The Generation Mechanism of Degree Distribution with Power Exponent >2 and the Growth of Edges in Temporal Social Networks
Abstract
1. Introduction
2. Empirical Analysis
2.1. Dataset
2.2. The Growth Law of Vertices and Edges of Empirical Social Networks (Bitcoin Otc)
2.3. Power-Law Distribution of Degree Sequences
2.4. Empirical Evidence
3. The Growth of Edges Follows Pure Birth Process
3.1. The Model
3.2. Pure Birth Process
3.3. Simulation Algorithm Implementation
Algorithm 1: PBP-based simulation algorithm |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khaluf, Y.; Ferrante, E.; Simoens, P.; Huepe, C. Scale invariance in natural and artificial collective systems: A review. J. R. Soc. Interface 2017, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Feder, J. Fractals: Physics of Solids and Liquids; Plenum Press: New York, NY, USA, 1988; pp. 163–183. [Google Scholar]
- Barabasi, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Bak, P.; Kan, C.; Tang, C. A forest-fire model and some thoughts on turbulence. Phys. Lett. A 1990, 147, 5–6. [Google Scholar] [CrossRef]
- Aizenman, M.; Barsky, D.J. Sharpness of the phase transition in percolation models. Commun. Math. Phys. 1987, 108, 489–526. [Google Scholar] [CrossRef]
- Cattuto, C.; Barrat, A.; Baldassarri, A.; Schehr, G.; Loreto, V. Collective dynamics of social annotation. Proc. Natl. Acad. Sci. USA 2009, 106, 10511–10515. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.F. The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. 1965, 85, 613–624. [Google Scholar] [CrossRef]
- Erdos, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5, 17–61. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of small-world networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Faloutsos, M.; Faloutsos, P.; Faloutsos, C. On power-law relationships of the internet topology. Comput. Commun. Rev. 1999, 29, 251–262. [Google Scholar] [CrossRef]
- Adamic, L.A.; Huberman, B.A.; Barabási, A.; Albert, R.; Jeong, H.; Bianconi, G. Power-law Distribution of the World Wide Web. Science 2000, 287, 2115. [Google Scholar] [CrossRef]
- Wang, H.; Fang, Y.; Jiang, S.; Chen, X.; Peng, X.; Wang, W. Unveiling Qzone: A measurement study of a large-scale online social network. Inform. Sci. 2023, 623, 146–163. [Google Scholar] [CrossRef]
- Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef]
- Sethna, J.P. Power laws in physics. Nat. Rev. Phys. 2022, 4, 501–503. [Google Scholar] [CrossRef]
- Newman, M. Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef]
- Sethna, J.P.; Dahmen, K.A.; Myers, C.R. Crackling noise. Nature 2001, 410, 242–250. [Google Scholar] [CrossRef]
- Mitzenmacher, M. A Brief history of generative models for power law and lognormal distributions. Internet Math. 2004, 1, 226–251. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H.; Enquist, B.J. A General Model for the Origin of Allometric Scaling Laws in Biology. Science 1997, 276, 122–126. [Google Scholar] [CrossRef]
- Arbesman, S.; Kleinberg, J.M.; Strogatz, S.H. Superlinear scaling for innovation in cities. Phys. Rev. E 2009, 79, 016115. [Google Scholar] [CrossRef] [PubMed]
- Banavar, J.R.; Maritan, A.; Rinaldo, A. Size and form in efficient transportation networks. Nature 1999, 399, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Leskovec, J.; Chakrabarti, D.; Kleinberg, J.; Faloutsos, C.; Ghahramani, Z. Kronecker graphs: An approach to modeling networks. J. Mach. Learn. Res. 2010, 11, 985–1042. [Google Scholar]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–384. [Google Scholar] [CrossRef]
- Shin-Ichiro, K.; Takashi, K. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review. Front. Phys. 2018, 6, 20. [Google Scholar] [CrossRef]
- Reed, W.J.; Hughes, B.D. From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature. Phys. Rev. E 2002, 66, 6. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F.F. Evolution of networks. Adv. Phys. 2002, 51, 4. [Google Scholar] [CrossRef]
- Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graphs over time: Densification laws, shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, New York, NY, USA, 21 August 2005. [Google Scholar]
- Papadopoulos, F.; Kitsak, M.; Serrano, M.Á.; Boguna, M.; Krioukov, D. Popularity versus similarity in growing networks. Nature 2012, 489, 537–540. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wang, X.; Wang, W.X.; Wu, L. Scaling behaviours in the growth of networked systems and their geometric origins. Sci. Rep. 2015, 5, 9767. [Google Scholar] [CrossRef]
- Liu, H.; Qu, C.Q.; Niu, Y.W.; Wang, G.H. The evolution of structural balance in time-varying signed networks. Future Gener. Comp. Sys. 2020, 102, 403–408. [Google Scholar] [CrossRef]
- Alqassem, I.; Rahwan, I.; Svetinovic, D. The Anti-Social System Properties: Bitcoin Network Data Analysis. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 21–31. [Google Scholar] [CrossRef]
- Kumar, S.; Spezzano, F.; Subrahmanian, V.S.; Faloutsos, C. Edge Weight Prediction in Weighted Signed Networks. In Proceedings of the IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12 December 2016. [Google Scholar]
- Liu, X.; Yuan, Y.X. A robust trust region algorithm for solving general nonlinear programming. J. Comput. Math. 2001, 19, 3. [Google Scholar]
- Remco, V.D.H. Random Graphs and Complex Networks; Cambridge University Press: Cambridge, UK, 2016; pp. 18–19. [Google Scholar]
- Clauset, A.; Shalizi, C.R.; Newman, M. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 4. [Google Scholar] [CrossRef]
- Yule, G.U. A mathematical theory of evolution, based on the conclusions of Dr. JC Willis. Philos. Trans. R. Soc. London Ser. B 1925, 213, 21–87. [Google Scholar]
- Simkin, M.V.; Roychowdhury, V.P. Re-inventing Willis. Phys. Rep. 2011, 502, 1–35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, L. The Generation Mechanism of Degree Distribution with Power Exponent >2 and the Growth of Edges in Temporal Social Networks. Mathematics 2023, 11, 2882. https://doi.org/10.3390/math11132882
Li Z, Li L. The Generation Mechanism of Degree Distribution with Power Exponent >2 and the Growth of Edges in Temporal Social Networks. Mathematics. 2023; 11(13):2882. https://doi.org/10.3390/math11132882
Chicago/Turabian StyleLi, Zhenpeng, and Luo Li. 2023. "The Generation Mechanism of Degree Distribution with Power Exponent >2 and the Growth of Edges in Temporal Social Networks" Mathematics 11, no. 13: 2882. https://doi.org/10.3390/math11132882
APA StyleLi, Z., & Li, L. (2023). The Generation Mechanism of Degree Distribution with Power Exponent >2 and the Growth of Edges in Temporal Social Networks. Mathematics, 11(13), 2882. https://doi.org/10.3390/math11132882