Some Properties of the Quasi-Tribonacci Sequence
Abstract
:1. Introduction
2. Preliminary
3. Singular Words Decomposition
4. Lyndon Decomposition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berstel, J. Fibonacci Words—A Survey. In The Book of L; Rosenberg, G., Salomaa, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 11–26. [Google Scholar]
- De Luca, A. A combinatorial property of the Fibonacci words. Inform. Process. Lett. 1981, 12, 193–195. [Google Scholar] [CrossRef]
- Allouche, J.; Shallit, J. Automatic Sequences. Theory, Applications, Generalizations; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Fogg, N. Substitutions in Dynamics, Arithmetics and Combinatorics; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2002; Volume 1794. [Google Scholar]
- Allouche, J. Arithmétique et automates finis. Astérisque 1987, 147, 13–26. [Google Scholar]
- Bombieri, E.; Taylor, J. Which distributions of matter diffract? An initial investigation. J. Phys. 1986, 47, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Queffélec, M. Substitution Dynamical Systems-Spectral Analysis; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1294. [Google Scholar]
- Séébold, P. Propriétés Combinatoires des Mots Infinis Engendrés par Certains Morphismes. Ph.D. Thesis, Université P. et M. Curie, Institut de Programmation, Paris, France, 1985. [Google Scholar]
- Wen, Z.; Wen, Z. The sequences of substitution and related topics. Adv. Math. 1989, 123–145. [Google Scholar]
- Ramírez, J.; Rubiano, G. On the k-Fibonacci words. Acta Univ. Sapientiae Inform. 2013, 5, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, J.; Rubiano, G. Biperiodic fibonacci word and its fractal curve. Acta Polytech. 2015, 55, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, J.; Rubiano, G.; Castro, R. A generalization of the Fibonacci word fractal and the Fibonacci snowflake. Theor. Comput. Sci. 2014, 528, 40–56. [Google Scholar] [CrossRef] [Green Version]
- Rauzy, G. Nombres algébriques et substitutions. Bull. Soc. Math. France 1982, 110, 147–178. (In French) [Google Scholar] [CrossRef]
- Huang, Y.; Wen, Z. The sequence of return words of the Fibonacci sequence. Theor. Comput. Sci. 2015, 593, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wen, Z. Kernel words and gap sequence of the tribonacci sequence. Acta Math. Sci. 2016, 36, 173–194. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, Z. The numbers of repeated palindromes in the Fibonacci and Tribonacci words. Discret. Appl. Math. 2017, 230, 78–90. [Google Scholar] [CrossRef]
- Kjos-Hanssen, B. Automatic complexity of Fibonacci and Tribonacci words. Discret. Appl. Math. 2021, 289, 446–454. [Google Scholar] [CrossRef]
- Břinda, K.; Pelantová, E.; Turek, O. Balances of m-bonacci words. Fundam. Inform. 2014, 132, 33–61. [Google Scholar] [CrossRef] [Green Version]
- Jahannia, M.; Mohammad-Noori, M.; Rampersad, N.; Stipulanti, M. Closed Ziv-Lempel factorization of the m-bonacci words. Theor. Comput. Sci. 2022, 918, 32–47. [Google Scholar] [CrossRef]
- Jahannia, M.; Mohammad-Noori, M.; Rampersad, N.; Stipulanti, M. Palindromic Ziv-Lempel and Crochemore factorizations of m-bonacci infinite words. Theor. Comput. Sci. 2019, 790, 16–40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wen, Z.; Wu, W. Some properties of the Fibonacci sequence on an infinite alphabet. Electron. J. Comb. 2017, 24, P2–P52. [Google Scholar] [CrossRef] [PubMed]
- Ghareghani, N.; Sharifani, P. On square factors and critical factors of k-bonacci words on infinite alphabet. Theor. Comput. Sci. 2021, 865, 34–43. [Google Scholar] [CrossRef]
- Ghareghani, N.; Mohammad-Noori, M.; Sharifani, P. Some properties of the k-bonacci words on the infinite alphabet. Electron. J. Comb. 2020, 27, P3–P59. [Google Scholar] [CrossRef]
- Wen, Z.; Wen, Z. Some properties of the singular words of the Fibonacci word. Eur. J. Comb. 1994, 15, 587–598. [Google Scholar]
- Levé, F.; Séébold, P. Conjugation of standard morphisms and a generalization of singular words. Bull. Belg. Math. Soc. 2003, 10, 737–747. [Google Scholar] [CrossRef]
- Melançon, G. Lyndon words and singular factors of Sturmian words. Theor. Comput. Sci. 1999, 218, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Melançon, G. Lyndon factorization of Sturmian words. Discret. Math. 2000, 210, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Wen, Z. Some properties of the Tribonacci sequence. Eur. J. Combin. 2007, 28, 1703–1719. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Wen, Z. Some properties of the factors of Sturmian sequences. Theor. Comput. Sci. 2003, 304, 365–385. [Google Scholar] [CrossRef] [Green Version]
- Glen, A. Occurrences of palindromes in characteristic Sturmian words. Theor. Comput. Sci. 2006, 352, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Saari, K. Lyndon words and Fibonacci numbers. J. Comb. Theory Ser. A 2014, 121, 34–44. [Google Scholar] [CrossRef]
- Berthé, V.; Brlek, S.; Choquette, P. Smooth words over arbitrary alphabets. Theor. Comput. Sci. 2005, 341, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Chuan, W.; Ho, H. Locating factors of the infinite Fibonacci word. Theor. Comput. Sci. 2005, 349, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Apostolico, A.; Crochemore, M. Fast parallel Lyndon factorization with applications. Math. Systems Theory 1995, 28, 89–108. [Google Scholar] [CrossRef] [Green Version]
- Pierre Duval, J. Factorizing words over an ordered alphabet. J. Algorithms 1983, 4, 363–381. [Google Scholar] [CrossRef]
- Bonizzoni, P.; De Felice, C.; Zaccagnino, R.; Zizza, R. Inverse Lyndon words and inverse Lyndon factorizations of words. Adv. Appl. Math. 2018, 101, 281–319. [Google Scholar] [CrossRef] [Green Version]
- Crochemore, M.; Russo, L. Cartesian and Lyndon trees. Theor. Comput. Sci. 2020, 806, 1–9. [Google Scholar] [CrossRef]
- Sloane, N.; Guy, R. Entry A005251 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A005251 (accessed on 5 May 2023).
- Lothaire, M. Combinatorics on Words; Encyclopedia of Mathematics and its Applications; AddisonWesley: Boston, MA, USA, 1983; Volume 17. [Google Scholar]
- Siromoney, R.; Mattew, L.; Dare, V.; Subramanian, K. Infinite Lyndon words. Inform. Process. Lett. 1994, 50, 101–104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wen, Z. Some Properties of the Quasi-Tribonacci Sequence. Mathematics 2023, 11, 2853. https://doi.org/10.3390/math11132853
Zhang J, Wen Z. Some Properties of the Quasi-Tribonacci Sequence. Mathematics. 2023; 11(13):2853. https://doi.org/10.3390/math11132853
Chicago/Turabian StyleZhang, Jiemeng, and Zhixiong Wen. 2023. "Some Properties of the Quasi-Tribonacci Sequence" Mathematics 11, no. 13: 2853. https://doi.org/10.3390/math11132853
APA StyleZhang, J., & Wen, Z. (2023). Some Properties of the Quasi-Tribonacci Sequence. Mathematics, 11(13), 2853. https://doi.org/10.3390/math11132853