Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions
Abstract
1. Introduction
2. The Model
3. The Lemmas
4. The Dynamics
5. Simulation Analysis and Discussion
5.1. The Dynamical Behaviors Influenced by Parameter D
u | p | q | D | ||||||||||||
0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 1.0 | 0.25 | 0.3 | 0.05 | 0.1 | 0.1 | 0.1 | 0.1 |
u | p | q | D | ||||||||||||
0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 1.0 | 0.25 | 0.3 | 0.95 | 0.1 | 0.1 | 0.1 | 0.1 |
5.2. The Dynamical Behaviors Influenced by Parameters and
u | p | q | D | ||||||||||||
0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 1.0 | 0.25 | 0.3 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 |
u | p | q | D | ||||||||||||
0.5 | 0.5 | 0.5 | 0.5 | 0.1 | 0.1 | 0.3 | 0.3 | 1.0 | 0.25 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
5.3. The Dynamical Behaviors Influenced by Parameters
u | p | q | D | ||||||||||||
0.5 | 0.5 | 0.5 | 0.5 | 0.35 | 0.35 | 0.3 | 0.3 | 1.0 | 0.25 | 0.5 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 |
u | p | q | D | ||||||||||||
0.5 | 0.5 | 0.5 | 0.5 | 0.35 | 0.35 | 0.3 | 0.3 | 1.0 | 0.25 | 0.5 | 0.2 | 0.05 | 0.05 | 0.05 | 0.05 |
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, S.; Xiao, Y.; Chen, L.; Cheke, R.A. Integrated pest management models and their dynamical behaviour. Bull. Math. Biol. 2005, 31, 115–135. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Tang, S.; Cheke, R.A. An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics. Nonlinear Anal. Real World Appl. 2012, 13, 2352–2374. [Google Scholar] [CrossRef]
- Tang, S.; Tang, G.; Cheke, R.A. Optimum timing for integrated pest management: Modelling rates of pesticide application and natural enemy releases. J. Theor. Biol. 2010, 264, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Tang, S.; Cheke, R.A. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 327–341. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, T.; Tian, Y. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate. Math. Biosci. 2016, 279, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Akman, O.; Comar, T.; Henderson, M. An analysis of an impulsive stage structured integrated pest management model with refuge effect. Chaos Soliton Fract. 2018, 111, 44–54. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, T.; Tian, Y. Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy. Appl. Math. Comput. 2017, 292, 253–271. [Google Scholar] [CrossRef]
- Akman, O.; Comar, T.D.; Hrozencik, D. Model selection for integrated pest management with stochasticity. J. Theor. Biol. 2018, 442, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, J.; Al Basir, F.; Takeuchi, Y.; Ghosh, M.; Roy, P.K. A mathematical model for pest management in Jatropha curcas with integrated pesticides—An optimal control approach. Ecol. Complex. 2019, 37, 24–31. [Google Scholar] [CrossRef]
- Rezaei, R.; Safa, L.; Ganjkhanloo, M.M. Understanding farmers’ ecological conservation behavior regarding the use of integrated pest management—An application of the technology acceptance model. Glob. Ecol. Conserv. 2020, 22, e00941. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Huang, L.; Wang, J. Global dynamics of a filippov predator-prey model with two thresholds for integrated pest management. Chaos Soliton Fract. 2022, 157, 111881. [Google Scholar] [CrossRef]
- Liu, B.; Hu, G.; Kang, B.; Huang, X. Analysis of a hybrid pest management model incorporating pest resistance and different control strategies. Math. Biosci. Eng. 2020, 17, 4364–4383. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kang, B.; Tao, F.; Hu, G. Modelling the Effects of Pest Control with Development of Pesticide Resistance. Acta Math. Sin. Engl. 2021, 37, 109–125. [Google Scholar] [CrossRef]
- Liu, J.; Qi, Q.; Liu, B.; Gao, S. Pest control switching models with instantaneous and non-instantaneous impulsive effects. Math. Comput. Simul. 2023, 205, 926–938. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, L.; Luo, G. An appropriate pest management SI model with biological and chemical control concern. Appl. Math. Comput. 2008, 196, 285–293. [Google Scholar] [CrossRef]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.; Karimi, J.; Konan, K.A.J.; et al. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Golan, K.; Kot, I.; Kmieć, K.; Górska-Drabik, E. Approaches to Integrated Pest Management in Orchards: Comstockaspis perniciosa (Comstock) Case Study. Agriculture 2023, 13, 131. [Google Scholar] [CrossRef]
- Zhou, A.; Sattayatham, P.; Jiao, J. Analysis of a predator-prey model with impulsive diffusion and releasing on predator population. Adv. Differ. Equ. 2016, 2016, 111. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1989. [Google Scholar]
- Tang, S.; Xiao, Y.; Liang, J.; Wang, X. Mathematical Biology; Science Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Jury, E.L. Inners and Stability of Dynamics System; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Bainov, D.; Simeonov, P. Impulsive Differential Equations: Periodic Solution and Applications, Longman Scientific and Technical; CRC Press: New York, NY, USA, 1993. [Google Scholar]
- Lakshmikantham, V.; Bainov, D.; Simeonov, P. Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, A. Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions. Mathematics 2023, 11, 2970. https://doi.org/10.3390/math11132970
Zhou A. Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions. Mathematics. 2023; 11(13):2970. https://doi.org/10.3390/math11132970
Chicago/Turabian StyleZhou, Airen. 2023. "Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions" Mathematics 11, no. 13: 2970. https://doi.org/10.3390/math11132970
APA StyleZhou, A. (2023). Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions. Mathematics, 11(13), 2970. https://doi.org/10.3390/math11132970