A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach
Abstract
:1. Introduction
2. The Series Solution
3. The Laplace–Padé Technique
3.1. Approximation for
3.2. Approximation for
4. Results and Validation
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebaid, A. Approximate analytical solution of a nonlinear boundary value problem and its application in fluid mechanics. Z. Naturforschung A 2011, 66, 423–426. [Google Scholar] [CrossRef]
- Duan, J.S.; Rach, R. A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Appl. Math. Comput. 2011, 218, 4090–4118. [Google Scholar] [CrossRef]
- Ebaid, A. A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. J. Comput. Appl. Math. 2011, 235, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.H.; Ebaid, A.; Rach, R. Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions. Comput. Math. Appl. 2012, 63, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Chun, C.; Ebaid, A.; Lee, M.; Aly, E.H. An approach for solving singular two point boundary value problems: Analytical and numerical treatment. ANZIAM J. 2012, 53, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Ebaid, A.; Aljoufi, M.D.; Wazwaz, A.-M. An advanced study on the solution of nanofluid flow problems via Adomian’s method. Appl. Math. Lett. 2015, 46, 117–122. [Google Scholar] [CrossRef]
- Bhalekar, S.; Patade, J. An analytical solution of fishers equation using decomposition Method. Am. J. Comput. Appl. Math. 2016, 6, 123–127. [Google Scholar]
- Alshaery, A.; Ebaid, A. Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method. Acta Astronaut. 2017, 140, 27–33. [Google Scholar] [CrossRef]
- Bakodah, H.O.; Ebaid, A. Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method. Mathematics 2018, 6, 331. [Google Scholar] [CrossRef] [Green Version]
- Ebaid, A.; Al-Enazi, A.; Albalawi, B.Z.; Aljoufi, M.D. Accurate approximate solution of Ambartsumian delay differential equation via decomposition method. Math. Comput. Appl. 2019, 24, 7. [Google Scholar] [CrossRef] [Green Version]
- Alenazy, A.H.S.; Ebaid, A.; Algehyne, E.A.; Al-Jeaid, H.K. Advanced Study on the Delay Differential Equation y′(t)=ay(t)+by(ct). Mathematics 2022, 10, 4302. [Google Scholar] [CrossRef]
- Ebaid, A. Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel. Comput. Math. Appl. 2014, 68, 77–85. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, F. He–Laplace method for nonlinear vibration systems and nonlinear wave equations. J. Low Freq. Noise. Vib. Act. Control. 2019, 38, 1060–1074. [Google Scholar] [CrossRef] [Green Version]
- Ebaid, A.; Aljohani, A.F.; Aly, E.H. Homotopy perturbation method for peristaltic motion of gold-blood nanofluid with heat source. Int. J. Numer. Meth. Heat Fluid Flow 2020, 30, 3121–3138. [Google Scholar] [CrossRef]
- Nadeem, M.; Edalatpanah, S.A.; Mahariq, I.; Aly, W.H.F. Analytical view of nonlinear delay differential equations using Sawi iterative scheme. Symmetry 2022, 14, 2430. [Google Scholar] [CrossRef]
- Liao, S. Beyond Perturbation: Introduction to the Homotopy Analysis Method; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Chauhan, A.; Arora, R. Application of homotopy analysis method (HAM) to the non-linear KdV equations Astha Chauhan and Rajan Arora. Commun. Math. 2023, 31, 205–220. [Google Scholar] [CrossRef]
- Ebaid, A. Approximate periodic solutions for the non-linear relativistic harmonic oscillator via differential transformation method. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1921–1927. [Google Scholar] [CrossRef]
- Ebaid, A. A reliable aftertreatment for improving the differential transformation method and its application to nonlinear oscillators with fractional nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 528–536. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, K. Solving power system differential algebraic equations using differential transformation. IEEE Trans. Power Syst. 2020, 35, 2289–2299. [Google Scholar] [CrossRef]
- Benhammouda, B. The differential transform method as an effective tool to solve implicit Hessenberg index-3 differential-algebraic equations. J. Math. 2023, 2023, 3620870. [Google Scholar] [CrossRef]
- Abajo, J.G.D. Simple mathematics on COVID-19 expansion. MedRxiv 2020. [Google Scholar] [CrossRef]
- Gepreel, K.A.; Mohamed, M.S.; Alotaibi, H.; Mahdy, A.M.S. Dynamical behaviors of nonlinear coronavirus (COVID-19) model with numerical studies. Comput. Mater. Contin. 2021, 67, 675–686. [Google Scholar] [CrossRef]
(Present) | (Present) | ERKM (Numerical) | |
---|---|---|---|
5 | 0.0018364 | 0.0018327 | 0.0018338 |
10 | 0.0043093 | 0.0019785 | 0.0019837 |
15 | 0.1220652 | 0.0019860 | 0.0019959 |
20 | 1.9188949 | 0.0019820 | 0.0019969 |
25 | 16.160833 | 0.0019772 | 0.0019970 |
30 | 91.203779 | 0.0019722 | 0.0019970 |
35 | 390.97111 | 0.0019673 | 0.0019970 |
40 | 1372.0035 | 0.0019624 | 0.0019970 |
45 | 4135.3979 | 0.0019575 | 0.0019970 |
50 | 11061.598 | 0.0019526 | 0.0019970 |
(Present) | (Present) | ERKM (Numerical) | |
---|---|---|---|
5 | |||
10 | |||
15 | |||
20 | |||
25 | |||
30 | |||
35 | |||
40 | |||
45 | |||
50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albidah, A.B. A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach. Mathematics 2023, 11, 2749. https://doi.org/10.3390/math11122749
Albidah AB. A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach. Mathematics. 2023; 11(12):2749. https://doi.org/10.3390/math11122749
Chicago/Turabian StyleAlbidah, Abdulrahman B. 2023. "A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach" Mathematics 11, no. 12: 2749. https://doi.org/10.3390/math11122749
APA StyleAlbidah, A. B. (2023). A Proposed Analytical and Numerical Treatment for the Nonlinear SIR Model via a Hybrid Approach. Mathematics, 11(12), 2749. https://doi.org/10.3390/math11122749