A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach
Abstract
1. Introduction
2. The Series Solution
3. The Laplace–Padé Technique
3.1. Approximation for
3.2. Approximation for
4. Results and Validation
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebaid, A. Approximate analytical solution of a nonlinear boundary value problem and its application in fluid mechanics. Z. Naturforschung A 2011, 66, 423–426. [Google Scholar] [CrossRef]
- Duan, J.S.; Rach, R. A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Appl. Math. Comput. 2011, 218, 4090–4118. [Google Scholar] [CrossRef]
- Ebaid, A. A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. J. Comput. Appl. Math. 2011, 235, 1914–1924. [Google Scholar] [CrossRef]
- Ali, E.H.; Ebaid, A.; Rach, R. Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions. Comput. Math. Appl. 2012, 63, 1056–1065. [Google Scholar] [CrossRef]
- Chun, C.; Ebaid, A.; Lee, M.; Aly, E.H. An approach for solving singular two point boundary value problems: Analytical and numerical treatment. ANZIAM J. 2012, 53, 21–43. [Google Scholar] [CrossRef]
- Ebaid, A.; Aljoufi, M.D.; Wazwaz, A.-M. An advanced study on the solution of nanofluid flow problems via Adomian’s method. Appl. Math. Lett. 2015, 46, 117–122. [Google Scholar] [CrossRef]
- Bhalekar, S.; Patade, J. An analytical solution of fishers equation using decomposition Method. Am. J. Comput. Appl. Math. 2016, 6, 123–127. [Google Scholar]
- Alshaery, A.; Ebaid, A. Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method. Acta Astronaut. 2017, 140, 27–33. [Google Scholar] [CrossRef]
- Bakodah, H.O.; Ebaid, A. Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method. Mathematics 2018, 6, 331. [Google Scholar] [CrossRef]
- Ebaid, A.; Al-Enazi, A.; Albalawi, B.Z.; Aljoufi, M.D. Accurate approximate solution of Ambartsumian delay differential equation via decomposition method. Math. Comput. Appl. 2019, 24, 7. [Google Scholar] [CrossRef]
- Alenazy, A.H.S.; Ebaid, A.; Algehyne, E.A.; Al-Jeaid, H.K. Advanced Study on the Delay Differential Equation y′(t)=ay(t)+by(ct). Mathematics 2022, 10, 4302. [Google Scholar] [CrossRef]
- Ebaid, A. Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel. Comput. Math. Appl. 2014, 68, 77–85. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, F. He–Laplace method for nonlinear vibration systems and nonlinear wave equations. J. Low Freq. Noise. Vib. Act. Control. 2019, 38, 1060–1074. [Google Scholar] [CrossRef]
- Ebaid, A.; Aljohani, A.F.; Aly, E.H. Homotopy perturbation method for peristaltic motion of gold-blood nanofluid with heat source. Int. J. Numer. Meth. Heat Fluid Flow 2020, 30, 3121–3138. [Google Scholar] [CrossRef]
- Nadeem, M.; Edalatpanah, S.A.; Mahariq, I.; Aly, W.H.F. Analytical view of nonlinear delay differential equations using Sawi iterative scheme. Symmetry 2022, 14, 2430. [Google Scholar] [CrossRef]
- Liao, S. Beyond Perturbation: Introduction to the Homotopy Analysis Method; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Chauhan, A.; Arora, R. Application of homotopy analysis method (HAM) to the non-linear KdV equations Astha Chauhan and Rajan Arora. Commun. Math. 2023, 31, 205–220. [Google Scholar] [CrossRef]
- Ebaid, A. Approximate periodic solutions for the non-linear relativistic harmonic oscillator via differential transformation method. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1921–1927. [Google Scholar] [CrossRef]
- Ebaid, A. A reliable aftertreatment for improving the differential transformation method and its application to nonlinear oscillators with fractional nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 528–536. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, K. Solving power system differential algebraic equations using differential transformation. IEEE Trans. Power Syst. 2020, 35, 2289–2299. [Google Scholar] [CrossRef]
- Benhammouda, B. The differential transform method as an effective tool to solve implicit Hessenberg index-3 differential-algebraic equations. J. Math. 2023, 2023, 3620870. [Google Scholar] [CrossRef]
- Abajo, J.G.D. Simple mathematics on COVID-19 expansion. MedRxiv 2020. [Google Scholar] [CrossRef]
- Gepreel, K.A.; Mohamed, M.S.; Alotaibi, H.; Mahdy, A.M.S. Dynamical behaviors of nonlinear coronavirus (COVID-19) model with numerical studies. Comput. Mater. Contin. 2021, 67, 675–686. [Google Scholar] [CrossRef]
















| (Present) | (Present) | ERKM (Numerical) | |
|---|---|---|---|
| 5 | 0.0018364 | 0.0018327 | 0.0018338 |
| 10 | 0.0043093 | 0.0019785 | 0.0019837 |
| 15 | 0.1220652 | 0.0019860 | 0.0019959 |
| 20 | 1.9188949 | 0.0019820 | 0.0019969 |
| 25 | 16.160833 | 0.0019772 | 0.0019970 |
| 30 | 91.203779 | 0.0019722 | 0.0019970 |
| 35 | 390.97111 | 0.0019673 | 0.0019970 |
| 40 | 1372.0035 | 0.0019624 | 0.0019970 |
| 45 | 4135.3979 | 0.0019575 | 0.0019970 |
| 50 | 11061.598 | 0.0019526 | 0.0019970 |
| (Present) | (Present) | ERKM (Numerical) | |
|---|---|---|---|
| 5 | |||
| 10 | |||
| 15 | |||
| 20 | |||
| 25 | |||
| 30 | |||
| 35 | |||
| 40 | |||
| 45 | |||
| 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albidah, A.B. A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach. Mathematics 2023, 11, 2749. https://doi.org/10.3390/math11122749
Albidah AB. A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach. Mathematics. 2023; 11(12):2749. https://doi.org/10.3390/math11122749
Chicago/Turabian StyleAlbidah, Abdulrahman B. 2023. "A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach" Mathematics 11, no. 12: 2749. https://doi.org/10.3390/math11122749
APA StyleAlbidah, A. B. (2023). A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach. Mathematics, 11(12), 2749. https://doi.org/10.3390/math11122749

