Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market
Abstract
1. Introduction
2. The Dynamic Nelson–Siegel Model and Its Extensions
2.1. The Nelson–Siegel Static Formulation and Its Dynamic Version
2.2. The Dynamic Nelson–Siegel Model with Time-Varying Parameters and Regime Switching
2.3. Proposed Extensions
2.4. Bayesian Estimation
3. Descriptive Analysis
4. Estimation Results—In-Sample Analysis
- Dynamic Nelson–Siegel Model (MDNS);
- Dynamic Nelson–Siegel Model with regime switching in the mean (MDNS-M);
- Dynamic Nelson–Siegel Model with regime switching in the persistence (MDNS-P);
- Dynamic Nelson–Siegel Model with regime switching in the loading factor (MDNS-);
- Dynamic Nelson–Siegel Model with exogenous macroeconomics variables (MDNS-Macro);
- Dynamic Nelson–Siegel Model with regime switching in the mean and with exogenous macroeconomics variables (MDNS-MMacro);
- Dynamic Nelson–Siegel Model with regime switching in the persistence and with exogenous macroeconomics variables (MDNS-PMacro);
- Dynamic Nelson–Siegel Model with endogenous macroeconomic variables and regime switching in the mean and in the macroeconomic variables (MDNS-MMacroEnd);
- Dynamic Nelson–Siegel Model with endogenous macroeconomics variables and regime switching in the persistence and in the macroeconomic variables (MDNS-PMacroEnd);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the mean (MDNS-S);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the loading factor (MDNS-S);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the mean and with macroeconomic variables (MDNS-SmediaMacro);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the macroeconomic variables of the slope factor (MDNS-Smacro).
Out-of-Sample Forecast Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
1-Month Maturity | 3-Month Maturity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 5 | −0.0279 | 1.0000 | 8 | 3.00424 | 0.0188 | 2.45 × | MDNS | 9 | 0.64777 | 0.9596 | 5 | 2.2142 | 0.2952 | 4.29 × |
MDNS_M | 6 | 0.32412 | 0.9996 | 11 | 5.53884 | 0.0000 | 2.55 × | MDNS_M | 6 | 0.42852 | 0.9924 | 8 | 2.70442 | 0.0540 | 3.89 × |
MDNS_P | 11 | 1.99208 | 0.2054 | 10 | 4.57205 | 0.0000 | 3.85 × | MDNS_P | 10 | 0.76239 | 0.9194 | 2 | 1.89179 | 0.5342 | 4.85 × |
MDNS_Lambda | 7 | 0.45004 | 0.9990 | 7 | 2.96519 | 0.0226 | 2.73 × | MDNS_Lambda | 8 | 0.5859 | 0.9720 | 4 | 2.05852 | 0.4044 | 4.28 × |
MDNS_Macro | 1 | −7.9353 | 1.0000 | 1 | −1.2181 | 1.0000 | 6.69 × | MDNS_Macro | 1 | −4.6531 | 1.0000 | 1 | −1.8918 | 1.0000 | 1.01 × |
MDNS_MMacro | 4 | −0.6725 | 1.0000 | 5 | 2.63773 | 0.0944 | 2.11 × | MDNS_MMacro | 3 | −0.7155 | 1.0000 | 10 | 4.20607 | 0.0000 | 3.02 × |
MDNS_MMacroEnd | 3 | −1.9544 | 1.0000 | 3 | 2.27073 | 0.2934 | 1.57 × | MDNS_MMacroEnd | 5 | 0.21586 | 1.0000 | 6 | 2.2512 | 0.2692 | 4.01 × |
MDNS_PMacroEnd | 9 | 1.34095 | 0.6994 | 6 | 2.72089 | 0.0698 | 4.09 × | MDNS_PMacroEnd | 11 | 0.94801 | 0.8066 | 9 | 3.42541 | 0.0018 | 4.75 × |
MDNS_S | 10 | 1.83819 | 0.3020 | 9 | 4.48854 | 0.0000 | 3.23 × | MDNS_S | 7 | 0.51269 | 0.9840 | 3 | 2.04071 | 0.5342 | 4.18 × |
MDNS_SmediaMacro | 8 | 0.45333 | 0.9990 | 4 | 2.53475 | 0.2934 | 2.83 × | MDNS_SmediaMacro | 4 | 0.03341 | 1.0000 | 11 | 4.95557 | 0.0000 | 3.67 × |
MDNS_Smacro | 2 | −3.7331 | 1.0000 | 2 | 1.2181 | 1.0000 | 1.08 × | MDNS_Smacro | 2 | −2.0043 | 1.0000 | 7 | 2.57727 | 0.0894 | 2.15 × |
6-Month Maturity | 9-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 7 | 0.85978 | 0.8768 | 4 | 2.33137 | 0.2522 | 5.85 × | MDNS | 7 | 0.66771 | 0.9448 | 4 | 1.85824 | 0.5474 | 6.29 × |
MDNS_M | 6 | 0.11812 | 1.0000 | 6 | 2.40346 | 0.2098 | 5.00 × | MDNS_M | 6 | 0.06792 | 1.0000 | 3 | 1.84242 | 0.5650 | 5.51 × |
MDNS_P | 11 | 1.19132 | 0.6826 | 7 | 2.68302 | 0.0954 | 6.16 × | MDNS_P | 11 | 1.43942 | 0.4788 | 8 | 2.49953 | 0.1198 | 7.16 × |
MDNS_Lambda | 9 | 1.06723 | 0.7622 | 2 | 2.17637 | 0.3452 | 6.63 × | MDNS_Lambda | 10 | 1.40346 | 0.5058 | 7 | 2.24449 | 0.2478 | 8.44 × |
MDNS_Macro | 1 | −4.4096 | 1.0000 | 1 | −2.1764 | 1.0000 | 1.72 × | MDNS_Macro | 1 | −3.3865 | 1.0000 | 1 | −1.702 | 1.0000 | 2.28 × |
MDNS_MMacro | 3 | −1.3663 | 1.0000 | 9 | 3.11958 | 0.0150 | 3.48 × | MDNS_MMacro | 5 | −1.2743 | 1.0000 | 9 | 2.55274 | 0.0996 | 3.71 × |
MDNS_PMacro | 12 | 1.56849 | 0.4262 | 12 | 4.32888 | 0.0000 | 7.31 × | MDNS_PMacro | 8 | 0.94151 | 0.8274 | 11 | 3.50472 | 0.0008 | 7.02 × |
MDNS_MMacroEnd | 5 | −0.9565 | 1.0000 | 8 | 2.80714 | 0.0614 | 3.93 × | MDNS_MMacroEnd | 3 | −1.9111 | 1.0000 | 5 | 2.08635 | 0.3470 | 3.71 × |
MDNS_PMacroEnd | 10 | 1.0929 | 0.7454 | 11 | 3.89891 | 0.0000 | 6.16 × | MDNS_PMacroEnd | 12 | 1.45297 | 0.4698 | 12 | 3.86713 | 0.0000 | 7.13 × |
MDNS_S | 8 | 0.93574 | 0.8360 | 5 | 2.39913 | 0.2120 | 5.91 × | MDNS_S | 9 | 0.99463 | 0.7936 | 6 | 2.09673 | 0.3400 | 6.65 × |
MDNS_SmediaMacro | 4 | −1.293 | 1.0000 | 10 | 3.31265 | 0.0040 | 3.68 × | MDNS_SmediaMacro | 4 | −1.2833 | 1.0000 | 10 | 2.57908 | 0.0920 | 3.89 × |
MDNS_Smacro | 2 | −3.2132 | 1.0000 | 3 | 2.32205 | 0.3452 | 3.10 × | MDNS_Smacro | 2 | −3.1706 | 1.0000 | 2 | 1.70198 | 1.0000 | 3.50 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 7 | 0.60735 | 0.9672 | 5 | 1.79937 | 0.5926 | 6.44 × | MDNS | 7 | 0.3533 | 0.9986 | 4 | 1.71101 | 0.6910 | 6.09 × |
MDNS_M | 6 | −0.0835 | 1.0000 | 4 | 1.71316 | 0.6684 | 5.61 × | MDNS_M | 6 | −0.147 | 1.0000 | 3 | 1.66422 | 0.7356 | 5.57 × |
MDNS_P | 11 | 1.62677 | 0.3530 | 10 | 2.67552 | 0.0642 | 7.46 × | MDNS_P | 11 | 1.73303 | 0.2936 | 10 | 2.87417 | 0.0330 | 7.36 × |
MDNS_Lambda | 10 | 1.59534 | 0.3754 | 9 | 2.59478 | 0.0918 | 9.25 × | MDNS_Lambda | 10 | 1.70167 | 0.3126 | 9 | 2.84506 | 0.0364 | 9.41 × |
MDNS_Macro | 2 | −3.3358 | 1.0000 | 1 | −1.5324 | 1.0000 | 2.69 × | MDNS_Macro | 1 | −3.5065 | 1.0000 | 1 | −1.323 | 1.0000 | 2.97 × |
MDNS_MMacro | 5 | −1.1823 | 1.0000 | 7 | 2.14857 | 0.3042 | 4.03 × | MDNS_MMacro | 5 | −1.0697 | 1.0000 | 7 | 1.8872 | 0.5306 | 4.26 × |
MDNS_PMacro | 8 | 0.66473 | 0.9548 | 11 | 3.1387 | 0.0072 | 6.74 × | MDNS_PMacro | 8 | 0.53337 | 0.9812 | 11 | 2.93064 | 0.0266 | 6.47 × |
MDNS_MMacroEnd | 3 | −2.5856 | 1.0000 | 2 | 1.53242 | 0.8064 | 3.74 × | MDNS_MMacroEnd | 3 | −2.5899 | 1.0000 | 2 | 1.32297 | 0.9358 | 3.86 × |
MDNS_PMacroEnd | 12 | 1.6969 | 0.3074 | 12 | 4.14133 | 0.0000 | 7.52 × | MDNS_PMacroEnd | 12 | 1.82442 | 0.2428 | 12 | 4.42232 | 0.0000 | 7.51 × |
MDNS_S | 9 | 1.0432 | 0.7766 | 8 | 2.50883 | 0.1228 | 6.85 × | MDNS_S | 9 | 1.05408 | 0.7756 | 8 | 2.81312 | 0.0410 | 6.76 × |
MDNS_SmediaMacro | 4 | −1.2333 | 1.0000 | 6 | 1.94831 | 0.4592 | 4.11 × | MDNS_SmediaMacro | 4 | −1.1595 | 1.0000 | 5 | 1.71129 | 0.6908 | 4.27 × |
MDNS_Smacro | 1 | −3.3736 | 1.0000 | 3 | 1.66968 | 0.8064 | 3.79 × | MDNS_Smacro | 2 | −3.3446 | 1.0000 | 6 | 1.86292 | 0.5514 | 3.93 × |
18-Month Maturity | 21-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 7 | 0.25297 | 0.9996 | 5 | 1.62167 | 0.7512 | 6.07 × | MDNS | 7 | 0.17989 | 1.0000 | 5 | 1.83003 | 0.6134 | 5.89 × |
MDNS_M | 6 | −0.0836 | 1.0000 | 4 | 1.59384 | 0.7724 | 5.73 × | MDNS_M | 6 | 0.08728 | 1.0000 | 6 | 1.84887 | 0.5994 | 5.82 × |
MDNS_P | 12 | 1.7558 | 0.2808 | 9 | 2.88661 | 0.0304 | 7.31 × | MDNS_P | 12 | 1.97108 | 0.1750 | 11 | 3.32327 | 0.0022 | 7.04 × |
MDNS_Lambda | 10 | 1.73582 | 0.2914 | 10 | 2.90469 | 0.0270 | 9.47 × | MDNS_Lambda | 11 | 1.96672 | 0.1780 | 10 | 3.15423 | 0.0074 | 9.12 × |
MDNS_Macro | 1 | −3.5551 | 1.0000 | 1 | −0.9834 | 1.0000 | 3.34 × | MDNS_Macro | 1 | −4.2124 | 1.0000 | 1 | −0.6151 | 1.0000 | 3.62 × |
MDNS_MMacro | 5 | −0.9195 | 1.0000 | 6 | 1.63389 | 0.7424 | 4.56 × | MDNS_MMacro | 5 | −0.9824 | 1.0000 | 4 | 1.50824 | 0.8556 | 4.66 × |
MDNS_PMacro | 8 | 0.42173 | 0.9950 | 8 | 2.86061 | 0.0354 | 6.33 × | MDNS_PMacro | 8 | 0.44735 | 0.9974 | 9 | 2.94136 | 0.0268 | 6.17 × |
MDNS_MMacroEnd | 3 | −2.3371 | 1.0000 | 2 | 0.98336 | 0.9926 | 4.06 × | MDNS_MMacroEnd | 3 | −2.0601 | 1.0000 | 2 | 0.61506 | 1.0000 | 4.12 × |
MDNS_PMacroEnd | 11 | 1.7499 | 0.2836 | 12 | 4.74032 | 0.0000 | 7.38 × | MDNS_PMacroEnd | 10 | 1.68599 | 0.3300 | 12 | 4.60752 | 0.0000 | 7.09 × |
MDNS_S | 9 | 1.03862 | 0.7924 | 11 | 2.99909 | 0.0176 | 6.80 × | MDNS_S | 9 | 1.14954 | 0.7348 | 8 | 2.78756 | 0.0506 | 6.64 × |
MDNS_SmediaMacro | 4 | −1.0413 | 1.0000 | 3 | 1.46438 | 0.9926 | 4.52 × | MDNS_SmediaMacro | 4 | −1.0022 | 1.0000 | 3 | 1.20227 | 1.0000 | 4.63 × |
MDNS_Smacro | 2 | −3.2555 | 1.0000 | 7 | 2.01687 | 0.4166 | 4.11 × | MDNS_Smacro | 2 | −3.4985 | 1.0000 | 7 | 1.97946 | 0.4888 | 4.17 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.05245 | 1.0000 | 6 | 1.63007 | 0.7640 | 5.60 × | MDNS | 6 | 0.00812 | 1.0000 | 6 | 1.17441 | 0.9622 | 5.59 × |
MDNS_M | 7 | 0.13817 | 1.0000 | 7 | 1.68831 | 0.7248 | 5.67 × | MDNS_M | 7 | 0.21082 | 1.0000 | 7 | 1.31187 | 0.9124 | 5.77 × |
MDNS_P | 11 | 1.83028 | 0.2506 | 9 | 3.12533 | 0.0084 | 6.68 × | MDNS_P | 11 | 1.45826 | 0.4962 | 8 | 2.39328 | 0.1694 | 6.56 × |
MDNS_Lambda | 12 | 1.85888 | 0.2334 | 10 | 3.13628 | 0.0076 | 8.49 × | MDNS_Lambda | 12 | 1.51843 | 0.4452 | 10 | 2.84148 | 0.0364 | 8.14 × |
MDNS_Macro | 1 | −4.1723 | 1.0000 | 1 | −0.3021 | 1.0000 | 3.77 × | MDNS_Macro | 1 | −3.2215 | 1.0000 | 1 | −0.0618 | 1.0000 | 4.06 × |
MDNS_MMacro | 4 | −0.8228 | 1.0000 | 5 | 1.37746 | 0.9176 | 4.71 × | MDNS_MMacro | 5 | −0.6084 | 1.0000 | 5 | 1.09093 | 0.9744 | 4.87 × |
MDNS_PMacro | 8 | 0.45006 | 0.9966 | 8 | 2.81401 | 0.0440 | 5.94 × | MDNS_PMacro | 8 | 0.39163 | 0.9982 | 9 | 2.46038 | 0.1430 | 5.93 × |
MDNS_MMacroEnd | 3 | −1.8553 | 1.0000 | 2 | 0.30211 | 1.0000 | 4.03 × | MDNS_MMacroEnd | 3 | −1.8088 | 1.0000 | 2 | 0.06182 | 1.0000 | 4.11 × |
MDNS_PMacroEnd | 10 | 1.5208 | 0.4630 | 12 | 4.69169 | 0.0000 | 6.66 × | MDNS_PMacroEnd | 10 | 1.1345 | 0.7390 | 11 | 4.29245 | 0.0000 | 6.52 × |
MDNS_S | 9 | 1.07849 | 0.7780 | 11 | 3.45706 | 0.0006 | 6.35 × | MDNS_S | 9 | 0.84426 | 0.9078 | 12 | 4.34076 | 0.0000 | 6.32 × |
MDNS_SmediaMacro | 5 | −0.8116 | 1.0000 | 3 | 1.11604 | 1.0000 | 4.68 × | MDNS_SmediaMacro | 4 | −0.6447 | 1.0000 | 4 | 1.06233 | 1.0000 | 4.86 × |
MDNS_Smacro | 2 | −3.0676 | 1.0000 | 4 | 1.3466 | 1.0000 | 4.14 × | MDNS_Smacro | 2 | −2.3347 | 1.0000 | 3 | 0.74945 | 1.0000 | 4.28 × |
30-Month Maturity | 33-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.01173 | 1.0000 | 6 | 1.10691 | 0.9792 | 5.56 × | MDNS | 6 | 0.02686 | 1.0000 | 6 | 1.10354 | 0.9796 | 5.40 × |
MDNS_M | 7 | 0.22424 | 1.0000 | 7 | 1.28147 | 0.9294 | 5.76 × | MDNS_M | 7 | 0.32809 | 0.9996 | 7 | 1.75498 | 0.6100 | 5.68 × |
MDNS_P | 12 | 1.30279 | 0.5836 | 8 | 2.02273 | 0.4012 | 6.42 × | MDNS_P | 11 | 1.09361 | 0.7746 | 8 | 1.87576 | 0.5068 | 6.12 × |
MDNS_Lambda | 11 | 1.30243 | 0.5838 | 9 | 2.64112 | 0.0712 | 7.74 × | MDNS_Lambda | 12 | 1.10617 | 0.7656 | 9 | 2.30731 | 0.2080 | 7.17 × |
MDNS_Macro | 1 | −2.5841 | 1.0000 | 2 | 0.2015 | 1.0000 | 4.26 × | MDNS_Macro | 1 | −2.1467 | 1.0000 | 2 | 0.42118 | 1.0000 | 4.32 × |
MDNS_MMacro | 5 | −0.4752 | 1.0000 | 4 | 0.90326 | 0.9954 | 4.97 × | MDNS_MMacro | 5 | −0.4206 | 1.0000 | 4 | 0.78113 | 0.9996 | 4.87 × |
MDNS_PMacro | 8 | 0.43438 | 0.9956 | 10 | 2.74412 | 0.0478 | 5.90 × | MDNS_PMacro | 8 | 0.44769 | 0.9966 | 10 | 2.63552 | 0.0706 | 5.72 × |
MDNS_MMacroEnd | 3 | −1.9669 | 1.0000 | 1 | −0.2015 | 1.0000 | 4.09 × | MDNS_MMacroEnd | 2 | −1.9222 | 1.0000 | 1 | −0.4212 | 1.0000 | 3.97 × |
MDNS_PMacroEnd | 10 | 0.86386 | 0.8946 | 11 | 3.88652 | 0.0000 | 6.33 × | MDNS_PMacroEnd | 10 | 0.70296 | 0.9604 | 11 | 3.18613 | 0.0072 | 6.04 × |
MDNS_S | 9 | 0.74669 | 0.9388 | 12 | 4.19321 | 0.0000 | 6.26 × | MDNS_S | 9 | 0.68317 | 0.9664 | 12 | 3.47507 | 0.0014 | 6.02 × |
MDNS_SmediaMacro | 4 | −0.5154 | 1.0000 | 5 | 0.9108 | 0.9954 | 4.94 × | MDNS_SmediaMacro | 4 | −0.4486 | 1.0000 | 5 | 0.80147 | 0.9996 | 4.87 × |
MDNS_Smacro | 2 | −1.9783 | 1.0000 | 3 | 0.42254 | 1.0000 | 4.38 × | MDNS_Smacro | 3 | −1.7353 | 1.0000 | 3 | 0.51159 | 1.0000 | 4.32 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.06106 | 1.0000 | 6 | 1.16743 | 0.9716 | 5.30 × | MDNS | 6 | 0.1179 | 1.0000 | 6 | 1.16897 | 0.9642 | 5.32 × |
MDNS_M | 7 | 0.36817 | 0.9996 | 8 | 1.94561 | 0.4446 | 5.58 × | MDNS_M | 7 | 0.446 | 0.9984 | 9 | 1.99638 | 0.4070 | 5.60 × |
MDNS_P | 12 | 0.97811 | 0.8496 | 7 | 1.84458 | 0.5270 | 5.89 × | MDNS_P | 12 | 0.90242 | 0.9160 | 7 | 1.67764 | 0.6754 | 5.81 × |
MDNS_Lambda | 11 | 0.94502 | 0.8664 | 9 | 1.99763 | 0.4048 | 6.69 × | MDNS_Lambda | 11 | 0.82214 | 0.9482 | 8 | 1.67933 | 0.6742 | 6.38 × |
MDNS_Macro | 2 | −1.7495 | 1.0000 | 2 | 0.60904 | 1.0000 | 4.38 × | MDNS_Macro | 3 | −1.4869 | 1.0000 | 2 | 0.71644 | 0.9996 | 4.51 × |
MDNS_MMacro | 4 | −0.3765 | 1.0000 | 4 | 0.74287 | 1.0000 | 4.83 × | MDNS_MMacro | 4 | −0.3631 | 1.0000 | 4 | 0.7691 | 0.9992 | 4.84 × |
MDNS_PMacro | 8 | 0.48968 | 0.9960 | 10 | 2.53876 | 0.1022 | 5.60 × | MDNS_PMacro | 8 | 0.47894 | 0.9978 | 10 | 2.13358 | 0.3108 | 5.57 × |
MDNS_MMacroEnd | 1 | −1.9191 | 1.0000 | 1 | −0.609 | 1.0000 | 3.86 × | MDNS_MMacroEnd | 1 | −1.6994 | 1.0000 | 1 | −0.7164 | 1.0000 | 3.82 × |
MDNS_PMacroEnd | 9 | 0.61591 | 0.9848 | 11 | 2.69764 | 0.0596 | 5.84 × | MDNS_PMacroEnd | 9 | 0.57932 | 0.9926 | 11 | 2.40062 | 0.1700 | 5.75 × |
MDNS_S | 10 | 0.65372 | 0.9796 | 12 | 2.8896 | 0.0270 | 5.85 × | MDNS_S | 10 | 0.679 | 0.9820 | 12 | 2.60963 | 0.0828 | 5.81 × |
MDNS_SmediaMacro | 5 | −0.3756 | 1.0000 | 5 | 0.78051 | 1.0000 | 4.85 × | MDNS_SmediaMacro | 5 | −0.3294 | 1.0000 | 5 | 0.84124 | 0.9992 | 4.90 × |
MDNS_Smacro | 3 | −1.5695 | 1.0000 | 3 | 0.65965 | 1.0000 | 4.34 × | MDNS_Smacro | 2 | −1.5082 | 1.0000 | 3 | 0.73274 | 0.9996 | 4.40 × |
48-Month Maturity | 60-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.19904 | 1.0000 | 7 | 1.45847 | 0.8442 | 5.58 × | MDNS | 7 | 0.43578 | 0.9986 | 7 | 1.69983 | 0.6930 | 6.11 × |
MDNS_M | 8 | 0.43532 | 0.9990 | 12 | 1.90556 | 0.4794 | 5.79 × | MDNS_M | 10 | 0.66062 | 0.9820 | 10 | 1.86755 | 0.5462 | 6.27 × |
MDNS_P | 12 | 0.63521 | 0.9908 | 11 | 1.83728 | 0.5344 | 5.84 × | MDNS_P | 9 | 0.5347 | 0.9960 | 9 | 1.78431 | 0.6194 | 6.14 × |
MDNS_Lambda | 7 | 0.25492 | 1.0000 | 4 | 1.11217 | 0.9778 | 5.80 × | MDNS_Lambda | 4 | −0.2943 | 1.0000 | 2 | 0.91112 | 0.9968 | 5.45 × |
MDNS_Macro | 3 | −0.5204 | 1.0000 | 6 | 1.29032 | 0.9328 | 5.11 × | MDNS_Macro | 6 | 0.14766 | 1.0000 | 8 | 1.76542 | 0.6352 | 5.89 × |
MDNS_MMacro | 4 | −0.3123 | 1.0000 | 2 | 0.92993 | 0.9942 | 5.09 × | MDNS_MMacro | 3 | −0.4399 | 1.0000 | 3 | 1.18697 | 0.9616 | 5.44 × |
MDNS_PMacro | 10 | 0.5347 | 0.9970 | 9 | 1.79423 | 0.5668 | 5.80 × | MDNS_PMacro | 11 | 0.82884 | 0.9412 | 12 | 2.05469 | 0.3930 | 6.35 × |
MDNS_MMacroEnd | 1 | −2.0954 | 1.0000 | 1 | −0.9299 | 1.0000 | 3.87 × | MDNS_MMacroEnd | 1 | −2.0441 | 1.0000 | 1 | −0.9111 | 1.0000 | 4.01 × |
MDNS_PMacroEnd | 11 | 0.58805 | 0.9952 | 10 | 1.83347 | 0.5368 | 6.05 × | MDNS_PMacroEnd | 12 | 0.83684 | 0.9378 | 11 | 2.00488 | 0.4296 | 6.57 × |
MDNS_S | 9 | 0.49505 | 0.9974 | 8 | 1.56524 | 0.7656 | 5.87 × | MDNS_S | 8 | 0.51968 | 0.9962 | 6 | 1.68561 | 0.9616 | 6.21 × |
MDNS_SmediaMacro | 5 | −0.1067 | 1.0000 | 3 | 1.10358 | 0.9942 | 5.31 × | MDNS_SmediaMacro | 5 | 0.00664 | 1.0000 | 4 | 1.34147 | 0.9616 | 5.82 × |
MDNS_Smacro | 2 | −0.9395 | 1.0000 | 5 | 1.21148 | 0.9778 | 4.89 × | MDNS_Smacro | 2 | −0.6008 | 1.0000 | 5 | 1.57637 | 0.9616 | 5.52 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | ||||||||
MDNS | 9 | 0.64364 | 0.9848 | 8 | 1.90351 | 0.5390 | 6.50 × | ||||||||
MDNS_M | 11 | 0.76808 | 0.9640 | 9 | 2.00402 | 0.4546 | 6.60 × | ||||||||
MDNS_P | 6 | 0.46396 | 0.9986 | 7 | 1.83757 | 0.5952 | 6.34 × | ||||||||
MDNS_Lambda | 3 | −0.5603 | 1.0000 | 2 | 0.73459 | 1.0000 | 5.31 × | ||||||||
MDNS_Macro | 7 | 0.52483 | 0.9968 | 11 | 2.11455 | 0.3654 | 6.37 × | ||||||||
MDNS_MMacro | 2 | −0.5781 | 1.0000 | 3 | 1.27165 | 0.9430 | 5.57 × | ||||||||
MDNS_PMacro | 12 | 0.87837 | 0.9290 | 12 | 2.19753 | 0.3022 | 6.66 × | ||||||||
MDNS_MMacroEnd | 1 | −2.2013 | 1.0000 | 1 | −0.7346 | 1.0000 | 4.10 × | ||||||||
MDNS_PMacroEnd | 10 | 0.72953 | 0.9722 | 10 | 2.03571 | 0.4284 | 6.76 × | ||||||||
MDNS_S | 8 | 0.55179 | 0.9944 | 5 | 1.79459 | 0.9430 | 6.48 × | ||||||||
MDNS_SmediaMacro | 5 | −0.0099 | 1.0000 | 4 | 1.44317 | 0.9430 | 6.05 × | ||||||||
MDNS_Smacro | 4 | −0.237 | 1.0000 | 6 | 1.79775 | 0.9430 | 5.94 × |
1-Month Maturity | 3-Month Maturity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 1 | −2.09542 | 1.0000 | 2 | 0.11496 | 1.0000 | 1.81 × | MDNS | 2 | −1.93693 | 1.0000 | 3 | 0.68867 | 0.9988 | 2.12 × |
MDNS_M | 4 | −1.82709 | 1.0000 | 7 | 1.243348 | 0.9482 | 2.17 × | MDNS_M | 7 | −1.73384 | 1.0000 | 7 | 1.022512 | 0.9864 | 2.38 × |
MDNS_P | 8 | −0.80079 | 1.0000 | 9 | 1.535254 | 0.8122 | 3.42 × | MDNS_P | 8 | −0.66423 | 1.0000 | 8 | 1.443698 | 0.8474 | 3.58 × |
MDNS_Lambda | 2 | −2.02119 | 1.0000 | 3 | 0.184344 | 1.0000 | 1.86 × | MDNS_Lambda | 6 | −1.78199 | 1.0000 | 6 | 0.82119 | 0.9970 | 2.31 × |
MDNS_Macro | 6 | −1.52978 | 1.0000 | 4 | 0.617887 | 0.9998 | 2.30 × | MDNS_Macro | 5 | −1.80775 | 1.0000 | 2 | 0.209961 | 1.0000 | 1.93 × |
MDNS_MMacro | 11 | 1.411762 | 0.3884 | 8 | 1.480174 | 0.8442 | 2.50 × | MDNS_MMacro | 11 | 1.386103 | 0.3908 | 9 | 1.47245 | 0.8312 | 2.25 × |
MDNS_Pmacro | 3 | −1.90036 | 1.0000 | 1 | −0.11496 | 1.0000 | 1.74 × | MDNS_Pmacro | 3 | −1.93654 | 1.0000 | 1 | −0.20996 | 1.0000 | 1.79 × |
MDNS_MMacroEnd | 10 | 0.427403 | 0.9572 | 11 | 3.895032 | 0.0058 | 5.80 × | MDNS_MMacroEnd | 10 | 0.66892 | 0.8260 | 11 | 3.678439 | 0.0112 | 5.97 × |
MDNS_PmacroEnd | 5 | −1.67626 | 1.0000 | 6 | 1.157246 | 0.9666 | 3.01 × | MDNS_PmacroEnd | 1 | −2.43056 | 1.0000 | 5 | 0.803842 | 0.9970 | 2.57 × |
MDNS_S | 9 | −0.06094 | 1.0000 | 10 | 1.722818 | 0.6844 | 4.87 × | MDNS_S | 9 | −0.02852 | 1.0000 | 10 | 1.698359 | 0.6888 | 4.71 × |
MDNS_Smacro | 7 | −1.52029 | 1.0000 | 5 | 1.050876 | 0.9842 | 2.90 × | MDNS_Smacro | 4 | −1.85606 | 1.0000 | 4 | 0.693668 | 0.9988 | 2.56 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 2 | −1.97901 | 1.0000 | 3 | 0.333927 | 1.0000 | 2.38 × | MDNS | 2 | −2.12675 | 1.0000 | 3 | 0.039339 | 1.0000 | 2.63 × |
MDNS_M | 7 | −1.66485 | 1.0000 | 7 | 0.901397 | 0.9944 | 2.71 × | MDNS_M | 5 | −1.79207 | 1.0000 | 5 | 0.849475 | 0.9950 | 2.95 × |
MDNS_P | 8 | −0.55236 | 1.0000 | 8 | 1.220485 | 0.9418 | 3.82 × | MDNS_P | 8 | −0.5821 | 1.0000 | 8 | 1.215647 | 0.9438 | 4.01 × |
MDNS_Lambda | 4 | −1.85359 | 1.0000 | 5 | 0.590744 | 1.0000 | 2.52 × | MDNS_Lambda | 4 | −1.90782 | 1.0000 | 7 | 1.044641 | 0.9794 | 2.87 × |
MDNS_Macro | 5 | −1.76926 | 1.0000 | 1 | −0.25195 | 1.0000 | 2.10 × | MDNS_Macro | 7 | −1.59841 | 1.0000 | 2 | 0.013681 | 1.0000 | 2.61 × |
MDNS_MMacro | 11 | 1.38447 | 0.4022 | 9 | 1.470531 | 0.8328 | 2.08 × | MDNS_MMacro | 11 | 1.4176 | 0.4038 | 9 | 1.546194 | 0.7880 | 1.95 × |
MDNS_Pmacro | 6 | −1.76189 | 1.0000 | 2 | 0.251949 | 1.0000 | 2.28 × | MDNS_Pmacro | 6 | −1.61999 | 1.0000 | 4 | 0.4089 | 1.0000 | 2.85 × |
MDNS_MMacroEnd | 10 | 0.69738 | 0.8336 | 11 | 3.28348 | 0.0282 | 6.02 × | MDNS_MMacroEnd | 10 | 0.913616 | 0.7380 | 11 | 3.402395 | 0.0220 | 6.46 × |
MDNS_PmacroEnd | 1 | −2.14882 | 1.0000 | 6 | 0.682358 | 0.9998 | 2.82 × | MDNS_PmacroEnd | 3 | −1.94348 | 1.0000 | 6 | 0.922062 | 0.9912 | 3.31 × |
MDNS_S | 9 | −0.0405 | 1.0000 | 10 | 1.734513 | 0.6566 | 4.74 × | MDNS_S | 9 | −0.15163 | 1.0000 | 10 | 1.727605 | 0.6658 | 4.74 × |
MDNS_Smacro | 3 | −1.93387 | 1.0000 | 4 | 0.397505 | 1.0000 | 2.63 × | MDNS_Smacro | 1 | −2.23798 | 1.0000 | 1 | −0.01368 | 1.0000 | 2.60 × |
12-Month Maturity | 15-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 1 | −3.08864 | 1.0000 | 2 | 0.338116 | 1.0000 | 2.83 × | MDNS | 1 | −3.1685 | 1.0000 | 2 | 0.658091 | 0.9996 | 2.97 × |
MDNS_M | 5 | −2.58379 | 1.0000 | 4 | 0.639505 | 0.9998 | 3.10 × | MDNS_M | 4 | −2.70915 | 1.0000 | 4 | 0.773765 | 0.9988 | 3.20 × |
MDNS_P | 8 | −0.96263 | 1.0000 | 6 | 1.076002 | 0.9808 | 4.10 × | MDNS_P | 8 | −1.0517 | 1.0000 | 5 | 1.128233 | 0.9708 | 4.12 × |
MDNS_Lambda | 3 | −2.81683 | 1.0000 | 8 | 1.487684 | 0.8422 | 3.15 × | MDNS_Lambda | 3 | −2.81291 | 1.0000 | 7 | 1.631774 | 0.7388 | 3.33 × |
MDNS_Macro | 7 | −1.86069 | 1.0000 | 3 | 0.372889 | 1.0000 | 3.12 × | MDNS_Macro | 7 | −1.57444 | 1.0000 | 3 | 0.716229 | 0.9992 | 3.55 × |
MDNS_MMacro | 11 | 1.326622 | 0.5286 | 9 | 1.597777 | 0.7668 | 1.83 × | MDNS_MMacro | 11 | 1.342537 | 0.5422 | 8 | 1.665066 | 0.7148 | 1.71 × |
MDNS_PMacro | 6 | −1.99638 | 1.0000 | 5 | 0.81128 | 0.9978 | 3.33 × | MDNS_PMacro | 6 | −1.73912 | 1.0000 | 6 | 1.164638 | 0.9620 | 3.73 × |
MDNS_MMacroEnd | 10 | 0.725167 | 0.9156 | 12 | 3.440038 | 0.0188 | 6.88 × | MDNS_MMacroEnd | 10 | 0.966792 | 0.8054 | 12 | 3.489898 | 0.0160 | 7.20 × |
MDNS_PMacroEnd | 4 | −2.65229 | 1.0000 | 7 | 1.395291 | 0.8894 | 3.73 × | MDNS_PMacroEnd | 5 | −2.34721 | 1.0000 | 10 | 1.880229 | 0.5564 | 4.05 × |
MDNS_S | 9 | −0.84015 | 1.0000 | 10 | 1.750132 | 0.6626 | 4.68 × | MDNS_S | 9 | −0.97114 | 1.0000 | 9 | 1.746972 | 0.6592 | 4.61 × |
MDNS_SmediaMacro | 12 | 1.912836 | 0.2204 | 11 | 3.088935 | 0.0470 | 1.23 × | MDNS_SmediaMacro | 12 | 1.860318 | 0.2522 | 11 | 3.080579 | 0.0470 | 1.15 × |
MDNS_Smacro | 2 | −2.95961 | 1.0000 | 1 | −0.33812 | 1.0000 | 2.49 × | MDNS_Smacro | 2 | −3.16811 | 1.0000 | 1 | −0.65809 | 1.0000 | 2.34 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 2 | −3.23581 | 1.0000 | 2 | 0.947313 | 0.9916 | 3.14 × | MDNS | 2 | −3.34278 | 1.0000 | 3 | 1.171206 | 0.9606 | 3.25 × |
MDNS_M | 3 | −2.89361 | 1.0000 | 3 | 0.980411 | 0.9894 | 3.31 × | MDNS_M | 3 | −3.10634 | 1.0000 | 2 | 1.152211 | 1.0000 | 3.37 × |
MDNS_P | 8 | −1.17425 | 1.0000 | 5 | 1.122966 | 0.9728 | 4.12 × | MDNS_P | 6 | −1.35347 | 1.0000 | 5 | 1.224761 | 0.9470 | 4.06 × |
MDNS_Lambda | 4 | −2.82989 | 1.0000 | 7 | 1.711951 | 0.6912 | 3.50 × | MDNS_Lambda | 4 | −2.90892 | 1.0000 | 7 | 1.702375 | 0.6890 | 3.61 × |
MDNS_Macro | 7 | −1.36041 | 1.0000 | 4 | 1.004319 | 0.9888 | 3.93 × | MDNS_Macro | 9 | −1.14949 | 1.0000 | 4 | 1.222861 | 0.9480 | 4.21 × |
MDNS_MMacro | 11 | 1.393627 | 0.5232 | 8 | 1.789068 | 0.6354 | 1.61 × | MDNS_MMacro | 11 | 1.418247 | 0.5226 | 8 | 1.881044 | 0.5530 | 1.52 × |
MDNS_PMacro | 6 | −1.51778 | 1.0000 | 6 | 1.430509 | 0.8640 | 4.08 × | MDNS_PMacro | 7 | −1.27457 | 1.0000 | 6 | 1.650868 | 0.7288 | 4.36 × |
MDNS_MMacroEnd | 10 | 1.183034 | 0.6630 | 12 | 3.564789 | 0.0138 | 7.49 × | MDNS_MMacroEnd | 10 | 1.337288 | 0.5694 | 12 | 3.640633 | 0.0106 | 7.70 × |
MDNS_PMacroEnd | 5 | −2.02209 | 1.0000 | 10 | 2.315552 | 0.2582 | 4.34 × | MDNS_PMacroEnd | 5 | −1.70298 | 1.0000 | 10 | 2.628212 | 0.1304 | 4.56 × |
MDNS_S | 9 | −1.06734 | 1.0000 | 9 | 1.964149 | 0.4980 | 4.58 × | MDNS_S | 8 | −1.19837 | 1.0000 | 9 | 2.098129 | 0.3968 | 4.53 × |
MDNS_SmediaMacro | 12 | 1.844255 | 0.2664 | 11 | 3.050744 | 0.0518 | 1.08 × | MDNS_SmediaMacro | 12 | 1.809928 | 0.2898 | 11 | 3.041782 | 0.0516 | 1.02 × |
MDNS_Smacro | 1 | −3.39564 | 1.0000 | 1 | −0.94731 | 1.0000 | 2.23 × | MDNS_Smacro | 1 | −3.57524 | 1.0000 | 1 | −1.15221 | 1.0000 | 2.15 × |
24-Month Maturity | 27-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 2 | −3.28806 | 1.0000 | 4 | 1.398374 | 0.8934 | 3.32 × | MDNS | 3 | −3.38037 | 1.0000 | 4 | 1.687866 | 0.7198 | 3.40 × |
MDNS_M | 3 | −3.24605 | 1.0000 | 2 | 1.339432 | 1.0000 | 3.40 × | MDNS_M | 2 | −3.45509 | 1.0000 | 3 | 1.59215 | 0.9922 | 3.44 × |
MDNS_P | 5 | −1.55738 | 1.0000 | 3 | 1.340975 | 0.9934 | 3.98 × | MDNS_P | 5 | −1.88269 | 1.0000 | 2 | 1.546496 | 1.0000 | 3.92 × |
MDNS_Lambda | 4 | −2.8251 | 1.0000 | 6 | 1.827056 | 0.6040 | 3.66 × | MDNS_Lambda | 4 | −2.84542 | 1.0000 | 7 | 2.151938 | 0.3874 | 3.72 × |
MDNS_Macro | 9 | −0.97585 | 1.0000 | 5 | 1.423941 | 0.8786 | 4.43 × | MDNS_Macro | 8 | −0.8675 | 1.0000 | 5 | 1.725015 | 0.6938 | 4.63 × |
MDNS_MMacro | 10 | 1.454896 | 0.5016 | 8 | 1.968348 | 0.4940 | 1.44 × | MDNS_MMacro | 10 | 1.469277 | 0.4912 | 6 | 2.032917 | 0.4712 | 1.37 × |
MDNS_PMacro | 8 | −1.04345 | 1.0000 | 7 | 1.870244 | 0.5718 | 4.59 × | MDNS_PMacro | 9 | −0.85017 | 1.0000 | 8 | 2.209762 | 0.3508 | 4.79 × |
MDNS_MMacroEnd | 11 | 1.503618 | 0.4660 | 12 | 3.684016 | 0.0064 | 7.86 × | MDNS_MMacroEnd | 11 | 1.657825 | 0.3750 | 12 | 3.495081 | 0.0156 | 8.01 × |
MDNS_PMacroEnd | 6 | −1.37272 | 1.0000 | 10 | 2.881674 | 0.0714 | 4.72 × | MDNS_PMacroEnd | 7 | −1.09434 | 1.0000 | 11 | 3.283053 | 0.0270 | 4.88 × |
MDNS_S | 7 | −1.31288 | 1.0000 | 9 | 2.254201 | 0.3060 | 4.46 × | MDNS_S | 6 | −1.37356 | 1.0000 | 9 | 2.439849 | 0.2176 | 4.42 × |
MDNS_SmediaMacro | 12 | 1.785749 | 0.3062 | 11 | 3.023714 | 0.0480 | 9.69 × | MDNS_SmediaMacro | 12 | 1.85752 | 0.2710 | 10 | 3.027684 | 0.0600 | 9.28 × |
MDNS_Smacro | 1 | −3.67164 | 1.0000 | 1 | −1.33943 | 1.0000 | 2.07 × | MDNS_Smacro | 1 | −3.9776 | 1.0000 | 1 | −1.5465 | 1.0000 | 2.01 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 3 | −3.35786 | 1.0000 | 4 | 1.838266 | 0.6024 | 3.44 × | MDNS | 3 | −3.35606 | 1.0000 | 4 | 1.897881 | 0.5498 | 3.44 × |
MDNS_M | 2 | −3.56696 | 1.0000 | 3 | 1.713317 | 0.9954 | 3.46 × | MDNS_M | 2 | −3.67591 | 1.0000 | 3 | 1.766344 | 0.9990 | 3.42 × |
MDNS_P | 5 | −2.12168 | 1.0000 | 2 | 1.627428 | 1.0000 | 3.85 × | MDNS_P | 5 | −2.36386 | 1.0000 | 2 | 1.657812 | 1.0000 | 3.73 × |
MDNS_Lambda | 4 | −2.82515 | 1.0000 | 7 | 2.279956 | 0.2952 | 3.74 × | MDNS_Lambda | 4 | −2.82126 | 1.0000 | 7 | 2.313783 | 0.2748 | 3.71 × |
MDNS_Macro | 8 | −0.70478 | 1.0000 | 5 | 1.878625 | 0.5742 | 4.78 × | MDNS_Macro | 8 | −0.5536 | 1.0000 | 5 | 1.967992 | 0.5002 | 4.84 × |
MDNS_MMacro | 10 | 1.507024 | 0.4744 | 6 | 2.13074 | 0.3900 | 1.30 × | MDNS_MMacro | 10 | 1.527718 | 0.4712 | 6 | 2.211019 | 0.3318 | 1.24 × |
MDNS_PMacro | 9 | −0.64284 | 1.0000 | 8 | 2.389063 | 0.2406 | 4.94 × | MDNS_PMacro | 9 | −0.43656 | 1.0000 | 8 | 2.472108 | 0.2044 | 5.02 × |
MDNS_MMacroEnd | 11 | 1.722125 | 0.3478 | 11 | 3.443819 | 0.0220 | 8.10 × | MDNS_MMacroEnd | 12 | 1.823285 | 0.2922 | 11 | 3.443765 | 0.0216 | 8.13 × |
MDNS_PMacroEnd | 7 | −0.81844 | 1.0000 | 12 | 3.469255 | 0.0214 | 4.99 × | MDNS_PMacroEnd | 7 | −0.58139 | 1.0000 | 12 | 3.569407 | 0.0154 | 5.04 × |
MDNS_S | 6 | −1.4719 | 1.0000 | 9 | 2.552095 | 0.1704 | 4.36 × | MDNS_S | 6 | −1.58269 | 1.0000 | 9 | 2.560904 | 0.1686 | 4.26 × |
MDNS_SmediaMacro | 12 | 1.839814 | 0.2914 | 10 | 3.029884 | 0.0614 | 8.93 × | MDNS_SmediaMacro | 11 | 1.808835 | 0.3004 | 10 | 3.031517 | 0.0564 | 8.57 × |
MDNS_Smacro | 1 | −4.0373 | 1.0000 | 1 | −1.62743 | 1.0000 | 1.96 × | MDNS_Smacro | 1 | −4.07182 | 1.0000 | 1 | −1.65781 | 1.0000 | 1.91 × |
36-Month Maturity | 39-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 3 | −3.34664 | 1.0000 | 4 | 1.990049 | 0.4878 | 3.42 × | MDNS | 3 | −3.40668 | 1.0000 | 4 | 2.050392 | 0.4402 | 3.42 × |
MDNS_M | 2 | −3.79023 | 1.0000 | 3 | 1.85518 | 0.9996 | 3.38 × | MDNS_M | 2 | −4.01817 | 1.0000 | 3 | 1.896727 | 1.0000 | 3.36 × |
MDNS_P | 5 | −2.63692 | 1.0000 | 2 | 1.726672 | 1.0000 | 3.63 × | MDNS_P | 4 | −2.96066 | 1.0000 | 2 | 1.744927 | 1.0000 | 3.55 × |
MDNS_Lambda | 4 | −2.81149 | 1.0000 | 7 | 2.386618 | 0.2436 | 3.66 × | MDNS_Lambda | 5 | −2.88572 | 1.0000 | 7 | 2.428084 | 0.2218 | 3.64 × |
MDNS_Macro | 7 | −0.43048 | 1.0000 | 5 | 2.085006 | 0.4216 | 4.89 × | MDNS_Macro | 7 | −0.30515 | 1.0000 | 5 | 2.183782 | 0.3530 | 4.95 × |
MDNS_MMacro | 10 | 1.530643 | 0.4554 | 6 | 2.244994 | 0.3228 | 1.18 × | MDNS_MMacro | 10 | 1.602297 | 0.4300 | 6 | 2.406229 | 0.2318 | 1.13 × |
MDNS_PMacro | 9 | −0.26061 | 1.0000 | 9 | 2.643301 | 0.1400 | 5.08 × | MDNS_PMacro | 9 | −0.09176 | 1.0000 | 9 | 2.738989 | 0.1124 | 5.15 × |
MDNS_MMacroEnd | 12 | 1.905254 | 0.2506 | 11 | 3.477806 | 0.0162 | 8.14 × | MDNS_MMacroEnd | 12 | 1.906654 | 0.2658 | 11 | 3.33225 | 0.0244 | 8.17 × |
MDNS_PMacroEnd | 8 | −0.37439 | 1.0000 | 12 | 3.68643 | 0.0096 | 5.07 × | MDNS_PMacroEnd | 8 | −0.1899 | 1.0000 | 12 | 3.860319 | 0.0066 | 5.11 × |
MDNS_S | 6 | −1.68224 | 1.0000 | 8 | 2.57867 | 0.1618 | 4.16 × | MDNS_S | 6 | −1.79004 | 1.0000 | 8 | 2.651115 | 0.1352 | 4.08 × |
MDNS_SmediaMacro | 11 | 1.783764 | 0.3086 | 10 | 3.05504 | 0.0524 | 8.27 × | MDNS_SmediaMacro | 11 | 1.81685 | 0.3102 | 10 | 3.137115 | 0.0420 | 8.03 × |
MDNS_Smacro | 1 | −4.11535 | 1.0000 | 1 | −1.72667 | 1.0000 | 1.87 × | MDNS_Smacro | 1 | −4.1636 | 1.0000 | 1 | −1.74493 | 1.0000 | 1.84 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 4 | −3.4166 | 1.0000 | 4 | 2.168434 | 0.3564 | 3.36 × | MDNS_Smacro | 1 | −2.3295 | 1.0000 | 1 | −2.32946 | 1.0000 | 1.63 × |
MDNS_M | 1 | −4.23941 | 1.0000 | 3 | 2.015817 | 1.0000 | 3.28 × | ||||||||
MDNS_P | 3 | −3.76851 | 1.0000 | 2 | 1.869901 | 1.0000 | 3.38 × | 72-Month Maturity | |||||||
MDNS_Lambda | 5 | −2.90811 | 1.0000 | 6 | 2.461774 | 0.2090 | 3.51 × | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS_Macro | 7 | 0.073422 | 1.0000 | 5 | 2.389841 | 0.2414 | 5.11 × | MDNS_Smacro | 1 | −2.35514 | 1.0000 | 1 | −2.35514 | 1.0000 | 1.61 × |
MDNS_MMacro | 10 | 1.673142 | 0.3864 | 7 | 2.638079 | 0.1434 | 1.02 × | ||||||||
MDNS_PMacro | 9 | 0.348348 | 0.9990 | 9 | 3.068854 | 0.0528 | 5.29 × | ||||||||
MDNS_MMacroEnd | 12 | 2.005957 | 0.2178 | 11 | 3.271636 | 0.0308 | 8.17 × | ||||||||
MDNS_PMacroEnd | 8 | 0.22516 | 1.0000 | 12 | 4.04298 | 0.0038 | 5.18 × | ||||||||
MDNS_S | 6 | −2.12451 | 1.0000 | 8 | 2.659018 | 0.1352 | 3.86 × | ||||||||
MDNS_SmediaMacro | 11 | 1.734047 | 0.3526 | 10 | 3.105811 | 0.0480 | 7.52 × | ||||||||
MDNS_Smacro | 2 | −4.15811 | 1.0000 | 1 | −1.8699 | 1.0000 | 1.73 × |
References
- Nelson, C.; Siegel, A.F. Parsimonious modeling of yield curves. J. Bus. 1987, 60, 473–489. [Google Scholar] [CrossRef]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Wiley: New York, NY, USA, 1989; Volume 1. [Google Scholar]
- Cuyt, A. Approximation Theory. In Wiley Encyclopedia of Computer Science and Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 163–171. [Google Scholar]
- Steffensen, J.F. Interpolation; Dover Publications: Mineola, NY, USA, 2006. [Google Scholar]
- Van der Maaten, L.; Postma, E.; van den Herik, J. Dimensionality Reduction: A Comparative Review. J. Mach. Learn. Res. 2009, 10, 497. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Douc, R.; Moulines, E.; Stoffer, D. Nonlinear Time Series: Theory, Methods and Applications with R Examples; Chapman and Hall/CRC: New York, NY, USA, 2013. [Google Scholar]
- Meyn, S.; Tweedie, R.L.; Glynn, P.W. Markov Chains and Stochastic Stability, 2nd ed.; Cambridge Mathematical Library, Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Kim, C.J.; Piger, J.; Startz, R. Estimation of Markov regime-switching regression models with endogenous switching. J. Econom. 2008, 143, 263–273. [Google Scholar] [CrossRef]
- Boot, T.; Pick, A. Does modeling a structural break improve forecast accuracy? J. Econom. 2020, 215, 35–59. [Google Scholar] [CrossRef]
- Dufays, A.; Rombouts, J.V. Relevant parameter changes in structural break models. J. Econom. 2020, 217, 46–78. [Google Scholar] [CrossRef]
- Gamerman, D.; Lopes, H. Markov chain Monte Carlo: Stochastic Simulation for Bayesian Inference; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Filipovic, D. Term-Structure Models: A Graduate Course; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Musiela, M.; Rutkowski, M. Martingale Methods in Financial Modelling; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Heath, D.; Jarrow, R.; Morton, A. Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 1992, 60, 77–105. [Google Scholar] [CrossRef]
- Diebold, F.X.; Rudebusch, G.D. Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach; Econometric and Tinbergen Institutes Lectures; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Litterman, R.B.; Scheinkman, J. Common Factors Affecting Bond Returns. J. Fixed Income 1991, 1, 54–61. [Google Scholar] [CrossRef]
- Bank for International Settlements. Zero-Coupon Yield Curves Estimated by Central Banks. 2015. Available online: http://www.bis.org/publ/bppdf/bispap25a.pdf (accessed on 1 October 2018).
- Diebold, F.X.; Li, C. Forecasting the term structure of the government bond yields. J. Econom. 2006, 130, 337–369. [Google Scholar] [CrossRef]
- Christensen, J.H.; Diebold, F.X.; Rudebusch, G.D. An Arbitrage-free generalized Nelson-Siegel term structure model. Econom. J. 2008, 12, C33–C64. [Google Scholar] [CrossRef]
- Duffie, D.; Kan, R. A yield-factor model of interest rates. Math. Financ. 1996, 6, 379–406. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Athari, S.A.; Ertugrul, H.M. The real estate industry in Turkey: A time series analysis. Serv. Ind. J. 2021, 41, 427–439. [Google Scholar] [CrossRef]
- Athari, S.; Kirikkaleli, D.; Adebayo, T. World pandemic uncertainty and German stock market: Evidence from Markov regime-switching and Fourier based approaches. Qual. Quant. 2023, 57, 1923–1936. [Google Scholar] [CrossRef] [PubMed]
- Duffee, G.R. Term premia and interest rate forecasts in affine models. J. Financ. 2002, 57, 405–443. [Google Scholar] [CrossRef]
- Matsumura, M.S.; Moreira, A.R.B. Macro Factors and the Brazilian Yield Curve with No Arbitrage Models; Discussion Paper; IPEA: Brasilia, Brazil, 2006. [Google Scholar]
- Faria, A.; Almeida, C. Forecasting the Brazilian term structure using macroeconomic factors. Braz. Rev. Econom. 2014, 34, 45. [Google Scholar]
- So, M.K.P.; Lam, K.; Li, W.K. A Stochastic volatility model with Markov Switching. J. Bus. Econ. Stat. 1998, 16, 244–253. [Google Scholar]
- Diebold, F.X.; Rudebusch, G.D.; Aruoba, S.B. The macroeconomy and yield curve: A dynamic latent factor approach. J. Econom. 2006, 131, 309–338. [Google Scholar] [CrossRef]
- Christensen, J.H. A Regime-Switching Model of the Yield Curve at the Zero Bound; Working Paper—Federal Reserve Bank of San Francisco Series 2013-34; Federal Reserve Bank of San Francisco: San Francisco, CA, USA, 2015. [Google Scholar]
- Hevia, C.; Gonzales-Rozada, M.; Spagnolo, F. Estimating and Forecasting the yield curve using a Markov switching dynamic Nelson and Siegel model. J. Appl. Econom. 2015, 30, 987–1009. [Google Scholar] [CrossRef]
- Zhu, X.; Rahman, S. A regime-switching Nelson-Siegel term structure model of the macroeconomy. J. Macroecon. 2015, 44, 1–17. [Google Scholar] [CrossRef]
- Levant, J.; Ma, J. A dynamic Nelson-Siegel yield curve model with Markov switching. Econ. Model. 2017, 67, 73–87. [Google Scholar] [CrossRef]
- Kobayashi, T. Regime-switching dynamic Nelson-Siegel modeling to corporate bond yield spreads with time-varying transition probabilities. J. Appl. Bus. Econ. 2017, 19, 10–28. [Google Scholar]
- Gonçalves, C.; Portugal, M.S.; Aragón, E. Assessing Brazilian macroeconomic dynamics using a Markov-switching DSGE model. EconomiA 2016, 17, 23–42. [Google Scholar] [CrossRef]
- Arruda, E.F.; Ferreira, R.T.; Castelar, I. Modelos lineares e não lineares da curva de Phillips para previsão da taxa de inflação no Brasil. Rev. Bras. Econ. 2011, 65, 237–252. [Google Scholar]
- Wichmann, R.M.; Portugal, M.S. Política fiscal assimétrica: O caso do Brasil. Rev. Bras. Econ. 2013, 67, 355–378. [Google Scholar] [CrossRef]
- Hautsch, N.; Yang, F. Bayesian inference in a stochastic volatility Nelson-Siegel model. Comput. Stat. Data Anal. 2012, 56, 3774–3792. [Google Scholar] [CrossRef]
- Laurini, M.P.; Hotta, L.K. Bayesian extensions to Diebold-Li term structure model. Int. Rev. Financ. Anal. 2010, 19, 342–350. [Google Scholar] [CrossRef]
- Laurini, M.P.; Hotta, L.K. Forecasting the term structure of interest rates using integrated nested Laplace approximations. J. Forecast. 2014, 33, 214–230. [Google Scholar] [CrossRef]
- Diebold, F.X.; Li, C.; Yue, V.Z. Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach. J. Econom. 2008, 146, 351–363. [Google Scholar] [CrossRef]
- Laurini, M.P.; Hotta, L.K. Modelos de Fatores Latentes Generalizados para Curvas de Juros em Múltiplos Mercados; Anbima: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Christensen, J.H.; Diebold, F.X.; Rudebusch, G.D. The affine arbitrage-free class of Nelson–Siegel term structure models. J. Econom. 2011, 164, 4–20. [Google Scholar] [CrossRef]
- Vicente, J.; Tabak, B.M. Forecasting bond yields in the Brazilian fixed income market. Int. J. Forecast. 2008, 24, 490–497. [Google Scholar] [CrossRef]
- Caldeira, J.; Moura, G.; Santos, A.; Tourrucôoa, F. Forecasting the yield curve with the arbitrage-free dynamic Nelson-Siegel model: Brazilian evidence. EconomiA 2016, 17, 221–237. [Google Scholar] [CrossRef]
- Albert, C.G.; Callies, U.; von Toussaint, U. A Bayesian Approach to the Estimation of Parameters and Their Interdependencies in Environmental Modeling. Entropy 2022, 24, 231. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Lu, W.; Qian, H.; Zhang, Z. An improved Bayesian approach linked to a surrogate model for identifying groundwater pollution sources. Hydrogeol. J. 2022, 30, 601–616. [Google Scholar]
- Gupta, R.; Sun, X. Forecasting economic policy uncertainty of BRIC countries using Bayesian VARs. Econ. Lett. 2020, 186, 108677. [Google Scholar] [CrossRef]
- Li, L.; Kang, Y.; Li, F. Bayesian Forecast Combination Using Time-Varying Features. Int. J. Forecast. 2022, in press. [CrossRef]
- Lahmiri, S.; Bekiros, S.; Bezzina, F. Complexity analysis and forecasting of variations in cryptocurrency trading volume with support vector regression tuned by Bayesian optimization under different kernels: An empirical comparison from a large dataset. Expert Syst. Appl. 2022, 209, 118349. [Google Scholar] [CrossRef]
- Zhuang, L.; Xu, A.; Wang, X.L. A prognostic driven predictive maintenance framework based on Bayesian deep learning. Reliab. Eng. Syst. Saf. 2023, 234, 109181. [Google Scholar] [CrossRef]
- Gefang, D.; Koop, G.; Poon, A. Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage. Int. J. Forecast. 2023, 39, 346–363. [Google Scholar] [CrossRef]
- Batista, R.L.; Laurini, M. Bayesian estimation of term structure models: An application of the Hamiltonian Monte Carlo method. Commun. Stat. Case Stud. Data Anal. Appl. 2016, 2, 79–91. [Google Scholar] [CrossRef]
- Hansen, P.R.; Lunde, A.; Nason, J.M. The Model Confidence Set. Econometrica 2011, 79, 453–497. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Pick, A.; Pranovich, M. Optimal forecasts in the presence of structural breaks. J. Econom. 2013, 177, 134–152. [Google Scholar] [CrossRef]
- McAlinn, K.; West, M. Dynamic Bayesian predictive synthesis in time series forecasting. J. Econom. 2019, 210, 155–169. [Google Scholar] [CrossRef]
- Odendahl, F.; Rossi, B.; Sekhposyan, T. Evaluating forecast performance with state dependence. J. Econom. 2022, in press. [CrossRef]
- Altansukh, G.; Osborn, D. Using structural break inference for forecasting time series. Empir. Econ. 2022, 63, 1–41. [Google Scholar] [CrossRef]
- Clark, T.E.; McCracken, M.W. Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts. Int. Econ. Rev. 2009, 50, 363–395. [Google Scholar] [CrossRef]
- Inoue, A.; Jin, L.; Rossi, B. Rolling window selection for out-of-sample forecasting with time-varying parameters. J. Econom. 2017, 196, 55–67. [Google Scholar] [CrossRef]
- Timmermann, A. Chapter 4 Forecast Combinations. In Handbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 135–196. [Google Scholar]
Maturity (Month) | Mean | Std Dev. | Maximum | Minimum | (1) | (12) | (24) |
---|---|---|---|---|---|---|---|
1M | 0.1293 | 0.0404 | 0.2682 | 0.0697 | 0.9561 | 0.4454 | 0.3688 |
3M | 0.1290 | 0.0397 | 0.2758 | 0.0704 | 0.9487 | 0.4421 | 0.3446 |
6M | 0.1290 | 0.0388 | 0.2825 | 0.0707 | 0.9389 | 0.4386 | 0.3193 |
9M | 0.1292 | 0.0380 | 0.2866 | 0.0708 | 0.9313 | 0.4293 | 0.2993 |
12M | 0.1299 | 0.0375 | 0.2933 | 0.0715 | 0.9232 | 0.4179 | 0.2854 |
15M | 0.1306 | 0.0371 | 0.3026 | 0.0722 | 0.9130 | 0.4061 | 0.2775 |
18M | 0.1314 | 0.0368 | 0.3118 | 0.0740 | 0.9024 | 0.3965 | 0.2722 |
21M | 0.1320 | 0.0366 | 0.3217 | 0.0759 | 0.8915 | 0.3893 | 0.2683 |
24M | 0.1327 | 0.0366 | 0.3324 | 0.0776 | 0.8799 | 0.3816 | 0.2646 |
27M | 0.1333 | 0.0367 | 0.3418 | 0.0791 | 0.8700 | 0.3764 | 0.2605 |
30M | 0.1337 | 0.0369 | 0.3509 | 0.0800 | 0.8611 | 0.3735 | 0.2563 |
33M | 0.1342 | 0.0371 | 0.3593 | 0.0810 | 0.8533 | 0.3724 | 0.2515 |
36M | 0.1346 | 0.0374 | 0.3673 | 0.0820 | 0.8458 | 0.3700 | 0.2459 |
39M | 0.1350 | 0.0378 | 0.3768 | 0.0830 | 0.8379 | 0.3665 | 0.2391 |
48M | 0.1360 | 0.0392 | 0.3965 | 0.0845 | 0.8286 | 0.3548 | 0.2230 |
60M | 0.1370 | 0.0409 | 0.4034 | 0.0868 | 0.8352 | 0.3467 | 0.2075 |
72M | 0.1378 | 0.0420 | 0.4072 | 0.0881 | 0.8371 | 0.3406 | 0.2072 |
Slope | −0.0085 | 0.0235 | 0.0430 | −0.1391 | 0.7756 | 0.0140 | −0.0696 |
Curvature | −0.0013 | 0.0152 | 0.0314 | −0.0823 | 0.8054 | 0.0211 | 0.0698 |
Mean Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-SLambda | MDNS-Smedia Macro | MDNS-Smacro | |
1M | 3.67 · 10−4 | 3.64 · 10−4 | 3.68 · 10−4 | 3.04 · 10−4 | 3.57 · 10−4 | 3.56 · 10−4 | 3.52 · 10−4 | 3.44 · 10−4 | 3.53 · 10−4 | 3.68 · 10−4 | 1.133 · 10−3 | 8.40 · 10−4 | 3.14 · 10−4 |
3M | 3.0 · 10−5 | 2.9 · 10−5 | 3.0 · 10−5 | 8.98 · 10−4 | 2.8 · 10−5 | 2.9 · 10−5 | 2.7 · 10−5 | 2.1 · 10−5 | 2.8 · 10−5 | 3.1 · 10−5 | −1.043 · 10−3 | −7.13 · 10−4 | 1.68 · 10−4 |
6M | −2.45 · 10−4 | −2.43 · 10−4 | −2.44 · 10−4 | −5.29 · 10−4 | −2.39 · 10−4 | −2.38 · 10−4 | −2.37 · 10−4 | −2.41 · 10−4 | −2.37 · 10−4 | −2.44 · 10−4 | −2.045 · 10−3 | −1.227 · 10−3 | −2.46 · 10−4 |
9M | −3.98 · 10−4 | −3.95 · 10−4 | −3.97 · 10−4 | −1.109 · 10−3 | −3.90 · 10−4 | −3.89 · 10−4 | −3.86 · 10−4 | −3.89 · 10−4 | −3.87 · 10−4 | −3.97 · 10−4 | −2.251 · 10−3 | −1.359 · 10−3 | −4.43 · 10−4 |
12M | −3.00 · 10−4 | −2.98 · 10−4 | −3.00 · 10−4 | −1.070 · 10−3 | −2.93 · 10−4 | −2.92 · 10−4 | −2.90 · 10−4 | −2.91 · 10−4 | −2.90 · 10−4 | −2.99 · 10−4 | −1.983 · 10−3 | −1.157 · 10−3 | −3.59 · 10−4 |
15M | −1.19 · 10−4 | −1.16 · 10−4 | −1.18 · 10−4 | −7.99 · 10−4 | −1.13 · 10−4 | −1.13 · 10−4 | −1.11 · 10−4 | −1.11 · 10−4 | −1.11 · 10−4 | −1.18 · 10−4 | −1.535 · 10−3 | −8.33 · 10−4 | −1.80 · 10−4 |
18M | 3.7 · 10−5 | 3.8 · 10−5 | 3.7 · 10−5 | −4.95 · 10−4 | 4.0 · 10−5 | 4.0 · 10−5 | 4.1 · 10−5 | 4.2 · 10−5 | 4.1 · 10−5 | 3.7 · 10−5 | −1.070 · 10−3 | −5.16 · 10−4 | −2.0 · 10−5 |
21M | 1.27 · 10−4 | 1.28 · 10−4 | 1.27 · 10−4 | −2.39 · 10−4 | 1.28 · 10−4 | 1.28 · 10−4 | 1.28 · 10−4 | 1.29 · 10−4 | 1.28 · 10−4 | 1.27 · 10−4 | −6.52 · 10−4 | −2.57 · 10−4 | 7.9 · 10−5 |
24M | 2.18 · 10−4 | 2.19 · 10−4 | 2.18 · 10−4 | 1.7 · 10−5 | 2.17 · 10−4 | 2.17 · 10−4 | 2.16 · 10−4 | 2.18 · 10−4 | 2.17 · 10−4 | 2.19 · 10−4 | −2.29 · 10−4 | 4 · 10−6 | 1.80 · 10−4 |
27M | 2.36 · 10−4 | 2.35 · 10−4 | 2.35 · 10−4 | 1.87 · 10−4 | 2.33 · 10−4 | 2.32 · 10−4 | 2.31 · 10−4 | 2.32 · 10−4 | 2.31 · 10−4 | 2.36 · 10−4 | 1.14 · 10−4 | 1.87 · 10−4 | 2.09 · 10−4 |
30M | 1.84 · 10−4 | 1.83 · 10−4 | 1.84 · 10−4 | 2.72 · 10−4 | 1.80 · 10−4 | 1.79 · 10−4 | 1.78 · 10−4 | 1.79 · 10−4 | 1.78 · 10−4 | 1.84 · 10−4 | 3.76 · 10−4 | 2.95 · 10−4 | 1.69 · 10−4 |
33M | 1.23 · 10−4 | 1.21 · 10−4 | 1.22 · 10−4 | 3.29 · 10−4 | 1.18 · 10−4 | 1.17 · 10−4 | 1.15 · 10−4 | 1.17 · 10−4 | 1.16 · 10−4 | 1.22 · 10−4 | 6.12 · 10−4 | 3.86 · 10−4 | 1.19 · 10−4 |
36M | 8.8 · 10−5 | 8.7 · 10−5 | 8.8 · 10−5 | 3.95 · 10−4 | 8.3 · 10−5 | 8.2 · 10−5 | 8.1 · 10−5 | 8.1 · 10−5 | 8.1 · 10−5 | 8.7 · 10−5 | 8.58 · 10−4 | 4.95 · 10−4 | 9.7 · 10−5 |
39M | 1.04 · 10−4 | 1.03 · 10−4 | 1.04 · 10−4 | 4.95 · 10−4 | 9.9 · 10−5 | 9.8 · 10−5 | 9.7 · 10−5 | 9.7 · 10−5 | 9.7 · 10−5 | 1.03 · 10−4 | 1.137 · 10−3 | 6.46 · 10−4 | 1.24 · 10−4 |
48M | −4.6 · 10−5 | −4.8 · 10−5 | −4.6 · 10−5 | 5.07 · 10−4 | −4.9 · 10−5 | −4.9 · 10−5 | −5.0 · 10−5 | −5.1 · 10−5 | −5.0 · 10−5 | −4.7 · 10−5 | 1.666 · 10−3 | 8.46 · 10−4 | 5 · 10−6 |
60M | −1.95 · 10−4 | −1.96 · 10−4 | −1.95 · 10−4 | 4.33 · 10−4 | −1.94 · 10−4 | −1.93 · 10−4 | −1.92 · 10−4 | −1.95 · 10−4 | −1.93 · 10−4 | −1.96 · 10−4 | 2.205 · 10−3 | 1.057 · 10−3 | −1.10 · 10−4 |
72M | −2.11 · 10−4 | −2.10 · 10−4 | −2.10 · 10−4 | 4.07 · 10−4 | −2.04 · 10−4 | −2.03 · 10−4 | −2.00 · 10−4 | −2.05 · 10−4 | −2.02 · 10−4 | −2.12 · 10−4 | 2.692 · 10−3 | 1.308 · 10−3 | −1.00 · 10−4 |
Root Mean Squared Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-SLambda | MDNS-Smedia Macro | MDNS-Smacro | |
1M | 1.994 · 10−3 | 1.993 · 10−3 | 1.993 · 10−3 | 1.532 · 10−3 | 1.987 · 10−3 | 1.978 · 10−3 | 1.961 · 10−3 | 1.943 · 10−3 | 1.960 · 10−3 | 1.994 · 10−3 | 2.699 · 10−3 | 2.539 · 10−3 | 1.973 · 10−3 |
3M | 6.39 · 10−4 | 6.42 · 10−4 | 6.46 · 10−4 | 4.084 · 10−3 | 6.40 · 10−4 | 6.44 · 10−4 | 6.47 · 10−4 | 6.50 · 10−4 | 6.56 · 10−4 | 6.40 · 10−4 | 0.004070 | 2.724 · 10−3 | 7.44 · 10−4 |
6M | 1.567 · 10−3 | 1.566 · 10−3 | 1.572 · 10−3 | 2.208 · 10−3 | 1.564 · 10−3 | 1.570 · 10−3 | 1.566 · 10−3 | 1.585 · 10−3 | 1.574 · 10−3 | 1.572 · 10−3 | 4.708 · 10−3 | 3.436 · 10−3 | 1.605 · 10−3 |
9M | 1.670 · 10−3 | 1.665 · 10−3 | 1.670 · 10−3 | 3.853 · 10−3 | 1.661 · 10−3 | 1.663 · 10−3 | 1.653 · 10−3 | 1.670 · 10−3 | 1.659 · 10−3 | 1.672 · 10−3 | 4.736 · 10−3 | 3.313 · 10−3 | 1.711 · 10−3 |
12M | 1.399 · 10−3 | 1.393 · 10−3 | 1.396 · 10−3 | 4.012 · 10−3 | 1.389 · 10−3 | 1.387 · 10−3 | 1.376 · 10−3 | 1.390 · 10−3 | 1.380 · 10−3 | 1.399 · 10−3 | 4.307 · 10−3 | 2.800 · 10−3 | 1.437 · 10−3 |
15M | 1.060 · 10−3 | 1.055 · 10−3 | 1.057 · 10−3 | 3.542 · 10−3 | 1.051 · 10−3 | 1.049 · 10−3 | 1.038 · 10−3 | 1.049 · 10−3 | 1.040 · 10−3 | 1.060 · 10−3 | 3.609 · 10−3 | 2.138 · 10−3 | 1.075 · 10−3 |
18M | 8.08 · 10−4 | 8.05 · 10−4 | 8.05 · 10−4 | 2.846 · 10−3 | 8.03 · 10−4 | 8.02 · 10−4 | 7.95 · 10−4 | 8.01 · 10−4 | 7.93 · 10−4 | 8.09 · 10−4 | 2.851 · 10−3 | 1.580 · 10−3 | 8.03 · 10−4 |
21M | 6.92 · 10−4 | 6.92 · 10−4 | 6.91 · 10−4 | 2.137 · 10−3 | 6.92 · 10−4 | 6.91 · 10−4 | 6.92 · 10−4 | 6.92 · 10−4 | 6.88 · 10−4 | 6.92 · 10−4 | 2.158 · 10−3 | 1.182 · 10−3 | 6.79 · 10−4 |
24M | 7.70 · 10−4 | 7.71 · 10−4 | 7.70 · 10−4 | 1.498 · 10−3 | 7.72 · 10−4 | 7.73 · 10−4 | 7.78 · 10−4 | 7.77 · 10−4 | 7.75 · 10−4 | 7.70 · 10−4 | 1.661 · 10−3 | 1.042 · 10−3 | 7.61 · 10−4 |
27M | 9.35 · 10−4 | 9.36 · 10−4 | 9.35 · 10−4 | 1.128 · 10−3 | 9.37 · 10−4 | 9.39 · 10−4 | 9.43 · 10−4 | 9.43 · 10−4 | 9.41 · 10−4 | 9.35 · 10−4 | 1.539 · 10−3 | 1.193 · 10−3 | 9.40 · 10−4 |
30M | 1.094 · 10−3 | 1.094 · 10−3 | 1.094 · 10−3 | 1.114 · 10−3 | 1.095 · 10−3 | 1.097 · 10−3 | 1.099 · 10−3 | 1.100 · 10−3 | 1.098 · 10−3 | 1.094 · 10−3 | 1.669 · 10−3 | 1.417 · 10−3 | 1.106 · 10−3 |
33M | 1.264 · 10−3 | 1.262 · 10−3 | 1.262 · 10−3 | 1.390 · 10−3 | 1.263 · 10−3 | 1.264 · 10−3 | 1.264 · 10−3 | 1.267 · 10−3 | 1.264 · 10−3 | 1.263 · 10−3 | 1.962 · 10−3 | 1.647 · 10−3 | 1.276 · 10−3 |
36M | 1.434 · 10−3 | 1.431 · 10−3 | 1.431 · 10−3 | 1.795 · 10−3 | 1.432 · 10−3 | 1.432 · 10−3 | 1.430 · 10−3 | 1.434 · 10−3 | 1.429 · 10−3 | 1.433 · 10−3 | 2.332 · 10−3 | 1.901 · 10−3 | 1.441 · 10−3 |
39M | 1.619 · 10−3 | 1.615 · 10−3 | 1.613 · 10−3 | 2.272 · 10−3 | 1.615 · 10−3 | 1.613 · 10−3 | 1.609 · 10−3 | 1.613 · 10−3 | 1.608 · 10−3 | 1.617 · 10−3 | 2.790 · 10−3 | 2.216 · 10−3 | 1.623 · 10−3 |
48M | 1.220 · 10−3 | 1.211 · 10−3 | 1.209 · 10−3 | 3.038 · 10−3 | 1.209 · 10−3 | 1.204 · 10−3 | 1.198 · 10−3 | 1.202 · 10−3 | 1.195 · 10−3 | 1.214 · 10−3 | 3.713 · 10−3 | 2.611 · 10−3 | 1.228 · 10−3 |
60M | 1.559 · 10−3 | 1.575 · 10−3 | 1.576 · 10−3 | 4.157 · 10−3 | 1.580 · 10−3 | 1.589 · 10−3 | 1.611 · 10−3 | 1.592 · 10−3 | 1.600 · 10−3 | 1.569 · 10−3 | 0.005351 | 3.677 · 10−3 | 1.626 · 10−3 |
72M | 2.833 · 10−3 | 2.852 · 10−3 | 2.855 · 10−3 | 5.033 · 10−3 | 2.861 · 10−3 | 2.873 · 10−3 | 2.891 · 10−3 | 2.880 · 10−3 | 2.881 · 10−3 | 2.847 · 10−3 | 0.006927 | 4.676 · 10−3 | 2.864 · 10−3 |
Mean Absolute Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-SLambda | MDNS-Smedia Macro | MDNS-Smacro | |
1M | 1.531 · 10−3 | 1.527 · 10−3 | 1.524 · 10−3 | 9.30 · 10−4 | 1.515 · 10−3 | 1.508 · 10−3 | 1.501 · 10−3 | 1.483 · 10−3 | 1.498 · 10−3 | 1.527 · 10−3 | 2.123 · 10−3 | 1.994 · 10−3 | 1.497 · 10−3 |
3M | 4.53 · 10−4 | 4.55 · 10−4 | 4.58 · 10−4 | 2.865 · 10−3 | 4.55 · 10−4 | 4.58 · 10−4 | 4.63 · 10−4 | 4.59 · 10−4 | 4.63 · 10−4 | 4.57 · 10−4 | 3.118 · 10−3 | 2.175 · 10−3 | 5.29 · 10−4 |
6M | 1.237 · 10−3 | 1.236 · 10−3 | 1.244 · 10−3 | 1.719 · 10−3 | 1.232 · 10−3 | 1.238 · 10−3 | 1.236 · 10−3 | 1.248 · 10−3 | 1.242 · 10−3 | 1.244 · 10−3 | 3.778 · 10−3 | 2.780 · 10−3 | 1.270 · 10−3 |
9M | 1.305 · 10−3 | 1.300 · 10−3 | 1.307 · 10−3 | 2.970 · 10−3 | 1.296 · 10−3 | 1.296 · 10−3 | 1.292 · 10−3 | 1.301 · 10−3 | 1.295 · 10−3 | 1.306 · 10−3 | 3.773 · 10−3 | 2.639 · 10−3 | 1.350 · 10−3 |
12M | 1.039 · 10−3 | 1.036 · 10−3 | 1.043 · 10−3 | 3.056 · 10−3 | 1.031 · 10−3 | 1.033 · 10−3 | 1.024 · 10−3 | 1.033 · 10−3 | 1.022 · 10−3 | 1.043 · 10−3 | 3.338 · 10−3 | 2.169 · 10−3 | 1.078 · 10−3 |
15M | 7.02 · 10−4 | 7.00 · 10−4 | 7.06 · 10−4 | 2.675 · 10−3 | 6.95 · 10−4 | 6.97 · 10−4 | 6.89 · 10−4 | 6.97 · 10−4 | 6.88 · 10−4 | 7.07 · 10−4 | 2.772 · 10−3 | 1.606 · 10−3 | 7.46 · 10−4 |
18M | 5.33 · 10−4 | 5.31 · 10−4 | 5.32 · 10−4 | 2.129 · 10−3 | 5.31 · 10−4 | 5.31 · 10−4 | 5.32 · 10−4 | 5.32 · 10−4 | 5.26 · 10−4 | 5.33 · 10−4 | 2.207 · 10−3 | 1.127 · 10−3 | 5.49 · 10−4 |
21M | 5.31 · 10−4 | 5.33 · 10−4 | 5.31 · 10−4 | 1.608 · 10−3 | 5.33 · 10−4 | 5.34 · 10−4 | 5.35 · 10−4 | 5.36 · 10−4 | 5.32 · 10−4 | 5.32 · 10−4 | 1.652 · 10−3 | 8.34 · 10−4 | 5.20 · 10−4 |
24M | 6.40 · 10−4 | 6.41 · 10−4 | 6.40 · 10−4 | 1.189 · 10−3 | 6.42 · 10−4 | 6.43 · 10−4 | 6.46 · 10−4 | 6.44 · 10−4 | 6.41 · 10−4 | 6.41 · 10−4 | 1.257 · 10−3 | 7.63 · 10−4 | 6.27 · 10−4 |
27M | 7.20 · 10−4 | 7.20 · 10−4 | 7.20 · 10−4 | 9.07 · 10−4 | 7.19 · 10−4 | 7.21 · 10−4 | 7.20 · 10−4 | 7.23 · 10−4 | 7.20 · 10−4 | 7.20 · 10−4 | 1.160 · 10−3 | 8.93 · 10−4 | 7.13 · 10−4 |
30M | 7.48 · 10−4 | 7.48 · 10−4 | 7.49 · 10−4 | 8.26 · 10−4 | 7.45 · 10−4 | 7.47 · 10−4 | 7.45 · 10−4 | 7.47 · 10−4 | 7.46 · 10−4 | 7.49 · 10−4 | 1.296 · 10−3 | 1.068 · 10−3 | 7.49 · 10−4 |
33M | 7.43 · 10−4 | 7.42 · 10−4 | 7.45 · 10−4 | 9.74 · 10−4 | 7.39 · 10−4 | 7.40 · 10−4 | 7.37 · 10−4 | 7.40 · 10−4 | 7.37 · 10−4 | 7.46 · 10−4 | 1.480 · 10−3 | 1.202 · 10−3 | 7.53 · 10−4 |
36M | 7.56 · 10−4 | 7.56 · 10−4 | 7.61 · 10−4 | 1.243 · 10−3 | 7.53 · 10−4 | 7.53 · 10−4 | 7.50 · 10−4 | 7.53 · 10−4 | 7.49 · 10−4 | 7.61 · 10−4 | 1.723 · 10−3 | 1.350 · 10−3 | 7.77 · 10−4 |
39M | 7.81 · 10−4 | 7.79 · 10−4 | 7.85 · 10−4 | 1.562 · 10−3 | 7.77 · 10−4 | 7.77 · 10−4 | 7.73 · 10−4 | 7.76 · 10−4 | 7.71 · 10−4 | 7.85 · 10−4 | 2.040 · 10−3 | 1.508 · 10−3 | 8.05 · 10−4 |
48M | 5.72 · 10−4 | 5.72 · 10−4 | 5.78 · 10−4 | 2.200 · 10−3 | 5.72 · 10−4 | 5.75 · 10−4 | 5.73 · 10−4 | 5.75 · 10−4 | 5.64 · 10−4 | 5.76 · 10−4 | 2.855 · 10−3 | 1.679 · 10−3 | 5.95 · 10−4 |
60M | 7.99 · 10−4 | 8.08 · 10−4 | 8.04 · 10−4 | 2.934 · 10−3 | 8.11 · 10−4 | 8.16 · 10−4 | 8.16 · 10−4 | 8.18 · 10−4 | 8.11 · 10−4 | 8.03 · 10−4 | 3.919 · 10−3 | 2.106 · 10−3 | 7.39 · 10−4 |
72M | 1.524 · 10−3 | 1.529 · 10−3 | 1.525 · 10−3 | 3.615 · 10−3 | 1.526 · 10−3 | 1.530 · 10−3 | 1.527 · 10−3 | 1.534 · 10−3 | 1.528 · 10−3 | 1.524 · 10−3 | 4.866 · 10−3 | 2.419 · 10−3 | 1.448 · 10−3 |
Mean Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | −3.939 · 10−3 | −2.799 · 10−3 | −2.448 · 10−3 | −2.820 · 10−3 | 2.611 · 10−3 | 1.749 · 10−3 | −1.915 · 10−3 | 2.165 · 10−3 | −2.06 · 10−4 | −3.751 · 10−3 | 2.248 · 10−3 | −4.37 · 10−4 | 1.6458 · 10−2 |
3M | −6.278 · 10−3 | −5.204 · 10−3 | −4.893 · 10−3 | 2.749 · 10−3 | −2.8 · 10−5 | −8.02 · 10−4 | −4.158 · 10−3 | −1.366 · 10−3 | −2.593 · 10−3 | −6.113 · 10−3 | −4.07 · 10−4 | −8.39 · 10−4 | 2.2750 · 10−2 |
6M | −7.760 · 10−3 | −6.778 · 10−3 | −6.514 · 10−3 | −5.651 · 10−3 | −1.947 · 10−3 | −2.616 · 10−3 | −5.569 · 10−3 | −3.678 · 10−3 | −4.194 · 10−3 | −7.622 · 10−3 | −2.328 · 10−3 | −7.621 · 10−3 | 2.8095 · 10−2 |
9M | −7.349 · 10−3 | −6.450 · 10−3 | −6.222 · 10−3 | −9.367 · 10−3 | −1.946 · 10−3 | −2.535 · 10−3 | −5.145 · 10−3 | −3.820 · 10−3 | −3.933 · 10−3 | −7.229 · 10−3 | −2.313 · 10−3 | −9.697 · 10−3 | 3.0831 · 10−2 |
12M | −6.708 · 10−3 | −5.885 · 10−3 | −5.684 · 10−3 | −1.0598 · 10−2 | −1.684 · 10−3 | −2.212 · 10−3 | −4.528 · 10−3 | −3.535 · 10−3 | −3.455 · 10−3 | −6.602 · 10−3 | −2.028 · 10−3 | −1.0036 · 10−2 | 3.4132 · 10−2 |
15M | −5.828 · 10−3 | −5.072 · 10−3 | −4.893 · 10−3 | −1.0329 · 10−2 | −1.151 · 10−3 | −1.629 · 10−3 | −3.693 · 10−3 | −2.862 · 10−3 | −2.740 · 10−3 | −5.732 · 10−3 | −1.467 · 10−3 | −9.230 · 10−3 | 3.6183 · 10−2 |
18M | −4.868 · 10−3 | −4.172 · 10−3 | −4.011 · 10−3 | −9.223 · 10−3 | −5.04 · 10−4 | −9.43 · 10−4 | −2.789 · 10−3 | −1.996 · 10−3 | −1.939 · 10−3 | −4.781 · 10−3 | −7.94 · 10−4 | −7.769 · 10−3 | 3.6732 · 10−2 |
21M | −3.849 · 10−3 | −3.207 · 10−3 | −3.061 · 10−3 | −7.587 · 10−3 | 2.33 · 10−4 | −1.73 · 10−4 | −1.830 · 10−3 | −9.87 · 10−4 | −1.069 · 10−3 | −3.768 · 10−3 | −3.0 · 10−5 | −5.881 · 10−3 | 3.6674 · 10−2 |
24M | −2.871 · 10−3 | −2.277 · 10−3 | −2.143 · 10−3 | −5.702 · 10−3 | 9.58 · 10−4 | 5.80 · 10−4 | −9.13 · 10−4 | 4.2 · 10−5 | −2.28 · 10−4 | −2.795 · 10−3 | 7.20 · 10−4 | −3.808 · 10−3 | 3.5870 · 10−2 |
27M | −2.602 · 10−3 | −2.050 · 10−3 | −1.926 · 10−3 | −4.355 · 10−3 | 1.003 · 10−3 | 6.48 · 10−4 | −7.00 · 10−4 | 4.06 · 10−4 | −8.1 · 10−5 | −2.529 · 10−3 | 7.85 · 10−4 | −2.315 · 10−3 | 3.5338 · 10−2 |
30M | −2.201 · 10−3 | −1.688 · 10−3 | −1.572 · 10−3 | −2.787 · 10−3 | 1.203 · 10−3 | 8.68 · 10−4 | −3.53 · 10−4 | 9.31 · 10−4 | 2.09 · 10−4 | −2.132 · 10−3 | 1.004 · 10−3 | −6.32 · 10−4 | 3.3997 · 10−2 |
33M | −1.757 · 10−3 | −1.278 · 10−3 | −1.169 · 10−3 | −1.142 · 10−3 | 1.468 · 10−3 | 1.152 · 10−3 | 4.3 · 10−5 | 1.518 · 10−3 | 5.55 · 10−4 | −1.691 · 10−3 | 1.284 · 10−3 | 1.109 · 10−3 | 3.2926 · 10−2 |
36M | −1.525 · 10−3 | −1.076 · 10−3 | −9.74 · 10−4 | 2.89 · 10−4 | 1.541 · 10−3 | 1.242 · 10−3 | 2.31 · 10−4 | 1.905 · 10−3 | 7.00 · 10−4 | −1.462 · 10−3 | 1.370 · 10−3 | 2.619 · 10−3 | 3.1747 · 10−2 |
39M | −1.622 · 10−3 | −1.200 · 10−3 | −1.104 · 10−3 | 1.363 · 10−3 | 1.302 · 10−3 | 1.017 · 10−3 | 9.6 · 10−5 | 1.968 · 10−3 | 5.26 · 10−4 | −1.562 · 10−3 | 1.142 · 10−3 | 3.759 · 10−3 | 3.1183 · 10−2 |
48M | −1.778 · 10−3 | −1.421 · 10−3 | −1.341 · 10−3 | 4.428 · 10−3 | 8.05 · 10−4 | 5.58 · 10−4 | −1.50 · 10−4 | 2.287 · 10−3 | 1.91 · 10−4 | −1.724 · 10−3 | 6.64 · 10−4 | 6.975 · 10−3 | 2.8862 · 10−2 |
60M | −3.046 · 10−3 | −2.750 · 10−3 | −2.685 · 10−3 | 6.641 · 10−3 | −7.77 · 10−4 | −9.87 · 10−4 | −1.494 · 10−3 | 1.575 · 10−3 | −1.233 · 10−3 | −2.999 · 10−3 | −9.09 · 10−4 | 9.320 · 10−3 | 2.6963 · 10−2 |
72M | −4.013 · 10−3 | −3.759 · 10−3 | −3.706 · 10−3 | 8.321 · 10−3 | −1.959 · 10−3 | −2.139 · 10−3 | −2.507 · 10−3 | 1.054 · 10−3 | −2.299 · 10−3 | −3.972 · 10−3 | −2.091 · 10−3 | 1.1090 · 10−2 | 2.5544 · 10−2 |
Root Mean Squared Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 7.519 · 10−3 | 5.967 · 10−3 | 5.499 · 10−3 | 4.683 · 10−3 | 2.618 · 10−3 | 1.868 · 10−3 | 4.687 · 10−3 | 2.224 · 10−3 | 2.607 · 10−3 | 7.279 · 10−3 | 2.257 · 10−3 | 2.692 · 10−3 | 1.6458 · 10−2 |
3M | 8.917 · 10−3 | 7.403 · 10−3 | 6.960 · 10−3 | 5.127 · 10−3 | 1.20 · 10−4 | 1.199 · 10−3 | 5.911 · 10−3 | 1.694 · 10−3 | 3.725 · 10−3 | 8.690 · 10−3 | 6.30 · 10−4 | 2.873 · 10−3 | 2.2750 · 10−2 |
6M | 9.724 · 10−3 | 8.356 · 10−3 | 7.981 · 10−3 | 6.918 · 10−3 | 1.952 · 10−3 | 2.745 · 10−3 | 6.706 · 10−3 | 3.789 · 10−3 | 4.834 · 10−3 | 9.529 · 10−3 | 2.377 · 10−3 | 7.975 · 10−3 | 2.8095 · 10−2 |
9M | 9.243 · 10−3 | 7.991 · 10−3 | 7.664 · 10−3 | 1.0098 · 10−2 | 1.973 · 10−3 | 2.703 · 10−3 | 6.224 · 10−3 | 3.936 · 10−3 | 4.572 · 10−3 | 9.071 · 10−3 | 2.399 · 10−3 | 9.929 · 10−3 | 3.0831 · 10−2 |
12M | 8.546 · 10−3 | 7.395 · 10−3 | 7.107 · 10−3 | 1.1162 · 10−2 | 1.730 · 10−3 | 2.405 · 10−3 | 5.555 · 10−3 | 3.647 · 10−3 | 4.087 · 10−3 | 8.392 · 10−3 | 2.140 · 10−3 | 1.0209 · 10−2 | 3.4132 · 10−2 |
15M | 7.622 · 10−3 | 6.562 · 10−3 | 6.304 · 10−3 | 1.0809 · 10−2 | 1.202 · 10−3 | 1.833 · 10−3 | 4.677 · 10−3 | 2.958 · 10−3 | 3.361 · 10−3 | 7.483 · 10−3 | 1.592 · 10−3 | 9.362 · 10−3 | 3.6183 · 10−2 |
18M | 6.620 · 10−3 | 5.641 · 10−3 | 5.408 · 10−3 | 9.650 · 10−3 | 5.46 · 10−4 | 1.151 · 10−3 | 3.731 · 10−3 | 2.065 · 10−3 | 2.545 · 10−3 | 6.492 · 10−3 | 9.20 · 10−4 | 7.865 · 10−3 | 3.6732 · 10−2 |
21M | 5.616 · 10−3 | 4.712 · 10−3 | 4.501 · 10−3 | 7.999 · 10−3 | 2.43 · 10−4 | 5.10 · 10−4 | 2.799 · 10−3 | 1.039 · 10−3 | 1.736 · 10−3 | 5.498 · 10−3 | 3.14 · 10−4 | 5.954 · 10−3 | 3.6674 · 10−2 |
24M | 4.755 · 10−3 | 3.927 · 10−3 | 3.737 · 10−3 | 6.161 · 10−3 | 9.58 · 10−4 | 6.89 · 10−4 | 2.067 · 10−3 | 1.99 · 10−4 | 1.194 · 10−3 | 4.647 · 10−3 | 7.55 · 10−4 | 3.877 · 10−3 | 3.5870 · 10−2 |
27M | 4.230 · 10−3 | 3.459 · 10−3 | 3.285 · 10−3 | 4.782 · 10−3 | 1.037 · 10−3 | 6.54 · 10−4 | 1.596 · 10−3 | 4.19 · 10−4 | 8.14 · 10−4 | 4.129 · 10−3 | 7.86 · 10−4 | 2.346 · 10−3 | 3.5338 · 10−2 |
30M | 3.855 · 10−3 | 3.144 · 10−3 | 2.987 · 10−3 | 3.375 · 10−3 | 1.230 · 10−3 | 8.71 · 10−4 | 1.345 · 10−3 | 9.40 · 10−4 | 7.52 · 10−4 | 3.762 · 10−3 | 1.004 · 10−3 | 7.04 · 10−4 | 3.3997 · 10−2 |
33M | 3.422 · 10−3 | 2.770 · 10−3 | 2.629 · 10−3 | 2.106 · 10−3 | 1.505 · 10−3 | 1.152 · 10−3 | 1.102 · 10−3 | 1.536 · 10−3 | 7.95 · 10−4 | 3.336 · 10−3 | 1.290 · 10−3 | 1.124 · 10−3 | 3.2926 · 10−2 |
36M | 3.213 · 10−3 | 2.611 · 10−3 | 2.483 · 10−3 | 1.777 · 10−3 | 1.570 · 10−3 | 1.242 · 10−3 | 1.050 · 10−3 | 1.919 · 10−3 | 8.77 · 10−4 | 3.134 · 10−3 | 1.374 · 10−3 | 2.624 · 10−3 | 3.1747 · 10−2 |
39M | 3.082 · 10−3 | 2.505 · 10−3 | 2.383 · 10−3 | 2.128 · 10−3 | 1.357 · 10−3 | 1.023 · 10−3 | 8.51 · 10−4 | 1.995 · 10−3 | 6.51 · 10−4 | 3.006 · 10−3 | 1.156 · 10−3 | 3.760 · 10−3 | 3.1183 · 10−2 |
48M | 2.947 · 10−3 | 2.449 · 10−3 | 2.346 · 10−3 | 4.707 · 10−3 | 8.78 · 10−4 | 5.70 · 10−4 | 6.66 · 10−4 | 2.312 · 10−3 | 3.25 · 10−4 | 2.881 · 10−3 | 6.84 · 10−4 | 6.975 · 10−3 | 2.8862 · 10−2 |
60M | 3.676 · 10−3 | 3.269 · 10−3 | 3.185 · 10−3 | 6.820 · 10−3 | 8.54 · 10−4 | 9.99 · 10−4 | 1.556 · 10−3 | 1.620 · 10−3 | 1.238 · 10−3 | 3.619 · 10−3 | 9.26 · 10−4 | 9.320 · 10−3 | 2.6963 · 10−2 |
72M | 4.366 · 10−3 | 4.038 · 10−3 | 3.972 · 10−3 | 8.438 · 10−3 | 2.020 · 10−3 | 2.163 · 10−3 | 2.512 · 10−3 | 1.181 · 10−3 | 2.302 · 10−3 | 4.318 · 10−3 | 2.116 · 10−3 | 1.1091 · 10−2 | 2.5544 · 10−2 |
Mean Absolute Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 6.405 · 10−3 | 5.269 · 10−3 | 4.924 · 10−3 | 3.739 · 10−3 | 2.611 · 10−3 | 1.749 · 10−3 | 4.278 · 10−3 | 2.165 · 10−3 | 2.599 · 10−3 | 6.237 · 10−3 | 2.248 · 10−3 | 2.656 · 10−3 | 1.6458 · 10−2 |
3M | 6.332 · 10−3 | 5.266 · 10−3 | 4.951 · 10−3 | 4.328 · 10−3 | 1.16 · 10−4 | 8.91 · 10−4 | 4.201 · 10−3 | 1.366 · 10−3 | 2.675 · 10−3 | 6.177 · 10−3 | 4.81 · 10−4 | 2.748 · 10−3 | 2.2750 · 10−2 |
6M | 7.760 · 10−3 | 6.778 · 10−3 | 6.514 · 10−3 | 5.651 · 10−3 | 1.947 · 10−3 | 2.616 · 10−3 | 5.569 · 10−3 | 3.678 · 10−3 | 4.194 · 10−3 | 7.622 · 10−3 | 2.328 · 10−3 | 7.621 · 10−3 | 2.8095 · 10−2 |
9M | 7.349 · 10−3 | 6.450 · 10−3 | 6.222 · 10−3 | 9.367 · 10−3 | 1.946 · 10−3 | 2.535 · 10−3 | 5.145 · 10−3 | 3.820 · 10−3 | 3.933 · 10−3 | 7.229 · 10−3 | 2.313 · 10−3 | 9.697 · 10−3 | 3.0831 · 10−2 |
12M | 6.708 · 10−3 | 5.885 · 10−3 | 5.684 · 10−3 | 1.0598 · 10−2 | 1.684 · 10−3 | 2.212 · 10−3 | 4.528 · 10−3 | 3.535 · 10−3 | 3.455 · 10−3 | 6.602 · 10−3 | 2.028 · 10−3 | 1.0036 · 10−2 | 3.4132 · 10−2 |
15M | 5.828 · 10−3 | 5.072 · 10−3 | 4.893 · 10−3 | 1.0329 · 10−2 | 1.151 · 10−3 | 1.629 · 10−3 | 3.693 · 10−3 | 2.862 · 10−3 | 2.740 · 10−3 | 5.732 · 10−3 | 1.467 · 10−3 | 9.230 · 10−3 | 3.6183 · 10−2 |
18M | 4.868 · 10−3 | 4.172 · 10−3 | 4.011 · 10−3 | 9.223 · 10−3 | 5.04 · 10−4 | 9.43 · 10−4 | 2.789 · 10−3 | 1.996 · 10−3 | 1.939 · 10−3 | 4.781 · 10−3 | 7.94 · 10−4 | 7.769 · 10−3 | 3.6732 · 10−2 |
21M | 4.089 · 10−3 | 3.452 · 10−3 | 3.300 · 10−3 | 7.587 · 10−3 | 2.33 · 10−4 | 4.80 · 10−4 | 2.118 · 10−3 | 9.87 · 10−4 | 1.368 · 10−3 | 4.004 · 10−3 | 3.12 · 10−4 | 5.881 · 10−3 | 3.6674 · 10−2 |
24M | 3.790 · 10−3 | 3.199 · 10−3 | 3.062 · 10−3 | 5.702 · 10−3 | 9.58 · 10−4 | 5.80 · 10−4 | 1.855 · 10−3 | 1.95 · 10−4 | 1.172 · 10−3 | 3.712 · 10−3 | 7.20 · 10−4 | 3.808 · 10−3 | 3.5870 · 10−2 |
27M | 3.335 · 10−3 | 2.786 · 10−3 | 2.662 · 10−3 | 4.355 · 10−3 | 1.003 · 10−3 | 6.48 · 10−4 | 1.435 · 10−3 | 4.06 · 10−4 | 8.10 · 10−4 | 3.264 · 10−3 | 7.85 · 10−4 | 2.315 · 10−3 | 3.5338 · 10−2 |
30M | 3.165 · 10−3 | 2.653 · 10−3 | 2.540 · 10−3 | 2.787 · 10−3 | 1.203 · 10−3 | 8.68 · 10−4 | 1.298 · 10−3 | 9.31 · 10−4 | 7.23 · 10−4 | 3.099 · 10−3 | 1.004 · 10−3 | 6.32 · 10−4 | 3.3997 · 10−2 |
33M | 2.936 · 10−3 | 2.458 · 10−3 | 2.354 · 10−3 | 1.770 · 10−3 | 1.468 · 10−3 | 1.152 · 10−3 | 1.102 · 10−3 | 1.518 · 10−3 | 5.69 · 10−4 | 2.876 · 10−3 | 1.284 · 10−3 | 1.109 · 10−3 | 3.2926 · 10−2 |
36M | 2.828 · 10−3 | 2.379 · 10−3 | 2.284 · 10−3 | 1.754 · 10−3 | 1.541 · 10−3 | 1.242 · 10−3 | 1.024 · 10−3 | 1.905 · 10−3 | 7.00 · 10−4 | 2.772 · 10−3 | 1.370 · 10−3 | 2.619 · 10−3 | 3.1747 · 10−2 |
39M | 2.621 · 10−3 | 2.199 · 10−3 | 2.112 · 10−3 | 1.634 · 10−3 | 1.302 · 10−3 | 1.017 · 10−3 | 8.45 · 10−4 | 1.968 · 10−3 | 5.26 · 10−4 | 2.569 · 10−3 | 1.142 · 10−3 | 3.759 · 10−3 | 3.1183 · 10−2 |
48M | 2.350 · 10−3 | 1.995 · 10−3 | 1.925 · 10−3 | 4.428 · 10−3 | 8.05 · 10−4 | 5.58 · 10−4 | 6.49 · 10−4 | 2.287 · 10−3 | 2.63 · 10−4 | 2.308 · 10−3 | 6.64 · 10−4 | 6.975 · 10−3 | 2.8862 · 10−2 |
60M | 3.046 · 10−3 | 2.750 · 10−3 | 2.685 · 10−3 | 6.641 · 10−3 | 7.77 · 10−4 | 9.87 · 10−4 | 1.494 · 10−3 | 1.575 · 10−3 | 1.233 · 10−3 | 2.999 · 10−3 | 9.09 · 10−4 | 9.320 · 10−3 | 2.6963 · 10−2 |
72M | 4.013 · 10−3 | 3.759 · 10−3 | 3.706 · 10−3 | 8.321 · 10−3 | 1.959 · 10−3 | 2.139 · 10−3 | 2.507 · 10−3 | 1.054 · 10−3 | 2.299 · 10−3 | 3.972 · 10−3 | 2.091 · 10−3 | 1.1090 · 10−2 | 2.5544 · 10−2 |
Mean Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | −1.3453 · 10−2 | −2.2373 · 10−2 | −3.6912 · 10−2 | −2.6520 · 10−2 | −9.96 · 10−4 | −2.0082 · 10−2 | −4.663 · 10−3 | −2.4004 · 10−2 | −2.470 · 10−3 | −1.3076 · 10−2 | −3.8745 · 10−2 | −1.4409 · 10−2 | −1.000 79 · 10−1 |
3M | −1.6449 · 10−2 | −2.4534 · 10−2 | −3.7980 · 10−2 | −2.9988 · 10−2 | −4.395 · 10−3 | −2.2240 · 10−2 | −8.359 · 10−3 | −2.6055 · 10−2 | −6.109 · 10−3 | −1.6015 · 10−2 | −4.0246 · 10−2 | −1.7478 · 10−2 | −9.7008 · 10−2 |
6M | −1.9861 · 10−2 | −2.6869 · 10−2 | −3.8882 · 10−2 | −2.8273 · 10−2 | −8.589 · 10−3 | −2.4817 · 10−2 | −1.2911 · 10−2 | −2.8480 · 10−2 | −1.0601 · 10−2 | −1.9368 · 10−2 | −4.1775 · 10−2 | −2.1046 · 10−2 | −9.1441 · 10−2 |
9M | −2.1746 · 10−2 | −2.7854 · 10−2 | −3.8640 · 10−2 | −2.8314 · 10−2 | −1.1388 · 10−2 | −2.6248 · 10−2 | −1.5984 · 10−2 | −2.9769 · 10−2 | −1.3637 · 10−2 | −2.1218 · 10−2 | −4.2204 · 10−2 | −2.3215 · 10−2 | −8.5034 · 10−2 |
12M | −2.2659 · 10−2 | −2.8011 · 10−2 | −3.7745 · 10−2 | −2.8588 · 10−2 | −1.3284 · 10−2 | −2.6980 · 10−2 | −1.8089 · 10−2 | −3.0369 · 10−2 | −1.5721 · 10−2 | −2.2113 · 10−2 | −4.1998 · 10−2 | −2.4503 · 10−2 | −7.9434 · 10−2 |
15M | −2.2860 · 10−2 | −2.7576 · 10−2 | −3.6402 · 10−2 | −2.8497 · 10−2 | −1.4491 · 10−2 | −2.7195 · 10−2 | −1.9455 · 10−2 | −3.0462 · 10−2 | −1.7077 · 10−2 | −2.2309 · 10−2 | −4.1342 · 10−2 | −2.5134 · 10−2 | −7.4483 · 10−2 |
18M | −2.2669 · 10−2 | −2.6845 · 10−2 | −3.4888 · 10−2 | −2.8096 · 10−2 | −1.5298 · 10−2 | −2.7152 · 10−2 | −2.0380 · 10−2 | −3.0304 · 10−2 | −1.8002 · 10−2 | −2.2122 · 10−2 | −4.0497 · 10−2 | −2.5398 · 10−2 | −7.0357 · 10−2 |
21M | −2.2139 · 10−2 | −2.5856 · 10−2 | −3.3219 · 10−2 | −2.7353 · 10−2 | −1.5738 · 10−2 | −2.6860 · 10−2 | −2.0906 · 10−2 | −2.9906 · 10−2 | −1.8534 · 10−2 | −2.1602 · 10−2 | −3.9468 · 10−2 | −2.5331 · 10−2 | −6.6635 · 10−2 |
24M | −2.1514 · 10−2 | −2.4839 · 10−2 | −3.1610 · 10−2 | −2.6491 · 10−2 | −1.6040 · 10−2 | −2.6531 · 10−2 | −2.1272 · 10−2 | −2.9478 · 10−2 | −1.8910 · 10−2 | −2.0992 · 10−2 | −3.8465 · 10−2 | −2.5163 · 10−2 | −6.3537 · 10−2 |
27M | −2.0863 · 10−2 | −2.3851 · 10−2 | −3.0104 · 10−2 | −2.5576 · 10−2 | −1.6267 · 10−2 | −2.6209 · 10−2 | −2.1544 · 10−2 | −2.9064 · 10−2 | −1.9194 · 10−2 | −2.0359 · 10−2 | −3.7530 · 10−2 | −2.4955 · 10−2 | −6.0774 · 10−2 |
30M | −2.0234 · 10−2 | −2.2931 · 10−2 | −2.8729 · 10−2 | −2.4662 · 10−2 | −1.6462 · 10−2 | −2.5925 · 10−2 | −2.1770 · 10−2 | −2.8696 · 10−2 | −1.9434 · 10−2 | −1.9749 · 10−2 | −3.6687 · 10−2 | −2.4748 · 10−2 | −5.9177 · 10−2 |
33M | −1.9472 · 10−2 | −2.1916 · 10−2 | −2.7313 · 10−2 | −2.3603 · 10−2 | −1.6469 · 10−2 | −2.5514 · 10−2 | −2.1796 · 10−2 | −2.8206 · 10−2 | −1.9475 · 10−2 | −1.9006 · 10−2 | −3.5766 · 10−2 | −2.4385 · 10−2 | −5.8134 · 10−2 |
36M | −1.8792 · 10−2 | −2.1016 · 10−2 | −2.6059 · 10−2 | −2.2620 · 10−2 | −1.6503 · 10−2 | −2.5180 · 10−2 | −2.1842 · 10−2 | −2.7800 · 10−2 | −1.9537 · 10−2 | −1.8347 · 10−2 | −3.4969 · 10−2 | −2.4080 · 10−2 | −5.7549 · 10−2 |
39M | −1.8252 · 10−2 | −2.0283 · 10−2 | −2.5011 · 10−2 | −2.1778 · 10−2 | −1.6625 · 10−2 | −2.4977 · 10−2 | −2.1970 · 10−2 | −2.7529 · 10−2 | −1.9680 · 10−2 | −1.7826 · 10−2 | −3.4344 · 10−2 | −2.3891 · 10−2 | −5.6574 · 10−2 |
48M | −1.7212 · 10−2 | −1.8789 · 10−2 | −2.2760 · 10−2 | −1.9873 · 10−2 | −1.7283 · 10−2 | −2.4861 · 10−2 | −2.2622 · 10−2 | −2.7241 · 10−2 | −2.0376 · 10−2 | −1.6843 · 10−2 | −3.3176 · 10−2 | −2.3762 · 10−2 | −5.4747 · 10−2 |
60M | −1.6479 · 10−2 | −1.7644 · 10−2 | −2.0911 · 10−2 | −1.8151 · 10−2 | −1.8262 · 10−2 | −2.5127 · 10−2 | −2.3569 · 10−2 | −2.7330 · 10−2 | −2.1372 · 10−2 | −1.6171 · 10−2 | −3.2414 · 10−2 | −2.3960 · 10−2 | −5.3842 · 10−2 |
72M | −1.5869 · 10−2 | −1.6755 · 10−2 | −1.9534 · 10−2 | −1.6758 · 10−2 | −1.8905 · 10−2 | −2.5281 · 10−2 | −2.4178 · 10−2 | −2.7353 · 10−2 | −2.2019 · 10−2 | −1.5611 · 10−2 | −3.1833 · 10−2 | −2.4039 · 10−2 | −5.3564 · 10−2 |
Root Mean Squared Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 1.9581 · 10−2 | 2.6511 · 10−2 | 4.4188 · 10−2 | 3.2294 · 10−2 | 6.533 · 10−3 | 2.5864 · 10−2 | 1.0366 · 10−2 | 3.0501 · 10−2 | 9.044 · 10−3 | 1.9233 · 10−2 | 4.7274 · 10−2 | 2.0489 · 10−2 | 1.123 25 · 10−1 |
3M | 2.3064 · 10−2 | 2.9457 · 10−2 | 4.5828 · 10−2 | 3.5435 · 10−2 | 9.280 · 10−3 | 2.8638 · 10−2 | 1.4229 · 10−2 | 3.3147 · 10−2 | 1.2405 · 10−2 | 2.2658 · 10−2 | 4.9301 · 10−2 | 2.4097 · 10−2 | 1.097 94 · 10−1 |
6M | 2.6448 · 10−2 | 3.2168 · 10−2 | 4.6784 · 10−2 | 3.4985 · 10−2 | 1.2965 · 10−2 | 3.1297 · 10−2 | 1.8585 · 10−2 | 3.5626 · 10−2 | 1.6405 · 10−2 | 2.5979 · 10−2 | 5.0765 · 10−2 | 2.7576 · 10−2 | 1.051 69 · 10−1 |
9M | 2.7769 · 10−2 | 3.2904 · 10−2 | 4.6004 · 10−2 | 3.4793 · 10−2 | 1.5130 · 10−2 | 3.2216 · 10−2 | 2.1081 · 10−2 | 3.6376 · 10−2 | 1.8719 · 10−2 | 2.7260 · 10−2 | 5.0565 · 10−2 | 2.9156 · 10−2 | 9.9725 · 10−2 |
12M | 2.8114 · 10−2 | 3.2697 · 10−2 | 4.4496 · 10−2 | 3.4426 · 10−2 | 1.6524 · 10−2 | 3.2397 · 10−2 | 2.2644 · 10−2 | 3.6399 · 10−2 | 2.0180 · 10−2 | 2.7585 · 10−2 | 4.9695 · 10−2 | 2.9878 · 10−2 | 9.5030 · 10−2 |
15M | 2.7858 · 10−2 | 3.1937 · 10−2 | 4.2618 · 10−2 | 3.3729 · 10−2 | 1.7394 · 10−2 | 3.2171 · 10−2 | 2.3626 · 10−2 | 3.6022 · 10−2 | 2.1107 · 10−2 | 2.7321 · 10−2 | 4.8478 · 10−2 | 3.0062 · 10−2 | 9.0733 · 10−2 |
18M | 2.7320 · 10−2 | 3.0957 · 10−2 | 4.0674 · 10−2 | 3.2849 · 10−2 | 1.7991 · 10−2 | 3.1806 · 10−2 | 2.4300 · 10−2 | 3.5515 · 10−2 | 2.1751 · 10−2 | 2.6785 · 10−2 | 4.7191 · 10−2 | 2.9996 · 10−2 | 8.7087 · 10−2 |
21M | 2.6431 · 10−2 | 2.9686 · 10−2 | 3.8565 · 10−2 | 3.1647 · 10−2 | 1.8220 · 10−2 | 3.1186 · 10−2 | 2.4573 · 10−2 | 3.4763 · 10−2 | 2.2013 · 10−2 | 2.5905 · 10−2 | 4.5724 · 10−2 | 2.9597 · 10−2 | 8.4014 · 10−2 |
24M | 2.5434 · 10−2 | 2.8362 · 10−2 | 3.6511 · 10−2 | 3.0348 · 10−2 | 1.8297 · 10−2 | 3.0524 · 10−2 | 2.4666 · 10−2 | 3.3979 · 10−2 | 2.2102 · 10−2 | 2.4922 · 10−2 | 4.4288 · 10−2 | 2.9093 · 10−2 | 8.1647 · 10−2 |
27M | 2.4610 · 10−2 | 2.7235 · 10−2 | 3.4750 · 10−2 | 2.9205 · 10−2 | 1.8473 · 10−2 | 3.0055 · 10−2 | 2.4849 · 10−2 | 3.3397 · 10−2 | 2.2293 · 10−2 | 2.4116 · 10−2 | 4.3111 · 10−2 | 2.8736 · 10−2 | 7.9517 · 10−2 |
30M | 2.3837 · 10−2 | 2.6202 · 10−2 | 3.3165 · 10−2 | 2.8116 · 10−2 | 1.8632 · 10−2 | 2.9660 · 10−2 | 2.5009 · 10−2 | 3.2900 · 10−2 | 2.2460 · 10−2 | 2.3362 · 10−2 | 4.2073 · 10−2 | 2.8409 · 10−2 | 7.8395 · 10−2 |
33M | 2.2960 · 10−2 | 2.5099 · 10−2 | 3.1570 · 10−2 | 2.6925 · 10−2 | 1.8632 · 10−2 | 2.9164 · 10−2 | 2.5003 · 10−2 | 3.2307 · 10−2 | 2.2469 · 10−2 | 2.2504 · 10−2 | 4.0987 · 10−2 | 2.7953 · 10−2 | 7.7560 · 10−2 |
36M | 2.2183 · 10−2 | 2.4122 · 10−2 | 3.0161 · 10−2 | 2.5839 · 10−2 | 1.8663 · 10−2 | 2.8761 · 10−2 | 2.5018 · 10−2 | 3.1817 · 10−2 | 2.2498 · 10−2 | 2.1748 · 10−2 | 4.0052 · 10−2 | 2.7573 · 10−2 | 7.7133 · 10−2 |
39M | 2.1601 · 10−2 | 2.3362 · 10−2 | 2.9019 · 10−2 | 2.4955 · 10−2 | 1.8821 · 10−2 | 2.8539 · 10−2 | 2.5160 · 10−2 | 3.1515 · 10−2 | 2.2656 · 10−2 | 2.1187 · 10−2 | 3.9347 · 10−2 | 2.7359 · 10−2 | 7.6395 · 10−2 |
48M | 2.0252 · 10−2 | 2.1616 · 10−2 | 2.6346 · 10−2 | 2.2804 · 10−2 | 1.9411 · 10−2 | 2.8208 · 10−2 | 2.5680 · 10−2 | 3.0976 · 10−2 | 2.3218 · 10−2 | 1.9891 · 10−2 | 3.7805 · 10−2 | 2.6992 · 10−2 | 7.4974 · 10−2 |
60M | 1.9401 · 10−2 | 2.0395 · 10−2 | 2.4273 · 10−2 | 2.1064 · 10−2 | 2.0469 · 10−2 | 2.8440 · 10−2 | 2.6659 · 10−2 | 3.1004 · 10−2 | 2.4244 · 10−2 | 1.9102 · 10−2 | 3.6869 · 10−2 | 2.7133 · 10−2 | 7.4274 · 10−2 |
72M | 1.8759 · 10−2 | 1.9504 · 10−2 | 2.2791 · 10−2 | 1.9744 · 10−2 | 2.1220 · 10−2 | 2.8624 · 10−2 | 2.7340 · 10−2 | 3.1037 · 10−2 | 2.4963 · 10−2 | 1.8508 · 10−2 | 3.6218 · 10−2 | 2.7225 · 10−2 | 7.3873 · 10−2 |
Mean Absolute Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 1.4231 · 10−2 | 2.2373 · 10−2 | 3.6912 · 10−2 | 2.6576 · 10−2 | 5.275 · 10−3 | 2.0122 · 10−2 | 9.031 · 10−3 | 9.031 · 10−3 | 7.775 · 10−3 | 1.3912 · 10−2 | 3.8745 · 10−2 | 1.4478 · 10−2 | 1.000 79 · 10−1 |
3M | 1.7324 · 10−2 | 2.4626 · 10−2 | 3.8074 · 10−2 | 2.9988 · 10−2 | 7.186 · 10−3 | 2.2531 · 10−2 | 1.2344 · 10−2 | 1.2344 · 10−2 | 1.0843 · 10−2 | 1.6921 · 10−2 | 4.0351 · 10−2 | 1.7939 · 10−2 | 9.7008 · 10−2 |
6M | 2.0635 · 10−2 | 2.7091 · 10−2 | 3.9104 · 10−2 | 2.8753 · 10−2 | 1.0317 · 10−2 | 2.5214 · 10−2 | 1.5785 · 10−2 | 1.5785 · 10−2 | 1.4216 · 10−2 | 2.0198 · 10−2 | 4.2018 · 10−2 | 2.1451 · 10−2 | 9.1441 · 10−2 |
9M | 2.2157 · 10−2 | 2.7996 · 10−2 | 3.8783 · 10−2 | 2.8871 · 10−2 | 1.2277 · 10−2 | 2.6430 · 10−2 | 1.7681 · 10−2 | 1.7681 · 10−2 | 1.5751 · 10−2 | 2.1651 · 10−2 | 4.2369 · 10−2 | 2.3402 · 10−2 | 8.5034 · 10−2 |
12M | 2.2733 · 10−2 | 2.8044 · 10−2 | 3.7777 · 10−2 | 2.8928 · 10−2 | 1.3476 · 10−2 | 2.7032 · 10−2 | 1.8841 · 10−2 | 1.8841 · 10−2 | 1.6881 · 10−2 | 2.2214 · 10−2 | 4.2051 · 10−2 | 2.4568 · 10−2 | 7.9801 · 10−2 |
15M | 2.2860 · 10−2 | 2.7576 · 10−2 | 3.6402 · 10−2 | 2.8622 · 10−2 | 1.4491 · 10−2 | 2.7195 · 10−2 | 1.9610 · 10−2 | 1.9610 · 10−2 | 1.7553 · 10−2 | 2.2309 · 10−2 | 4.1342 · 10−2 | 2.5134 · 10−2 | 7.5589 · 10−2 |
18M | 2.2669 · 10−2 | 2.6845 · 10−2 | 3.4888 · 10−2 | 2.8100 · 10−2 | 1.5298 · 10−2 | 2.7152 · 10−2 | 2.0380 · 10−2 | 2.0380 · 10−2 | 1.8092 · 10−2 | 2.2122 · 10−2 | 4.0497 · 10−2 | 2.5398 · 10−2 | 7.2201 · 10−2 |
21M | 2.2139 · 10−2 | 2.5856 · 10−2 | 3.3219 · 10−2 | 2.7353 · 10−2 | 1.5738 · 10−2 | 2.6860 · 10−2 | 2.0906 · 10−2 | 2.0906 · 10−2 | 1.8534 · 10−2 | 2.1602 · 10−2 | 3.9468 · 10−2 | 2.5331 · 10−2 | 6.9721 · 10−2 |
24M | 2.1514 · 10−2 | 2.4839 · 10−2 | 3.1610 · 10−2 | 2.6491 · 10−2 | 1.6040 · 10−2 | 2.6531 · 10−2 | 2.1272 · 10−2 | 2.1272 · 10−2 | 1.8910 · 10−2 | 2.0992 · 10−2 | 3.8465 · 10−2 | 2.5163 · 10−2 | 6.7874 · 10−2 |
27M | 2.0863 · 10−2 | 2.3851 · 10−2 | 3.0104 · 10−2 | 2.5576 · 10−2 | 1.6267 · 10−2 | 2.6209 · 10−2 | 2.1544 · 10−2 | 2.1544 · 10−2 | 1.9194 · 10−2 | 2.0359 · 10−2 | 3.7530 · 10−2 | 2.4955 · 10−2 | 6.6181 · 10−2 |
30M | 2.0234 · 10−2 | 2.2931 · 10−2 | 2.8729 · 10−2 | 2.4662 · 10−2 | 1.6462 · 10−2 | 2.5925 · 10−2 | 2.1770 · 10−2 | 2.1770 · 10−2 | 1.9434 · 10−2 | 1.9749 · 10−2 | 3.6687 · 10−2 | 2.4748 · 10−2 | 6.5368 · 10−2 |
33M | 1.9472 · 10−2 | 2.1916 · 10−2 | 2.7313 · 10−2 | 2.3603 · 10−2 | 1.6469 · 10−2 | 2.5514 · 10−2 | 2.1796 · 10−2 | 2.1796 · 10−2 | 1.9475 · 10−2 | 1.9006 · 10−2 | 3.5766 · 10−2 | 2.4385 · 10−2 | 6.4680 · 10−2 |
36M | 1.8798 · 10−2 | 2.1026 · 10−2 | 2.6069 · 10−2 | 2.2620 · 10−2 | 1.6503 · 10−2 | 2.5180 · 10−2 | 2.1842 · 10−2 | 2.1842 · 10−2 | 1.9537 · 10−2 | 1.8352 · 10−2 | 3.4969 · 10−2 | 2.4080 · 10−2 | 6.4373 · 10−2 |
39M | 1.8294 · 10−2 | 2.0331 · 10−2 | 2.5058 · 10−2 | 2.1778 · 10−2 | 1.6658 · 10−2 | 2.5011 · 10−2 | 2.2003 · 10−2 | 2.2003 · 10−2 | 1.9715 · 10−2 | 1.7868 · 10−2 | 3.4378 · 10−2 | 2.3910 · 10−2 | 6.3761 · 10−2 |
48M | 1.7247 · 10−2 | 1.8832 · 10−2 | 2.2803 · 10−2 | 1.9873 · 10−2 | 1.7303 · 10−2 | 2.4881 · 10−2 | 2.2644 · 10−2 | 2.2644 · 10−2 | 2.0400 · 10−2 | 1.6875 · 10−2 | 3.3196 · 10−2 | 2.3769 · 10−2 | 6.2520 · 10−2 |
60M | 1.6500 · 10−2 | 1.7677 · 10−2 | 2.0943 · 10−2 | 1.8187 · 10−2 | 1.8263 · 10−2 | 2.5129 · 10−2 | 2.3576 · 10−2 | 2.3576 · 10−2 | 2.1381 · 10−2 | 1.6188 · 10−2 | 3.2417 · 10−2 | 2.3960 · 10−2 | 6.1924 · 10−2 |
72M | 1.5969 · 10−2 | 1.6869 · 10−2 | 1.9646 · 10−2 | 1.6974 · 10−2 | 1.8982 · 10−2 | 2.5358 · 10−2 | 2.4262 · 10−2 | 2.4262 · 10−2 | 2.2106 · 10−2 | 1.5704 · 10−2 | 3.1911 · 10−2 | 2.4107 · 10−2 | 6.1575 · 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavanielli, R.; Laurini, M. Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market. Mathematics 2023, 11, 2549. https://doi.org/10.3390/math11112549
Tavanielli R, Laurini M. Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market. Mathematics. 2023; 11(11):2549. https://doi.org/10.3390/math11112549
Chicago/Turabian StyleTavanielli, Renata, and Márcio Laurini. 2023. "Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market" Mathematics 11, no. 11: 2549. https://doi.org/10.3390/math11112549
APA StyleTavanielli, R., & Laurini, M. (2023). Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market. Mathematics, 11(11), 2549. https://doi.org/10.3390/math11112549