( Φ 0 , Φ 1 , Φ 1 ) n a n 1 .
Since  0 < a < 1 lim n + n a n 1 = 0 . So,
lim n + ( b + c ) k = 1 n a k 1 P J n k = 0 .
Similarly, it can be shown that (recall that  m = n + q ),
lim n , m + d k = 1 n a k 1 P J n + q k = 0 .
We obtain
lim n , m + P J ( Φ n , Φ n , Φ m ) = 0 .
Then,  { Φ n }  is a Cauchy sequence in  Υ  by using the definition of a Cauchy sequence, which is finite and exists.
By the completeness definition, there is  Φ Υ
lim n + P J ( Φ n , Φ n , Φ n ) = P J ( Φ , Φ , Φ ) = lim n + P J ( Φ n , Φ n , Φ ) = lim n + P J ( Φ , Φ , Φ n ) .
Now, since  φ  is continuous,
Φ = lim n + Φ n + 1 = lim n + φ Φ n = φ lim n + Φ n = φ Φ .
Thus,  Φ  is a fixed point of  φ .
Let  Φ 1 , Φ 2 Υ  be two fixed points of  φ , where  φ Φ 1 = Φ 1 φ Φ 2 = Φ 2 . By (2.16), if  P J ( Φ 1 , Φ 1 , Φ 1 ) 0 , then
P J ( Φ 1 , Φ 1 , Φ 1 ) = P J ( φ Φ 1 , φ Φ 1 , φ Φ 1 ) a P J ( Φ 1 , Φ 1 , Φ 1 ) + ( b + c ) P J ( Φ 1 , φ Φ 1 , φ Φ 1 ) + d P J ( Φ 1 , φ Φ 1 , φ Φ 1 ) = a P J ( Φ 1 , Φ 1 , Φ 1 ) + ( b + c ) P J ( Φ 1 , Φ 1 , Φ 1 ) + d P J ( Φ 1 , Φ 1 , Φ 1 ) = ( a + b + c + d ) P J ( Φ 1 , Φ 1 , Φ 1 ) < P J ( Φ 1 , Φ 1 , Φ 1 ) ,
a contradiction. So,  P J ( Φ 1 , Φ 1 , Φ 1 ) = 0 . Similarly,  P J ( Φ 2 , Φ 2 , Φ 2 ) = 0 . This means that
P J ( Φ 1 , Φ 1 , Φ 1 ) = P J ( Φ 2 , Φ 2 , Φ 2 ) = 0 .
and
Φ 1 = Φ 2 .
Finally, we could say that  φ  has a unique fixed point. □

4. Application of Theorem 1 to Polynomial Equations

In this section, in Example 3, we prove the existence and uniqueness of a solution to polynomial equations
Example 3.
For any natural number  n 2 , consider that equation
( x + 2 ) n = ( n 3 3 n + 2 ) x ( x + 2 ) n + n 3 3 n x ,
has a unique solution in the interval  ( 0 , 1 ] .
Proof. 
Define the mapping  T : ( 0 , 1 ] ( 0 , 1 ]  by
T x = ( x + 2 ) n ( n 3 3 n + 2 ) ( x + 2 ) n + n 3 3 n , for some n N .
Note that x is a fixed point of T if and only if x is a solution of (21). Hence, we will show that T has a unique fixed point in  ( 0 , 1 ] , by using Theorem 1.
Consider the  P J  metric space  P J : ( 0 , 1 ] 3 [ 0 , + )  that is defined in Example 1.
P J ( x , y , z ) = max { x , y , z } ,
Then,  ( ( 0 , 1 ] , P J )  is a complete  P J  metric space.
Next, we show that
P J ( T x , T y , T z ) Q ( P J ( x , y , z ) ) , for x , y , z ( 0 , 1 ] , and Q ( x ) = n 3 n 1 x n 3 3 n + 2 ( 0 , 1 ) .
First of all, note that Q is increasing on  ( 0 , 1 ]  and since  n 3 n 1 n 3 3 n + 2 < 1  for all  n 2 , we can easily deduce that for all  x ( 0 , 1 ]  we have  Q ( x ) < x .  Thus, since  Q ( x ) ( 0 , 1 ) , we deduce that for all  x ( 0 , 1 ] , we have  lim m + Q m ( x ) = 0 .
Next, we have
P J ( T x , T y , T z ) = max { ( x + 2 ) n ( n 3 3 n + 2 ) ( x + 2 ) n + n 3 3 n , ( y + 2 ) n ( n 3 3 n + 2 ) ( y + 2 ) n + n 3 3 n , ( z + 2 ) n ( n 3 3 n + 2 ) ( z + 2 ) n + n 3 3 n } max { ( x + 2 ) n ( n 3 3 n + 2 ) ( x + 2 ) n , ( y + 2 ) n ( n 3 3 n + 2 ) ( y + 2 ) n , ( z + 2 ) n ( n 3 3 n + 2 ) ( z + 2 ) n } . = max { 1 n 3 3 n + 2 , 1 n 3 3 n + 2 , 1 n 3 3 n + 2 } . max { n 3 n 1 x n 3 3 n + 2 , n 3 n 1 y n 3 3 n + 2 , n 3 n 1 z n 3 3 n + 2 } . = Q ( P J ( x , y , z ) ) .
Thus, all the assumptions of Theorem 1 are satisfied. So, T has a unique fixed point in  ( 0 , 1 ] . Hence, Equation (21) has a unique solution in the interval  ( 0 , 1 ] . □
Example 4.
( x + 2 ) 3 ( 731 x 1 ) + 729 x = 0 ,
has a unique solution in the interval  ( 0 , 1 ] .
Proof. 
Note that the equation  ( x + 2 ) 3 ( 731 x 1 ) + 729 x = 0  is equivalent to Equation (21), with  n = 3 .  Hence, the result follows from Example 3 by taking  n = 3 . □

5. Application to Fractional Differential Equation

In this section, we provide an example of a fractional differential equation, which serves as an application of our new partially controlled J metric space.
( P ) : D λ χ ( τ ) = g ( τ , χ ( τ ) ) = F χ ( t ) i f τ I 0 = ( 0 , ζ ] χ ( 0 ) = χ ( ζ ) = r
where  ζ > 0  and  g : I × R R  are continuous functions,  I = [ 0 , ζ ]  and  D λ χ  indicate a Riemann–Liouville fractional derivative of  χ  with  λ ( 0 , 1 ) .
Let  C 1 λ ( I , R ) = { g C ( ( 0 , ζ ] , R ) : τ 1 λ g C ( I , R ) } . We introduce the weighted norm
| | g | | * = max τ [ 0 , ζ ] τ 1 λ | g ( τ ) | .
Theorem 4.
Let  λ ( 0 , 1 ) g C ( I × I , R )  increasing and  0 < α < 1 . Other than that, we make the following assumption;
| g ( u 1 ( τ ) , v 1 ( τ ) ) g ( u 2 ( τ ) , v 2 ( τ ) ) | Γ ( 2 λ ) T 2 λ 1 α | v 1 v 2 |
Then  ( P )  has a solution that is unique.
Proof. 
Problem  ( P )  is equivalent to problem  M χ ( τ ) = χ ( τ ) , where
M χ ( t ) = r τ λ 1 + 1 Γ ( λ ) 0 τ ( τ s ) λ 1 F χ ( s ) d s .
Indeed, demonstrating that  M  has a fixed point suffices to establish that the problem  P  has a unique solution. Let us take and assume that  M χ ( τ ) = χ ( τ )  and by applying  D λ  to both sides, we have  D λ χ ( τ ) = F χ ( τ ) .  As a result, we must ensure that the hypothesis in Theorem 3 is satisfied, where  β = γ = δ = 0 .
Let us start first with proofing that  ( A = C 1 λ ( I , R ) , P J )  is a complete  P J  metric space if we choose:
P J ( χ , Ψ , Ω ) = max [ 0 , T ] τ 1 λ | χ ( τ ) Ψ ( τ ) | + | χ ( τ ) Ω ( τ ) | , χ , Ψ , Ω C 1 λ ( I , R ) .
Moreover, let  f ( χ , Ψ , Ω ) = max [ 0 , T ] { 2 , | χ ( τ ) | , | Ψ ( τ ) | , | Ω ( τ ) | } , for all χ , Ψ , Ω C 1 λ ( I , R )  let  χ , Ψ , Ω Υ , if  P J ( χ , Ψ , Ω ) = 0 , then  | χ ( τ ) Ψ ( τ ) | + | χ ( τ ) Ω ( τ ) | =  for all  τ [ 0 , T ]  which provides us with  χ = Ψ = Ω . On the other hand, let  ( π n )  be a convergent of the sequence, such that  lim n + P J ( Ω , Ω , π n ) , which implies that  lim n + | π n ( τ ) Ω ( τ ) | = 0 , we have
P J ( χ , Ψ , Ω ) = max [ 0 , ζ ] τ 1 λ | χ ( τ ) Ψ ( τ ) | + | Φ ( τ ) Ω ( τ ) | = max [ 0 , ζ ] τ 1 λ | χ ( τ ) π n ( τ ) + π n ( τ ) Ψ ( τ ) | + | χ ( τ ) π n ( τ ) + π n ( τ ) Ω ( τ ) | max [ 0 , ζ ] τ 1 λ 2 | χ ( τ ) π n ( τ ) | + | π n ( τ ) Ψ ( τ ) | + | π n ( τ ) Ω ( τ ) | 2 lim sup n + max [ 0 , ζ ] τ 1 λ | χ ( τ ) π n ( τ ) | + | π n ( τ ) Ψ ( τ ) | + | π n ( τ ) Ω ( τ ) | f ( χ , Ψ , Ω ) lim sup n + max [ 0 , ζ ] τ 1 λ P J ( χ , χ , π n ) + P J ( Ψ , Ψ , π n ) + P J ( Ω , Ω , π n ) .
Therefore,  ( A = C 1 λ ( I , R ) , P J )  is a  P J  metric space.
Because g increases, so does the mapping  M . We need to prove that  M  is a contraction map. Let  χ , Ψ , Ω C 1 λ ( P J , R ) 0 < λ < 1 .
P J ( M χ , M Ψ , M Ω ) = max [ 0 , ζ ] τ 1 λ ( | M χ ( τ ) M Ψ ( τ ) | + | M χ ( τ ) M Ω ( τ ) | ) 1 Γ ( λ ) max τ [ 0 , T ] τ 1 λ 0 τ ( τ s ) λ 1 ( | g ( τ , χ ( s ) ) g ( τ , Ψ ( s ) ) | + | g ( τ , χ ( s ) ) g ( τ , Ω ( s ) ) | ) d s .
As a result of the theorem’s hypothesis, we have:
P J ( M χ , M Ψ , M Ω ) 1 Γ ( λ ) max τ [ 0 , ζ ] t 1 λ 0 τ ( τ s ) λ 1 Γ ( 2 λ ) T 2 λ 1 [ α | χ ( s ) Ψ ( s ) | + α | χ ( s ) Ω ( s ) | ] d s 1 Γ ( λ ) max t [ 0 , ζ ] τ 1 λ 0 τ ( τ s ) λ 1 Γ ( 2 λ ) T 2 λ 1 [ α | | χ Ψ | | * s λ 1 + α | | χ Ω | | * s λ 1 ] d s 1 Γ ( λ ) max τ [ 0 , ζ ] τ 1 λ α ( | | χ Ψ | | * + | | χ Ω | | * ) Γ ( 2 λ ) ζ 2 λ 1 0 τ ( τ s ) λ 1 s λ 1 d s .
From the Riemann–Liouville fractional integral, we have
0 τ ( τ s ) λ 1 s λ 1 d s = Γ ( λ ) Γ ( 2 λ ) τ 2 λ 1 .
Therefore, we have
P J ( M χ , M Ψ , M Ω ) α P J ( χ , Ψ , Ω ) .
As a result of Theorem 3, we can conclude that  M  has a unique fixed point, which brings us to the conclusion that  ( P )  has a unique solution, as desired. □

6. Conclusions

In this article, we introduce a new type of metric space called the  P J  metric space, which serves as a generalization of the controlled J metric space and the J metric space. We provide examples to prove the existence of this metric space, and we prove the existence and uniqueness of the fixed points of self-mapping linear and nonlinear contraction. Moreover, we provide applications of our work to fractional differential equations.
Due to the importance of the partial metric space and its application in computer science, our plan is to cooperate with computer science researchers and concentrate on the application; for more details, see [14,15]. Finally, we would like to draw the researchers’ attention to a few questions that we intend to address in upcoming research.
Question:
  • What will happen if  P J ( Φ , Φ , Φ ) P J ( Φ , Ψ , Ω )  is not necessarily held, which is a metric similar to this space?
  • Could this metric-like space be a generalization to the  P J  metric and could we prove the existence and the uniqueness of the given contractions?

Author Contributions

S.S.A.: writing—original draft, methodology; W.A.M.O.: conceptualization, supervision, writing—original draft; K.B.W.: conceptualization, supervision, writing—original draft; N.M.: conceptualization, supervision, writing—original draft. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

S. S. Aiadi and N. Mlaiki thank Prince Sultan University for paying the publication fees for this work through TAS LAB. Moreover, we thank the reviewers for their valuable input, especially with Example 2, which significantly contributed to the enhancement of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Mlaiki, N.; Souayah, N.; Abdeljawad, T.; Aydi, H. A new extension to the controlled metric-type spaces endowed with a graph. Adv. Differ. Equ. 2021, 2021, 94. [Google Scholar] [CrossRef]
  3. Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef] [Green Version]
  4. Kamran, T.; Samreen, M.; UL Ain, Q. A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef] [Green Version]
  5. Souayah, N.; Mlaiki, N.; Haque, S.; Rizk, D.; Baazeem, A.S.; Shatanawi, W. A new type of three-dimensional metric spaces with applications to fractional differential equations. AIMS Math. 2022, 7, 17802–17814. [Google Scholar] [CrossRef]
  6. Antal, A.; Gairola, U.C.; Khantwal, D.; Matkowski, J.; Negi, S. A generalization of Matthews partial metric space and fixed point theorems. Fasc. Math. 2021. [Google Scholar] [CrossRef]
  7. Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Matematički Vesnik 2012, 64, 258–266. [Google Scholar]
  8. Mlaiki, N.M. A contraction principle in partial S-metric spaces. Univers. J. Math. Math. Sci. 2014, 5, 109. [Google Scholar]
  9. Bucur, A. About applications of the fixed point theory. Sci. Bull. 2017, 22, 13–17. [Google Scholar] [CrossRef] [Green Version]
  10. Gu, F.; Shatanawi, W. Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces. J. Nonlinear Funct. Anal. 2019, 2019, 13. [Google Scholar]
  11. Guran, L.; Mitrović, Z.D.; Reddy, G.; Belhenniche, A.; Radenović, S. Applications of a fixed point result for solving nonlinear fractional and integral differential equations. Fractal Fract. 2021, 5, 211. [Google Scholar] [CrossRef]
  12. Qawasmeh, T.; Tallafha, A.; Shatanawi, W. Fixed point theorems through modified w-distance and application to nontrivial equations. Axioms 2019, 8, 57. [Google Scholar] [CrossRef] [Green Version]
  13. Aiadi, S.S.; Othman, W.A.M.; Wong, K.B.; Mlaiki, N. Fixed point theorems in controlled J metricspaces. AIMS Math. 2023, 8, 4753–4763. [Google Scholar] [CrossRef]
  14. Schellekens, M.P. A characterization of partial metrizability: Domains are quantifiable. Theor. Comput. Sci. 2003, 305, 409–432. [Google Scholar] [CrossRef] [Green Version]
  15. Alghamdi, M.A.; Shahzad, N.; Valero, O. Fixed point theorems in generalized metric spaces with applications to computer science. Fixed Point Theory Appl. 2013, 2013, 118. [Google Scholar] [CrossRef] [Green Version]
  16. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Subhi Aiadi, S.; Mior Othman, W.A.; Wong, K.B.; Mlaiki, N. A New Extension of CJ Metric Spaces—Partially Controlled J Metric Spaces. Mathematics 2023, 11, 2973. https://doi.org/10.3390/math11132973

AMA Style

Subhi Aiadi S, Mior Othman WA, Wong KB, Mlaiki N. A New Extension of CJ Metric Spaces—Partially Controlled J Metric Spaces. Mathematics. 2023; 11(13):2973. https://doi.org/10.3390/math11132973

Chicago/Turabian Style

Subhi Aiadi, Suhad, Wan Ainun Mior Othman, Kok Bin Wong, and Nabil Mlaiki. 2023. "A New Extension of CJ Metric Spaces—Partially Controlled J Metric Spaces" Mathematics 11, no. 13: 2973. https://doi.org/10.3390/math11132973

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop