Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market
Abstract
:1. Introduction
2. The Dynamic Nelson–Siegel Model and Its Extensions
2.1. The Nelson–Siegel Static Formulation and Its Dynamic Version
2.2. The Dynamic Nelson–Siegel Model with Time-Varying Parameters and Regime Switching
2.3. Proposed Extensions
2.4. Bayesian Estimation
3. Descriptive Analysis
4. Estimation Results—In-Sample Analysis
- Dynamic Nelson–Siegel Model (MDNS);
- Dynamic Nelson–Siegel Model with regime switching in the mean (MDNS-M);
- Dynamic Nelson–Siegel Model with regime switching in the persistence (MDNS-P);
- Dynamic Nelson–Siegel Model with regime switching in the loading factor (MDNS-);
- Dynamic Nelson–Siegel Model with exogenous macroeconomics variables (MDNS-Macro);
- Dynamic Nelson–Siegel Model with regime switching in the mean and with exogenous macroeconomics variables (MDNS-MMacro);
- Dynamic Nelson–Siegel Model with regime switching in the persistence and with exogenous macroeconomics variables (MDNS-PMacro);
- Dynamic Nelson–Siegel Model with endogenous macroeconomic variables and regime switching in the mean and in the macroeconomic variables (MDNS-MMacroEnd);
- Dynamic Nelson–Siegel Model with endogenous macroeconomics variables and regime switching in the persistence and in the macroeconomic variables (MDNS-PMacroEnd);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the mean (MDNS-S);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the loading factor (MDNS-S);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the mean and with macroeconomic variables (MDNS-SmediaMacro);
- Dynamic Nelson–Siegel Model with regime switching based on [28] in the macroeconomic variables of the slope factor (MDNS-Smacro).
Out-of-Sample Forecast Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
1-Month Maturity | 3-Month Maturity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 5 | −0.0279 | 1.0000 | 8 | 3.00424 | 0.0188 | 2.45 × | MDNS | 9 | 0.64777 | 0.9596 | 5 | 2.2142 | 0.2952 | 4.29 × |
MDNS_M | 6 | 0.32412 | 0.9996 | 11 | 5.53884 | 0.0000 | 2.55 × | MDNS_M | 6 | 0.42852 | 0.9924 | 8 | 2.70442 | 0.0540 | 3.89 × |
MDNS_P | 11 | 1.99208 | 0.2054 | 10 | 4.57205 | 0.0000 | 3.85 × | MDNS_P | 10 | 0.76239 | 0.9194 | 2 | 1.89179 | 0.5342 | 4.85 × |
MDNS_Lambda | 7 | 0.45004 | 0.9990 | 7 | 2.96519 | 0.0226 | 2.73 × | MDNS_Lambda | 8 | 0.5859 | 0.9720 | 4 | 2.05852 | 0.4044 | 4.28 × |
MDNS_Macro | 1 | −7.9353 | 1.0000 | 1 | −1.2181 | 1.0000 | 6.69 × | MDNS_Macro | 1 | −4.6531 | 1.0000 | 1 | −1.8918 | 1.0000 | 1.01 × |
MDNS_MMacro | 4 | −0.6725 | 1.0000 | 5 | 2.63773 | 0.0944 | 2.11 × | MDNS_MMacro | 3 | −0.7155 | 1.0000 | 10 | 4.20607 | 0.0000 | 3.02 × |
MDNS_MMacroEnd | 3 | −1.9544 | 1.0000 | 3 | 2.27073 | 0.2934 | 1.57 × | MDNS_MMacroEnd | 5 | 0.21586 | 1.0000 | 6 | 2.2512 | 0.2692 | 4.01 × |
MDNS_PMacroEnd | 9 | 1.34095 | 0.6994 | 6 | 2.72089 | 0.0698 | 4.09 × | MDNS_PMacroEnd | 11 | 0.94801 | 0.8066 | 9 | 3.42541 | 0.0018 | 4.75 × |
MDNS_S | 10 | 1.83819 | 0.3020 | 9 | 4.48854 | 0.0000 | 3.23 × | MDNS_S | 7 | 0.51269 | 0.9840 | 3 | 2.04071 | 0.5342 | 4.18 × |
MDNS_SmediaMacro | 8 | 0.45333 | 0.9990 | 4 | 2.53475 | 0.2934 | 2.83 × | MDNS_SmediaMacro | 4 | 0.03341 | 1.0000 | 11 | 4.95557 | 0.0000 | 3.67 × |
MDNS_Smacro | 2 | −3.7331 | 1.0000 | 2 | 1.2181 | 1.0000 | 1.08 × | MDNS_Smacro | 2 | −2.0043 | 1.0000 | 7 | 2.57727 | 0.0894 | 2.15 × |
6-Month Maturity | 9-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 7 | 0.85978 | 0.8768 | 4 | 2.33137 | 0.2522 | 5.85 × | MDNS | 7 | 0.66771 | 0.9448 | 4 | 1.85824 | 0.5474 | 6.29 × |
MDNS_M | 6 | 0.11812 | 1.0000 | 6 | 2.40346 | 0.2098 | 5.00 × | MDNS_M | 6 | 0.06792 | 1.0000 | 3 | 1.84242 | 0.5650 | 5.51 × |
MDNS_P | 11 | 1.19132 | 0.6826 | 7 | 2.68302 | 0.0954 | 6.16 × | MDNS_P | 11 | 1.43942 | 0.4788 | 8 | 2.49953 | 0.1198 | 7.16 × |
MDNS_Lambda | 9 | 1.06723 | 0.7622 | 2 | 2.17637 | 0.3452 | 6.63 × | MDNS_Lambda | 10 | 1.40346 | 0.5058 | 7 | 2.24449 | 0.2478 | 8.44 × |
MDNS_Macro | 1 | −4.4096 | 1.0000 | 1 | −2.1764 | 1.0000 | 1.72 × | MDNS_Macro | 1 | −3.3865 | 1.0000 | 1 | −1.702 | 1.0000 | 2.28 × |
MDNS_MMacro | 3 | −1.3663 | 1.0000 | 9 | 3.11958 | 0.0150 | 3.48 × | MDNS_MMacro | 5 | −1.2743 | 1.0000 | 9 | 2.55274 | 0.0996 | 3.71 × |
MDNS_PMacro | 12 | 1.56849 | 0.4262 | 12 | 4.32888 | 0.0000 | 7.31 × | MDNS_PMacro | 8 | 0.94151 | 0.8274 | 11 | 3.50472 | 0.0008 | 7.02 × |
MDNS_MMacroEnd | 5 | −0.9565 | 1.0000 | 8 | 2.80714 | 0.0614 | 3.93 × | MDNS_MMacroEnd | 3 | −1.9111 | 1.0000 | 5 | 2.08635 | 0.3470 | 3.71 × |
MDNS_PMacroEnd | 10 | 1.0929 | 0.7454 | 11 | 3.89891 | 0.0000 | 6.16 × | MDNS_PMacroEnd | 12 | 1.45297 | 0.4698 | 12 | 3.86713 | 0.0000 | 7.13 × |
MDNS_S | 8 | 0.93574 | 0.8360 | 5 | 2.39913 | 0.2120 | 5.91 × | MDNS_S | 9 | 0.99463 | 0.7936 | 6 | 2.09673 | 0.3400 | 6.65 × |
MDNS_SmediaMacro | 4 | −1.293 | 1.0000 | 10 | 3.31265 | 0.0040 | 3.68 × | MDNS_SmediaMacro | 4 | −1.2833 | 1.0000 | 10 | 2.57908 | 0.0920 | 3.89 × |
MDNS_Smacro | 2 | −3.2132 | 1.0000 | 3 | 2.32205 | 0.3452 | 3.10 × | MDNS_Smacro | 2 | −3.1706 | 1.0000 | 2 | 1.70198 | 1.0000 | 3.50 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 7 | 0.60735 | 0.9672 | 5 | 1.79937 | 0.5926 | 6.44 × | MDNS | 7 | 0.3533 | 0.9986 | 4 | 1.71101 | 0.6910 | 6.09 × |
MDNS_M | 6 | −0.0835 | 1.0000 | 4 | 1.71316 | 0.6684 | 5.61 × | MDNS_M | 6 | −0.147 | 1.0000 | 3 | 1.66422 | 0.7356 | 5.57 × |
MDNS_P | 11 | 1.62677 | 0.3530 | 10 | 2.67552 | 0.0642 | 7.46 × | MDNS_P | 11 | 1.73303 | 0.2936 | 10 | 2.87417 | 0.0330 | 7.36 × |
MDNS_Lambda | 10 | 1.59534 | 0.3754 | 9 | 2.59478 | 0.0918 | 9.25 × | MDNS_Lambda | 10 | 1.70167 | 0.3126 | 9 | 2.84506 | 0.0364 | 9.41 × |
MDNS_Macro | 2 | −3.3358 | 1.0000 | 1 | −1.5324 | 1.0000 | 2.69 × | MDNS_Macro | 1 | −3.5065 | 1.0000 | 1 | −1.323 | 1.0000 | 2.97 × |
MDNS_MMacro | 5 | −1.1823 | 1.0000 | 7 | 2.14857 | 0.3042 | 4.03 × | MDNS_MMacro | 5 | −1.0697 | 1.0000 | 7 | 1.8872 | 0.5306 | 4.26 × |
MDNS_PMacro | 8 | 0.66473 | 0.9548 | 11 | 3.1387 | 0.0072 | 6.74 × | MDNS_PMacro | 8 | 0.53337 | 0.9812 | 11 | 2.93064 | 0.0266 | 6.47 × |
MDNS_MMacroEnd | 3 | −2.5856 | 1.0000 | 2 | 1.53242 | 0.8064 | 3.74 × | MDNS_MMacroEnd | 3 | −2.5899 | 1.0000 | 2 | 1.32297 | 0.9358 | 3.86 × |
MDNS_PMacroEnd | 12 | 1.6969 | 0.3074 | 12 | 4.14133 | 0.0000 | 7.52 × | MDNS_PMacroEnd | 12 | 1.82442 | 0.2428 | 12 | 4.42232 | 0.0000 | 7.51 × |
MDNS_S | 9 | 1.0432 | 0.7766 | 8 | 2.50883 | 0.1228 | 6.85 × | MDNS_S | 9 | 1.05408 | 0.7756 | 8 | 2.81312 | 0.0410 | 6.76 × |
MDNS_SmediaMacro | 4 | −1.2333 | 1.0000 | 6 | 1.94831 | 0.4592 | 4.11 × | MDNS_SmediaMacro | 4 | −1.1595 | 1.0000 | 5 | 1.71129 | 0.6908 | 4.27 × |
MDNS_Smacro | 1 | −3.3736 | 1.0000 | 3 | 1.66968 | 0.8064 | 3.79 × | MDNS_Smacro | 2 | −3.3446 | 1.0000 | 6 | 1.86292 | 0.5514 | 3.93 × |
18-Month Maturity | 21-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 7 | 0.25297 | 0.9996 | 5 | 1.62167 | 0.7512 | 6.07 × | MDNS | 7 | 0.17989 | 1.0000 | 5 | 1.83003 | 0.6134 | 5.89 × |
MDNS_M | 6 | −0.0836 | 1.0000 | 4 | 1.59384 | 0.7724 | 5.73 × | MDNS_M | 6 | 0.08728 | 1.0000 | 6 | 1.84887 | 0.5994 | 5.82 × |
MDNS_P | 12 | 1.7558 | 0.2808 | 9 | 2.88661 | 0.0304 | 7.31 × | MDNS_P | 12 | 1.97108 | 0.1750 | 11 | 3.32327 | 0.0022 | 7.04 × |
MDNS_Lambda | 10 | 1.73582 | 0.2914 | 10 | 2.90469 | 0.0270 | 9.47 × | MDNS_Lambda | 11 | 1.96672 | 0.1780 | 10 | 3.15423 | 0.0074 | 9.12 × |
MDNS_Macro | 1 | −3.5551 | 1.0000 | 1 | −0.9834 | 1.0000 | 3.34 × | MDNS_Macro | 1 | −4.2124 | 1.0000 | 1 | −0.6151 | 1.0000 | 3.62 × |
MDNS_MMacro | 5 | −0.9195 | 1.0000 | 6 | 1.63389 | 0.7424 | 4.56 × | MDNS_MMacro | 5 | −0.9824 | 1.0000 | 4 | 1.50824 | 0.8556 | 4.66 × |
MDNS_PMacro | 8 | 0.42173 | 0.9950 | 8 | 2.86061 | 0.0354 | 6.33 × | MDNS_PMacro | 8 | 0.44735 | 0.9974 | 9 | 2.94136 | 0.0268 | 6.17 × |
MDNS_MMacroEnd | 3 | −2.3371 | 1.0000 | 2 | 0.98336 | 0.9926 | 4.06 × | MDNS_MMacroEnd | 3 | −2.0601 | 1.0000 | 2 | 0.61506 | 1.0000 | 4.12 × |
MDNS_PMacroEnd | 11 | 1.7499 | 0.2836 | 12 | 4.74032 | 0.0000 | 7.38 × | MDNS_PMacroEnd | 10 | 1.68599 | 0.3300 | 12 | 4.60752 | 0.0000 | 7.09 × |
MDNS_S | 9 | 1.03862 | 0.7924 | 11 | 2.99909 | 0.0176 | 6.80 × | MDNS_S | 9 | 1.14954 | 0.7348 | 8 | 2.78756 | 0.0506 | 6.64 × |
MDNS_SmediaMacro | 4 | −1.0413 | 1.0000 | 3 | 1.46438 | 0.9926 | 4.52 × | MDNS_SmediaMacro | 4 | −1.0022 | 1.0000 | 3 | 1.20227 | 1.0000 | 4.63 × |
MDNS_Smacro | 2 | −3.2555 | 1.0000 | 7 | 2.01687 | 0.4166 | 4.11 × | MDNS_Smacro | 2 | −3.4985 | 1.0000 | 7 | 1.97946 | 0.4888 | 4.17 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.05245 | 1.0000 | 6 | 1.63007 | 0.7640 | 5.60 × | MDNS | 6 | 0.00812 | 1.0000 | 6 | 1.17441 | 0.9622 | 5.59 × |
MDNS_M | 7 | 0.13817 | 1.0000 | 7 | 1.68831 | 0.7248 | 5.67 × | MDNS_M | 7 | 0.21082 | 1.0000 | 7 | 1.31187 | 0.9124 | 5.77 × |
MDNS_P | 11 | 1.83028 | 0.2506 | 9 | 3.12533 | 0.0084 | 6.68 × | MDNS_P | 11 | 1.45826 | 0.4962 | 8 | 2.39328 | 0.1694 | 6.56 × |
MDNS_Lambda | 12 | 1.85888 | 0.2334 | 10 | 3.13628 | 0.0076 | 8.49 × | MDNS_Lambda | 12 | 1.51843 | 0.4452 | 10 | 2.84148 | 0.0364 | 8.14 × |
MDNS_Macro | 1 | −4.1723 | 1.0000 | 1 | −0.3021 | 1.0000 | 3.77 × | MDNS_Macro | 1 | −3.2215 | 1.0000 | 1 | −0.0618 | 1.0000 | 4.06 × |
MDNS_MMacro | 4 | −0.8228 | 1.0000 | 5 | 1.37746 | 0.9176 | 4.71 × | MDNS_MMacro | 5 | −0.6084 | 1.0000 | 5 | 1.09093 | 0.9744 | 4.87 × |
MDNS_PMacro | 8 | 0.45006 | 0.9966 | 8 | 2.81401 | 0.0440 | 5.94 × | MDNS_PMacro | 8 | 0.39163 | 0.9982 | 9 | 2.46038 | 0.1430 | 5.93 × |
MDNS_MMacroEnd | 3 | −1.8553 | 1.0000 | 2 | 0.30211 | 1.0000 | 4.03 × | MDNS_MMacroEnd | 3 | −1.8088 | 1.0000 | 2 | 0.06182 | 1.0000 | 4.11 × |
MDNS_PMacroEnd | 10 | 1.5208 | 0.4630 | 12 | 4.69169 | 0.0000 | 6.66 × | MDNS_PMacroEnd | 10 | 1.1345 | 0.7390 | 11 | 4.29245 | 0.0000 | 6.52 × |
MDNS_S | 9 | 1.07849 | 0.7780 | 11 | 3.45706 | 0.0006 | 6.35 × | MDNS_S | 9 | 0.84426 | 0.9078 | 12 | 4.34076 | 0.0000 | 6.32 × |
MDNS_SmediaMacro | 5 | −0.8116 | 1.0000 | 3 | 1.11604 | 1.0000 | 4.68 × | MDNS_SmediaMacro | 4 | −0.6447 | 1.0000 | 4 | 1.06233 | 1.0000 | 4.86 × |
MDNS_Smacro | 2 | −3.0676 | 1.0000 | 4 | 1.3466 | 1.0000 | 4.14 × | MDNS_Smacro | 2 | −2.3347 | 1.0000 | 3 | 0.74945 | 1.0000 | 4.28 × |
30-Month Maturity | 33-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.01173 | 1.0000 | 6 | 1.10691 | 0.9792 | 5.56 × | MDNS | 6 | 0.02686 | 1.0000 | 6 | 1.10354 | 0.9796 | 5.40 × |
MDNS_M | 7 | 0.22424 | 1.0000 | 7 | 1.28147 | 0.9294 | 5.76 × | MDNS_M | 7 | 0.32809 | 0.9996 | 7 | 1.75498 | 0.6100 | 5.68 × |
MDNS_P | 12 | 1.30279 | 0.5836 | 8 | 2.02273 | 0.4012 | 6.42 × | MDNS_P | 11 | 1.09361 | 0.7746 | 8 | 1.87576 | 0.5068 | 6.12 × |
MDNS_Lambda | 11 | 1.30243 | 0.5838 | 9 | 2.64112 | 0.0712 | 7.74 × | MDNS_Lambda | 12 | 1.10617 | 0.7656 | 9 | 2.30731 | 0.2080 | 7.17 × |
MDNS_Macro | 1 | −2.5841 | 1.0000 | 2 | 0.2015 | 1.0000 | 4.26 × | MDNS_Macro | 1 | −2.1467 | 1.0000 | 2 | 0.42118 | 1.0000 | 4.32 × |
MDNS_MMacro | 5 | −0.4752 | 1.0000 | 4 | 0.90326 | 0.9954 | 4.97 × | MDNS_MMacro | 5 | −0.4206 | 1.0000 | 4 | 0.78113 | 0.9996 | 4.87 × |
MDNS_PMacro | 8 | 0.43438 | 0.9956 | 10 | 2.74412 | 0.0478 | 5.90 × | MDNS_PMacro | 8 | 0.44769 | 0.9966 | 10 | 2.63552 | 0.0706 | 5.72 × |
MDNS_MMacroEnd | 3 | −1.9669 | 1.0000 | 1 | −0.2015 | 1.0000 | 4.09 × | MDNS_MMacroEnd | 2 | −1.9222 | 1.0000 | 1 | −0.4212 | 1.0000 | 3.97 × |
MDNS_PMacroEnd | 10 | 0.86386 | 0.8946 | 11 | 3.88652 | 0.0000 | 6.33 × | MDNS_PMacroEnd | 10 | 0.70296 | 0.9604 | 11 | 3.18613 | 0.0072 | 6.04 × |
MDNS_S | 9 | 0.74669 | 0.9388 | 12 | 4.19321 | 0.0000 | 6.26 × | MDNS_S | 9 | 0.68317 | 0.9664 | 12 | 3.47507 | 0.0014 | 6.02 × |
MDNS_SmediaMacro | 4 | −0.5154 | 1.0000 | 5 | 0.9108 | 0.9954 | 4.94 × | MDNS_SmediaMacro | 4 | −0.4486 | 1.0000 | 5 | 0.80147 | 0.9996 | 4.87 × |
MDNS_Smacro | 2 | −1.9783 | 1.0000 | 3 | 0.42254 | 1.0000 | 4.38 × | MDNS_Smacro | 3 | −1.7353 | 1.0000 | 3 | 0.51159 | 1.0000 | 4.32 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.06106 | 1.0000 | 6 | 1.16743 | 0.9716 | 5.30 × | MDNS | 6 | 0.1179 | 1.0000 | 6 | 1.16897 | 0.9642 | 5.32 × |
MDNS_M | 7 | 0.36817 | 0.9996 | 8 | 1.94561 | 0.4446 | 5.58 × | MDNS_M | 7 | 0.446 | 0.9984 | 9 | 1.99638 | 0.4070 | 5.60 × |
MDNS_P | 12 | 0.97811 | 0.8496 | 7 | 1.84458 | 0.5270 | 5.89 × | MDNS_P | 12 | 0.90242 | 0.9160 | 7 | 1.67764 | 0.6754 | 5.81 × |
MDNS_Lambda | 11 | 0.94502 | 0.8664 | 9 | 1.99763 | 0.4048 | 6.69 × | MDNS_Lambda | 11 | 0.82214 | 0.9482 | 8 | 1.67933 | 0.6742 | 6.38 × |
MDNS_Macro | 2 | −1.7495 | 1.0000 | 2 | 0.60904 | 1.0000 | 4.38 × | MDNS_Macro | 3 | −1.4869 | 1.0000 | 2 | 0.71644 | 0.9996 | 4.51 × |
MDNS_MMacro | 4 | −0.3765 | 1.0000 | 4 | 0.74287 | 1.0000 | 4.83 × | MDNS_MMacro | 4 | −0.3631 | 1.0000 | 4 | 0.7691 | 0.9992 | 4.84 × |
MDNS_PMacro | 8 | 0.48968 | 0.9960 | 10 | 2.53876 | 0.1022 | 5.60 × | MDNS_PMacro | 8 | 0.47894 | 0.9978 | 10 | 2.13358 | 0.3108 | 5.57 × |
MDNS_MMacroEnd | 1 | −1.9191 | 1.0000 | 1 | −0.609 | 1.0000 | 3.86 × | MDNS_MMacroEnd | 1 | −1.6994 | 1.0000 | 1 | −0.7164 | 1.0000 | 3.82 × |
MDNS_PMacroEnd | 9 | 0.61591 | 0.9848 | 11 | 2.69764 | 0.0596 | 5.84 × | MDNS_PMacroEnd | 9 | 0.57932 | 0.9926 | 11 | 2.40062 | 0.1700 | 5.75 × |
MDNS_S | 10 | 0.65372 | 0.9796 | 12 | 2.8896 | 0.0270 | 5.85 × | MDNS_S | 10 | 0.679 | 0.9820 | 12 | 2.60963 | 0.0828 | 5.81 × |
MDNS_SmediaMacro | 5 | −0.3756 | 1.0000 | 5 | 0.78051 | 1.0000 | 4.85 × | MDNS_SmediaMacro | 5 | −0.3294 | 1.0000 | 5 | 0.84124 | 0.9992 | 4.90 × |
MDNS_Smacro | 3 | −1.5695 | 1.0000 | 3 | 0.65965 | 1.0000 | 4.34 × | MDNS_Smacro | 2 | −1.5082 | 1.0000 | 3 | 0.73274 | 0.9996 | 4.40 × |
48-Month Maturity | 60-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 6 | 0.19904 | 1.0000 | 7 | 1.45847 | 0.8442 | 5.58 × | MDNS | 7 | 0.43578 | 0.9986 | 7 | 1.69983 | 0.6930 | 6.11 × |
MDNS_M | 8 | 0.43532 | 0.9990 | 12 | 1.90556 | 0.4794 | 5.79 × | MDNS_M | 10 | 0.66062 | 0.9820 | 10 | 1.86755 | 0.5462 | 6.27 × |
MDNS_P | 12 | 0.63521 | 0.9908 | 11 | 1.83728 | 0.5344 | 5.84 × | MDNS_P | 9 | 0.5347 | 0.9960 | 9 | 1.78431 | 0.6194 | 6.14 × |
MDNS_Lambda | 7 | 0.25492 | 1.0000 | 4 | 1.11217 | 0.9778 | 5.80 × | MDNS_Lambda | 4 | −0.2943 | 1.0000 | 2 | 0.91112 | 0.9968 | 5.45 × |
MDNS_Macro | 3 | −0.5204 | 1.0000 | 6 | 1.29032 | 0.9328 | 5.11 × | MDNS_Macro | 6 | 0.14766 | 1.0000 | 8 | 1.76542 | 0.6352 | 5.89 × |
MDNS_MMacro | 4 | −0.3123 | 1.0000 | 2 | 0.92993 | 0.9942 | 5.09 × | MDNS_MMacro | 3 | −0.4399 | 1.0000 | 3 | 1.18697 | 0.9616 | 5.44 × |
MDNS_PMacro | 10 | 0.5347 | 0.9970 | 9 | 1.79423 | 0.5668 | 5.80 × | MDNS_PMacro | 11 | 0.82884 | 0.9412 | 12 | 2.05469 | 0.3930 | 6.35 × |
MDNS_MMacroEnd | 1 | −2.0954 | 1.0000 | 1 | −0.9299 | 1.0000 | 3.87 × | MDNS_MMacroEnd | 1 | −2.0441 | 1.0000 | 1 | −0.9111 | 1.0000 | 4.01 × |
MDNS_PMacroEnd | 11 | 0.58805 | 0.9952 | 10 | 1.83347 | 0.5368 | 6.05 × | MDNS_PMacroEnd | 12 | 0.83684 | 0.9378 | 11 | 2.00488 | 0.4296 | 6.57 × |
MDNS_S | 9 | 0.49505 | 0.9974 | 8 | 1.56524 | 0.7656 | 5.87 × | MDNS_S | 8 | 0.51968 | 0.9962 | 6 | 1.68561 | 0.9616 | 6.21 × |
MDNS_SmediaMacro | 5 | −0.1067 | 1.0000 | 3 | 1.10358 | 0.9942 | 5.31 × | MDNS_SmediaMacro | 5 | 0.00664 | 1.0000 | 4 | 1.34147 | 0.9616 | 5.82 × |
MDNS_Smacro | 2 | −0.9395 | 1.0000 | 5 | 1.21148 | 0.9778 | 4.89 × | MDNS_Smacro | 2 | −0.6008 | 1.0000 | 5 | 1.57637 | 0.9616 | 5.52 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | ||||||||
MDNS | 9 | 0.64364 | 0.9848 | 8 | 1.90351 | 0.5390 | 6.50 × | ||||||||
MDNS_M | 11 | 0.76808 | 0.9640 | 9 | 2.00402 | 0.4546 | 6.60 × | ||||||||
MDNS_P | 6 | 0.46396 | 0.9986 | 7 | 1.83757 | 0.5952 | 6.34 × | ||||||||
MDNS_Lambda | 3 | −0.5603 | 1.0000 | 2 | 0.73459 | 1.0000 | 5.31 × | ||||||||
MDNS_Macro | 7 | 0.52483 | 0.9968 | 11 | 2.11455 | 0.3654 | 6.37 × | ||||||||
MDNS_MMacro | 2 | −0.5781 | 1.0000 | 3 | 1.27165 | 0.9430 | 5.57 × | ||||||||
MDNS_PMacro | 12 | 0.87837 | 0.9290 | 12 | 2.19753 | 0.3022 | 6.66 × | ||||||||
MDNS_MMacroEnd | 1 | −2.2013 | 1.0000 | 1 | −0.7346 | 1.0000 | 4.10 × | ||||||||
MDNS_PMacroEnd | 10 | 0.72953 | 0.9722 | 10 | 2.03571 | 0.4284 | 6.76 × | ||||||||
MDNS_S | 8 | 0.55179 | 0.9944 | 5 | 1.79459 | 0.9430 | 6.48 × | ||||||||
MDNS_SmediaMacro | 5 | −0.0099 | 1.0000 | 4 | 1.44317 | 0.9430 | 6.05 × | ||||||||
MDNS_Smacro | 4 | −0.237 | 1.0000 | 6 | 1.79775 | 0.9430 | 5.94 × |
1-Month Maturity | 3-Month Maturity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 1 | −2.09542 | 1.0000 | 2 | 0.11496 | 1.0000 | 1.81 × | MDNS | 2 | −1.93693 | 1.0000 | 3 | 0.68867 | 0.9988 | 2.12 × |
MDNS_M | 4 | −1.82709 | 1.0000 | 7 | 1.243348 | 0.9482 | 2.17 × | MDNS_M | 7 | −1.73384 | 1.0000 | 7 | 1.022512 | 0.9864 | 2.38 × |
MDNS_P | 8 | −0.80079 | 1.0000 | 9 | 1.535254 | 0.8122 | 3.42 × | MDNS_P | 8 | −0.66423 | 1.0000 | 8 | 1.443698 | 0.8474 | 3.58 × |
MDNS_Lambda | 2 | −2.02119 | 1.0000 | 3 | 0.184344 | 1.0000 | 1.86 × | MDNS_Lambda | 6 | −1.78199 | 1.0000 | 6 | 0.82119 | 0.9970 | 2.31 × |
MDNS_Macro | 6 | −1.52978 | 1.0000 | 4 | 0.617887 | 0.9998 | 2.30 × | MDNS_Macro | 5 | −1.80775 | 1.0000 | 2 | 0.209961 | 1.0000 | 1.93 × |
MDNS_MMacro | 11 | 1.411762 | 0.3884 | 8 | 1.480174 | 0.8442 | 2.50 × | MDNS_MMacro | 11 | 1.386103 | 0.3908 | 9 | 1.47245 | 0.8312 | 2.25 × |
MDNS_Pmacro | 3 | −1.90036 | 1.0000 | 1 | −0.11496 | 1.0000 | 1.74 × | MDNS_Pmacro | 3 | −1.93654 | 1.0000 | 1 | −0.20996 | 1.0000 | 1.79 × |
MDNS_MMacroEnd | 10 | 0.427403 | 0.9572 | 11 | 3.895032 | 0.0058 | 5.80 × | MDNS_MMacroEnd | 10 | 0.66892 | 0.8260 | 11 | 3.678439 | 0.0112 | 5.97 × |
MDNS_PmacroEnd | 5 | −1.67626 | 1.0000 | 6 | 1.157246 | 0.9666 | 3.01 × | MDNS_PmacroEnd | 1 | −2.43056 | 1.0000 | 5 | 0.803842 | 0.9970 | 2.57 × |
MDNS_S | 9 | −0.06094 | 1.0000 | 10 | 1.722818 | 0.6844 | 4.87 × | MDNS_S | 9 | −0.02852 | 1.0000 | 10 | 1.698359 | 0.6888 | 4.71 × |
MDNS_Smacro | 7 | −1.52029 | 1.0000 | 5 | 1.050876 | 0.9842 | 2.90 × | MDNS_Smacro | 4 | −1.85606 | 1.0000 | 4 | 0.693668 | 0.9988 | 2.56 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 2 | −1.97901 | 1.0000 | 3 | 0.333927 | 1.0000 | 2.38 × | MDNS | 2 | −2.12675 | 1.0000 | 3 | 0.039339 | 1.0000 | 2.63 × |
MDNS_M | 7 | −1.66485 | 1.0000 | 7 | 0.901397 | 0.9944 | 2.71 × | MDNS_M | 5 | −1.79207 | 1.0000 | 5 | 0.849475 | 0.9950 | 2.95 × |
MDNS_P | 8 | −0.55236 | 1.0000 | 8 | 1.220485 | 0.9418 | 3.82 × | MDNS_P | 8 | −0.5821 | 1.0000 | 8 | 1.215647 | 0.9438 | 4.01 × |
MDNS_Lambda | 4 | −1.85359 | 1.0000 | 5 | 0.590744 | 1.0000 | 2.52 × | MDNS_Lambda | 4 | −1.90782 | 1.0000 | 7 | 1.044641 | 0.9794 | 2.87 × |
MDNS_Macro | 5 | −1.76926 | 1.0000 | 1 | −0.25195 | 1.0000 | 2.10 × | MDNS_Macro | 7 | −1.59841 | 1.0000 | 2 | 0.013681 | 1.0000 | 2.61 × |
MDNS_MMacro | 11 | 1.38447 | 0.4022 | 9 | 1.470531 | 0.8328 | 2.08 × | MDNS_MMacro | 11 | 1.4176 | 0.4038 | 9 | 1.546194 | 0.7880 | 1.95 × |
MDNS_Pmacro | 6 | −1.76189 | 1.0000 | 2 | 0.251949 | 1.0000 | 2.28 × | MDNS_Pmacro | 6 | −1.61999 | 1.0000 | 4 | 0.4089 | 1.0000 | 2.85 × |
MDNS_MMacroEnd | 10 | 0.69738 | 0.8336 | 11 | 3.28348 | 0.0282 | 6.02 × | MDNS_MMacroEnd | 10 | 0.913616 | 0.7380 | 11 | 3.402395 | 0.0220 | 6.46 × |
MDNS_PmacroEnd | 1 | −2.14882 | 1.0000 | 6 | 0.682358 | 0.9998 | 2.82 × | MDNS_PmacroEnd | 3 | −1.94348 | 1.0000 | 6 | 0.922062 | 0.9912 | 3.31 × |
MDNS_S | 9 | −0.0405 | 1.0000 | 10 | 1.734513 | 0.6566 | 4.74 × | MDNS_S | 9 | −0.15163 | 1.0000 | 10 | 1.727605 | 0.6658 | 4.74 × |
MDNS_Smacro | 3 | −1.93387 | 1.0000 | 4 | 0.397505 | 1.0000 | 2.63 × | MDNS_Smacro | 1 | −2.23798 | 1.0000 | 1 | −0.01368 | 1.0000 | 2.60 × |
12-Month Maturity | 15-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 1 | −3.08864 | 1.0000 | 2 | 0.338116 | 1.0000 | 2.83 × | MDNS | 1 | −3.1685 | 1.0000 | 2 | 0.658091 | 0.9996 | 2.97 × |
MDNS_M | 5 | −2.58379 | 1.0000 | 4 | 0.639505 | 0.9998 | 3.10 × | MDNS_M | 4 | −2.70915 | 1.0000 | 4 | 0.773765 | 0.9988 | 3.20 × |
MDNS_P | 8 | −0.96263 | 1.0000 | 6 | 1.076002 | 0.9808 | 4.10 × | MDNS_P | 8 | −1.0517 | 1.0000 | 5 | 1.128233 | 0.9708 | 4.12 × |
MDNS_Lambda | 3 | −2.81683 | 1.0000 | 8 | 1.487684 | 0.8422 | 3.15 × | MDNS_Lambda | 3 | −2.81291 | 1.0000 | 7 | 1.631774 | 0.7388 | 3.33 × |
MDNS_Macro | 7 | −1.86069 | 1.0000 | 3 | 0.372889 | 1.0000 | 3.12 × | MDNS_Macro | 7 | −1.57444 | 1.0000 | 3 | 0.716229 | 0.9992 | 3.55 × |
MDNS_MMacro | 11 | 1.326622 | 0.5286 | 9 | 1.597777 | 0.7668 | 1.83 × | MDNS_MMacro | 11 | 1.342537 | 0.5422 | 8 | 1.665066 | 0.7148 | 1.71 × |
MDNS_PMacro | 6 | −1.99638 | 1.0000 | 5 | 0.81128 | 0.9978 | 3.33 × | MDNS_PMacro | 6 | −1.73912 | 1.0000 | 6 | 1.164638 | 0.9620 | 3.73 × |
MDNS_MMacroEnd | 10 | 0.725167 | 0.9156 | 12 | 3.440038 | 0.0188 | 6.88 × | MDNS_MMacroEnd | 10 | 0.966792 | 0.8054 | 12 | 3.489898 | 0.0160 | 7.20 × |
MDNS_PMacroEnd | 4 | −2.65229 | 1.0000 | 7 | 1.395291 | 0.8894 | 3.73 × | MDNS_PMacroEnd | 5 | −2.34721 | 1.0000 | 10 | 1.880229 | 0.5564 | 4.05 × |
MDNS_S | 9 | −0.84015 | 1.0000 | 10 | 1.750132 | 0.6626 | 4.68 × | MDNS_S | 9 | −0.97114 | 1.0000 | 9 | 1.746972 | 0.6592 | 4.61 × |
MDNS_SmediaMacro | 12 | 1.912836 | 0.2204 | 11 | 3.088935 | 0.0470 | 1.23 × | MDNS_SmediaMacro | 12 | 1.860318 | 0.2522 | 11 | 3.080579 | 0.0470 | 1.15 × |
MDNS_Smacro | 2 | −2.95961 | 1.0000 | 1 | −0.33812 | 1.0000 | 2.49 × | MDNS_Smacro | 2 | −3.16811 | 1.0000 | 1 | −0.65809 | 1.0000 | 2.34 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 2 | −3.23581 | 1.0000 | 2 | 0.947313 | 0.9916 | 3.14 × | MDNS | 2 | −3.34278 | 1.0000 | 3 | 1.171206 | 0.9606 | 3.25 × |
MDNS_M | 3 | −2.89361 | 1.0000 | 3 | 0.980411 | 0.9894 | 3.31 × | MDNS_M | 3 | −3.10634 | 1.0000 | 2 | 1.152211 | 1.0000 | 3.37 × |
MDNS_P | 8 | −1.17425 | 1.0000 | 5 | 1.122966 | 0.9728 | 4.12 × | MDNS_P | 6 | −1.35347 | 1.0000 | 5 | 1.224761 | 0.9470 | 4.06 × |
MDNS_Lambda | 4 | −2.82989 | 1.0000 | 7 | 1.711951 | 0.6912 | 3.50 × | MDNS_Lambda | 4 | −2.90892 | 1.0000 | 7 | 1.702375 | 0.6890 | 3.61 × |
MDNS_Macro | 7 | −1.36041 | 1.0000 | 4 | 1.004319 | 0.9888 | 3.93 × | MDNS_Macro | 9 | −1.14949 | 1.0000 | 4 | 1.222861 | 0.9480 | 4.21 × |
MDNS_MMacro | 11 | 1.393627 | 0.5232 | 8 | 1.789068 | 0.6354 | 1.61 × | MDNS_MMacro | 11 | 1.418247 | 0.5226 | 8 | 1.881044 | 0.5530 | 1.52 × |
MDNS_PMacro | 6 | −1.51778 | 1.0000 | 6 | 1.430509 | 0.8640 | 4.08 × | MDNS_PMacro | 7 | −1.27457 | 1.0000 | 6 | 1.650868 | 0.7288 | 4.36 × |
MDNS_MMacroEnd | 10 | 1.183034 | 0.6630 | 12 | 3.564789 | 0.0138 | 7.49 × | MDNS_MMacroEnd | 10 | 1.337288 | 0.5694 | 12 | 3.640633 | 0.0106 | 7.70 × |
MDNS_PMacroEnd | 5 | −2.02209 | 1.0000 | 10 | 2.315552 | 0.2582 | 4.34 × | MDNS_PMacroEnd | 5 | −1.70298 | 1.0000 | 10 | 2.628212 | 0.1304 | 4.56 × |
MDNS_S | 9 | −1.06734 | 1.0000 | 9 | 1.964149 | 0.4980 | 4.58 × | MDNS_S | 8 | −1.19837 | 1.0000 | 9 | 2.098129 | 0.3968 | 4.53 × |
MDNS_SmediaMacro | 12 | 1.844255 | 0.2664 | 11 | 3.050744 | 0.0518 | 1.08 × | MDNS_SmediaMacro | 12 | 1.809928 | 0.2898 | 11 | 3.041782 | 0.0516 | 1.02 × |
MDNS_Smacro | 1 | −3.39564 | 1.0000 | 1 | −0.94731 | 1.0000 | 2.23 × | MDNS_Smacro | 1 | −3.57524 | 1.0000 | 1 | −1.15221 | 1.0000 | 2.15 × |
24-Month Maturity | 27-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 2 | −3.28806 | 1.0000 | 4 | 1.398374 | 0.8934 | 3.32 × | MDNS | 3 | −3.38037 | 1.0000 | 4 | 1.687866 | 0.7198 | 3.40 × |
MDNS_M | 3 | −3.24605 | 1.0000 | 2 | 1.339432 | 1.0000 | 3.40 × | MDNS_M | 2 | −3.45509 | 1.0000 | 3 | 1.59215 | 0.9922 | 3.44 × |
MDNS_P | 5 | −1.55738 | 1.0000 | 3 | 1.340975 | 0.9934 | 3.98 × | MDNS_P | 5 | −1.88269 | 1.0000 | 2 | 1.546496 | 1.0000 | 3.92 × |
MDNS_Lambda | 4 | −2.8251 | 1.0000 | 6 | 1.827056 | 0.6040 | 3.66 × | MDNS_Lambda | 4 | −2.84542 | 1.0000 | 7 | 2.151938 | 0.3874 | 3.72 × |
MDNS_Macro | 9 | −0.97585 | 1.0000 | 5 | 1.423941 | 0.8786 | 4.43 × | MDNS_Macro | 8 | −0.8675 | 1.0000 | 5 | 1.725015 | 0.6938 | 4.63 × |
MDNS_MMacro | 10 | 1.454896 | 0.5016 | 8 | 1.968348 | 0.4940 | 1.44 × | MDNS_MMacro | 10 | 1.469277 | 0.4912 | 6 | 2.032917 | 0.4712 | 1.37 × |
MDNS_PMacro | 8 | −1.04345 | 1.0000 | 7 | 1.870244 | 0.5718 | 4.59 × | MDNS_PMacro | 9 | −0.85017 | 1.0000 | 8 | 2.209762 | 0.3508 | 4.79 × |
MDNS_MMacroEnd | 11 | 1.503618 | 0.4660 | 12 | 3.684016 | 0.0064 | 7.86 × | MDNS_MMacroEnd | 11 | 1.657825 | 0.3750 | 12 | 3.495081 | 0.0156 | 8.01 × |
MDNS_PMacroEnd | 6 | −1.37272 | 1.0000 | 10 | 2.881674 | 0.0714 | 4.72 × | MDNS_PMacroEnd | 7 | −1.09434 | 1.0000 | 11 | 3.283053 | 0.0270 | 4.88 × |
MDNS_S | 7 | −1.31288 | 1.0000 | 9 | 2.254201 | 0.3060 | 4.46 × | MDNS_S | 6 | −1.37356 | 1.0000 | 9 | 2.439849 | 0.2176 | 4.42 × |
MDNS_SmediaMacro | 12 | 1.785749 | 0.3062 | 11 | 3.023714 | 0.0480 | 9.69 × | MDNS_SmediaMacro | 12 | 1.85752 | 0.2710 | 10 | 3.027684 | 0.0600 | 9.28 × |
MDNS_Smacro | 1 | −3.67164 | 1.0000 | 1 | −1.33943 | 1.0000 | 2.07 × | MDNS_Smacro | 1 | −3.9776 | 1.0000 | 1 | −1.5465 | 1.0000 | 2.01 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 3 | −3.35786 | 1.0000 | 4 | 1.838266 | 0.6024 | 3.44 × | MDNS | 3 | −3.35606 | 1.0000 | 4 | 1.897881 | 0.5498 | 3.44 × |
MDNS_M | 2 | −3.56696 | 1.0000 | 3 | 1.713317 | 0.9954 | 3.46 × | MDNS_M | 2 | −3.67591 | 1.0000 | 3 | 1.766344 | 0.9990 | 3.42 × |
MDNS_P | 5 | −2.12168 | 1.0000 | 2 | 1.627428 | 1.0000 | 3.85 × | MDNS_P | 5 | −2.36386 | 1.0000 | 2 | 1.657812 | 1.0000 | 3.73 × |
MDNS_Lambda | 4 | −2.82515 | 1.0000 | 7 | 2.279956 | 0.2952 | 3.74 × | MDNS_Lambda | 4 | −2.82126 | 1.0000 | 7 | 2.313783 | 0.2748 | 3.71 × |
MDNS_Macro | 8 | −0.70478 | 1.0000 | 5 | 1.878625 | 0.5742 | 4.78 × | MDNS_Macro | 8 | −0.5536 | 1.0000 | 5 | 1.967992 | 0.5002 | 4.84 × |
MDNS_MMacro | 10 | 1.507024 | 0.4744 | 6 | 2.13074 | 0.3900 | 1.30 × | MDNS_MMacro | 10 | 1.527718 | 0.4712 | 6 | 2.211019 | 0.3318 | 1.24 × |
MDNS_PMacro | 9 | −0.64284 | 1.0000 | 8 | 2.389063 | 0.2406 | 4.94 × | MDNS_PMacro | 9 | −0.43656 | 1.0000 | 8 | 2.472108 | 0.2044 | 5.02 × |
MDNS_MMacroEnd | 11 | 1.722125 | 0.3478 | 11 | 3.443819 | 0.0220 | 8.10 × | MDNS_MMacroEnd | 12 | 1.823285 | 0.2922 | 11 | 3.443765 | 0.0216 | 8.13 × |
MDNS_PMacroEnd | 7 | −0.81844 | 1.0000 | 12 | 3.469255 | 0.0214 | 4.99 × | MDNS_PMacroEnd | 7 | −0.58139 | 1.0000 | 12 | 3.569407 | 0.0154 | 5.04 × |
MDNS_S | 6 | −1.4719 | 1.0000 | 9 | 2.552095 | 0.1704 | 4.36 × | MDNS_S | 6 | −1.58269 | 1.0000 | 9 | 2.560904 | 0.1686 | 4.26 × |
MDNS_SmediaMacro | 12 | 1.839814 | 0.2914 | 10 | 3.029884 | 0.0614 | 8.93 × | MDNS_SmediaMacro | 11 | 1.808835 | 0.3004 | 10 | 3.031517 | 0.0564 | 8.57 × |
MDNS_Smacro | 1 | −4.0373 | 1.0000 | 1 | −1.62743 | 1.0000 | 1.96 × | MDNS_Smacro | 1 | −4.07182 | 1.0000 | 1 | −1.65781 | 1.0000 | 1.91 × |
36-Month Maturity | 39-Month Maturity | ||||||||||||||
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 3 | −3.34664 | 1.0000 | 4 | 1.990049 | 0.4878 | 3.42 × | MDNS | 3 | −3.40668 | 1.0000 | 4 | 2.050392 | 0.4402 | 3.42 × |
MDNS_M | 2 | −3.79023 | 1.0000 | 3 | 1.85518 | 0.9996 | 3.38 × | MDNS_M | 2 | −4.01817 | 1.0000 | 3 | 1.896727 | 1.0000 | 3.36 × |
MDNS_P | 5 | −2.63692 | 1.0000 | 2 | 1.726672 | 1.0000 | 3.63 × | MDNS_P | 4 | −2.96066 | 1.0000 | 2 | 1.744927 | 1.0000 | 3.55 × |
MDNS_Lambda | 4 | −2.81149 | 1.0000 | 7 | 2.386618 | 0.2436 | 3.66 × | MDNS_Lambda | 5 | −2.88572 | 1.0000 | 7 | 2.428084 | 0.2218 | 3.64 × |
MDNS_Macro | 7 | −0.43048 | 1.0000 | 5 | 2.085006 | 0.4216 | 4.89 × | MDNS_Macro | 7 | −0.30515 | 1.0000 | 5 | 2.183782 | 0.3530 | 4.95 × |
MDNS_MMacro | 10 | 1.530643 | 0.4554 | 6 | 2.244994 | 0.3228 | 1.18 × | MDNS_MMacro | 10 | 1.602297 | 0.4300 | 6 | 2.406229 | 0.2318 | 1.13 × |
MDNS_PMacro | 9 | −0.26061 | 1.0000 | 9 | 2.643301 | 0.1400 | 5.08 × | MDNS_PMacro | 9 | −0.09176 | 1.0000 | 9 | 2.738989 | 0.1124 | 5.15 × |
MDNS_MMacroEnd | 12 | 1.905254 | 0.2506 | 11 | 3.477806 | 0.0162 | 8.14 × | MDNS_MMacroEnd | 12 | 1.906654 | 0.2658 | 11 | 3.33225 | 0.0244 | 8.17 × |
MDNS_PMacroEnd | 8 | −0.37439 | 1.0000 | 12 | 3.68643 | 0.0096 | 5.07 × | MDNS_PMacroEnd | 8 | −0.1899 | 1.0000 | 12 | 3.860319 | 0.0066 | 5.11 × |
MDNS_S | 6 | −1.68224 | 1.0000 | 8 | 2.57867 | 0.1618 | 4.16 × | MDNS_S | 6 | −1.79004 | 1.0000 | 8 | 2.651115 | 0.1352 | 4.08 × |
MDNS_SmediaMacro | 11 | 1.783764 | 0.3086 | 10 | 3.05504 | 0.0524 | 8.27 × | MDNS_SmediaMacro | 11 | 1.81685 | 0.3102 | 10 | 3.137115 | 0.0420 | 8.03 × |
MDNS_Smacro | 1 | −4.11535 | 1.0000 | 1 | −1.72667 | 1.0000 | 1.87 × | MDNS_Smacro | 1 | −4.1636 | 1.0000 | 1 | −1.74493 | 1.0000 | 1.84 × |
Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS | 4 | −3.4166 | 1.0000 | 4 | 2.168434 | 0.3564 | 3.36 × | MDNS_Smacro | 1 | −2.3295 | 1.0000 | 1 | −2.32946 | 1.0000 | 1.63 × |
MDNS_M | 1 | −4.23941 | 1.0000 | 3 | 2.015817 | 1.0000 | 3.28 × | ||||||||
MDNS_P | 3 | −3.76851 | 1.0000 | 2 | 1.869901 | 1.0000 | 3.38 × | 72-Month Maturity | |||||||
MDNS_Lambda | 5 | −2.90811 | 1.0000 | 6 | 2.461774 | 0.2090 | 3.51 × | Models | Rank_M | v_M | MCS_M | Rank_R | v_R | MCS_R | Loss |
MDNS_Macro | 7 | 0.073422 | 1.0000 | 5 | 2.389841 | 0.2414 | 5.11 × | MDNS_Smacro | 1 | −2.35514 | 1.0000 | 1 | −2.35514 | 1.0000 | 1.61 × |
MDNS_MMacro | 10 | 1.673142 | 0.3864 | 7 | 2.638079 | 0.1434 | 1.02 × | ||||||||
MDNS_PMacro | 9 | 0.348348 | 0.9990 | 9 | 3.068854 | 0.0528 | 5.29 × | ||||||||
MDNS_MMacroEnd | 12 | 2.005957 | 0.2178 | 11 | 3.271636 | 0.0308 | 8.17 × | ||||||||
MDNS_PMacroEnd | 8 | 0.22516 | 1.0000 | 12 | 4.04298 | 0.0038 | 5.18 × | ||||||||
MDNS_S | 6 | −2.12451 | 1.0000 | 8 | 2.659018 | 0.1352 | 3.86 × | ||||||||
MDNS_SmediaMacro | 11 | 1.734047 | 0.3526 | 10 | 3.105811 | 0.0480 | 7.52 × | ||||||||
MDNS_Smacro | 2 | −4.15811 | 1.0000 | 1 | −1.8699 | 1.0000 | 1.73 × |
References
- Nelson, C.; Siegel, A.F. Parsimonious modeling of yield curves. J. Bus. 1987, 60, 473–489. [Google Scholar] [CrossRef]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Wiley: New York, NY, USA, 1989; Volume 1. [Google Scholar]
- Cuyt, A. Approximation Theory. In Wiley Encyclopedia of Computer Science and Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 163–171. [Google Scholar]
- Steffensen, J.F. Interpolation; Dover Publications: Mineola, NY, USA, 2006. [Google Scholar]
- Van der Maaten, L.; Postma, E.; van den Herik, J. Dimensionality Reduction: A Comparative Review. J. Mach. Learn. Res. 2009, 10, 497. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Douc, R.; Moulines, E.; Stoffer, D. Nonlinear Time Series: Theory, Methods and Applications with R Examples; Chapman and Hall/CRC: New York, NY, USA, 2013. [Google Scholar]
- Meyn, S.; Tweedie, R.L.; Glynn, P.W. Markov Chains and Stochastic Stability, 2nd ed.; Cambridge Mathematical Library, Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Kim, C.J.; Piger, J.; Startz, R. Estimation of Markov regime-switching regression models with endogenous switching. J. Econom. 2008, 143, 263–273. [Google Scholar] [CrossRef]
- Boot, T.; Pick, A. Does modeling a structural break improve forecast accuracy? J. Econom. 2020, 215, 35–59. [Google Scholar] [CrossRef]
- Dufays, A.; Rombouts, J.V. Relevant parameter changes in structural break models. J. Econom. 2020, 217, 46–78. [Google Scholar] [CrossRef]
- Gamerman, D.; Lopes, H. Markov chain Monte Carlo: Stochastic Simulation for Bayesian Inference; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Filipovic, D. Term-Structure Models: A Graduate Course; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Musiela, M.; Rutkowski, M. Martingale Methods in Financial Modelling; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Heath, D.; Jarrow, R.; Morton, A. Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 1992, 60, 77–105. [Google Scholar] [CrossRef]
- Diebold, F.X.; Rudebusch, G.D. Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach; Econometric and Tinbergen Institutes Lectures; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Litterman, R.B.; Scheinkman, J. Common Factors Affecting Bond Returns. J. Fixed Income 1991, 1, 54–61. [Google Scholar] [CrossRef]
- Bank for International Settlements. Zero-Coupon Yield Curves Estimated by Central Banks. 2015. Available online: http://www.bis.org/publ/bppdf/bispap25a.pdf (accessed on 1 October 2018).
- Diebold, F.X.; Li, C. Forecasting the term structure of the government bond yields. J. Econom. 2006, 130, 337–369. [Google Scholar] [CrossRef]
- Christensen, J.H.; Diebold, F.X.; Rudebusch, G.D. An Arbitrage-free generalized Nelson-Siegel term structure model. Econom. J. 2008, 12, C33–C64. [Google Scholar] [CrossRef]
- Duffie, D.; Kan, R. A yield-factor model of interest rates. Math. Financ. 1996, 6, 379–406. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Athari, S.A.; Ertugrul, H.M. The real estate industry in Turkey: A time series analysis. Serv. Ind. J. 2021, 41, 427–439. [Google Scholar] [CrossRef]
- Athari, S.; Kirikkaleli, D.; Adebayo, T. World pandemic uncertainty and German stock market: Evidence from Markov regime-switching and Fourier based approaches. Qual. Quant. 2023, 57, 1923–1936. [Google Scholar] [CrossRef] [PubMed]
- Duffee, G.R. Term premia and interest rate forecasts in affine models. J. Financ. 2002, 57, 405–443. [Google Scholar] [CrossRef]
- Matsumura, M.S.; Moreira, A.R.B. Macro Factors and the Brazilian Yield Curve with No Arbitrage Models; Discussion Paper; IPEA: Brasilia, Brazil, 2006. [Google Scholar]
- Faria, A.; Almeida, C. Forecasting the Brazilian term structure using macroeconomic factors. Braz. Rev. Econom. 2014, 34, 45. [Google Scholar]
- So, M.K.P.; Lam, K.; Li, W.K. A Stochastic volatility model with Markov Switching. J. Bus. Econ. Stat. 1998, 16, 244–253. [Google Scholar]
- Diebold, F.X.; Rudebusch, G.D.; Aruoba, S.B. The macroeconomy and yield curve: A dynamic latent factor approach. J. Econom. 2006, 131, 309–338. [Google Scholar] [CrossRef]
- Christensen, J.H. A Regime-Switching Model of the Yield Curve at the Zero Bound; Working Paper—Federal Reserve Bank of San Francisco Series 2013-34; Federal Reserve Bank of San Francisco: San Francisco, CA, USA, 2015. [Google Scholar]
- Hevia, C.; Gonzales-Rozada, M.; Spagnolo, F. Estimating and Forecasting the yield curve using a Markov switching dynamic Nelson and Siegel model. J. Appl. Econom. 2015, 30, 987–1009. [Google Scholar] [CrossRef]
- Zhu, X.; Rahman, S. A regime-switching Nelson-Siegel term structure model of the macroeconomy. J. Macroecon. 2015, 44, 1–17. [Google Scholar] [CrossRef]
- Levant, J.; Ma, J. A dynamic Nelson-Siegel yield curve model with Markov switching. Econ. Model. 2017, 67, 73–87. [Google Scholar] [CrossRef]
- Kobayashi, T. Regime-switching dynamic Nelson-Siegel modeling to corporate bond yield spreads with time-varying transition probabilities. J. Appl. Bus. Econ. 2017, 19, 10–28. [Google Scholar]
- Gonçalves, C.; Portugal, M.S.; Aragón, E. Assessing Brazilian macroeconomic dynamics using a Markov-switching DSGE model. EconomiA 2016, 17, 23–42. [Google Scholar] [CrossRef]
- Arruda, E.F.; Ferreira, R.T.; Castelar, I. Modelos lineares e não lineares da curva de Phillips para previsão da taxa de inflação no Brasil. Rev. Bras. Econ. 2011, 65, 237–252. [Google Scholar]
- Wichmann, R.M.; Portugal, M.S. Política fiscal assimétrica: O caso do Brasil. Rev. Bras. Econ. 2013, 67, 355–378. [Google Scholar] [CrossRef]
- Hautsch, N.; Yang, F. Bayesian inference in a stochastic volatility Nelson-Siegel model. Comput. Stat. Data Anal. 2012, 56, 3774–3792. [Google Scholar] [CrossRef]
- Laurini, M.P.; Hotta, L.K. Bayesian extensions to Diebold-Li term structure model. Int. Rev. Financ. Anal. 2010, 19, 342–350. [Google Scholar] [CrossRef]
- Laurini, M.P.; Hotta, L.K. Forecasting the term structure of interest rates using integrated nested Laplace approximations. J. Forecast. 2014, 33, 214–230. [Google Scholar] [CrossRef]
- Diebold, F.X.; Li, C.; Yue, V.Z. Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach. J. Econom. 2008, 146, 351–363. [Google Scholar] [CrossRef]
- Laurini, M.P.; Hotta, L.K. Modelos de Fatores Latentes Generalizados para Curvas de Juros em Múltiplos Mercados; Anbima: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Christensen, J.H.; Diebold, F.X.; Rudebusch, G.D. The affine arbitrage-free class of Nelson–Siegel term structure models. J. Econom. 2011, 164, 4–20. [Google Scholar] [CrossRef]
- Vicente, J.; Tabak, B.M. Forecasting bond yields in the Brazilian fixed income market. Int. J. Forecast. 2008, 24, 490–497. [Google Scholar] [CrossRef]
- Caldeira, J.; Moura, G.; Santos, A.; Tourrucôoa, F. Forecasting the yield curve with the arbitrage-free dynamic Nelson-Siegel model: Brazilian evidence. EconomiA 2016, 17, 221–237. [Google Scholar] [CrossRef]
- Albert, C.G.; Callies, U.; von Toussaint, U. A Bayesian Approach to the Estimation of Parameters and Their Interdependencies in Environmental Modeling. Entropy 2022, 24, 231. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Lu, W.; Qian, H.; Zhang, Z. An improved Bayesian approach linked to a surrogate model for identifying groundwater pollution sources. Hydrogeol. J. 2022, 30, 601–616. [Google Scholar]
- Gupta, R.; Sun, X. Forecasting economic policy uncertainty of BRIC countries using Bayesian VARs. Econ. Lett. 2020, 186, 108677. [Google Scholar] [CrossRef]
- Li, L.; Kang, Y.; Li, F. Bayesian Forecast Combination Using Time-Varying Features. Int. J. Forecast. 2022, in press. [CrossRef]
- Lahmiri, S.; Bekiros, S.; Bezzina, F. Complexity analysis and forecasting of variations in cryptocurrency trading volume with support vector regression tuned by Bayesian optimization under different kernels: An empirical comparison from a large dataset. Expert Syst. Appl. 2022, 209, 118349. [Google Scholar] [CrossRef]
- Zhuang, L.; Xu, A.; Wang, X.L. A prognostic driven predictive maintenance framework based on Bayesian deep learning. Reliab. Eng. Syst. Saf. 2023, 234, 109181. [Google Scholar] [CrossRef]
- Gefang, D.; Koop, G.; Poon, A. Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage. Int. J. Forecast. 2023, 39, 346–363. [Google Scholar] [CrossRef]
- Batista, R.L.; Laurini, M. Bayesian estimation of term structure models: An application of the Hamiltonian Monte Carlo method. Commun. Stat. Case Stud. Data Anal. Appl. 2016, 2, 79–91. [Google Scholar] [CrossRef]
- Hansen, P.R.; Lunde, A.; Nason, J.M. The Model Confidence Set. Econometrica 2011, 79, 453–497. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Pick, A.; Pranovich, M. Optimal forecasts in the presence of structural breaks. J. Econom. 2013, 177, 134–152. [Google Scholar] [CrossRef]
- McAlinn, K.; West, M. Dynamic Bayesian predictive synthesis in time series forecasting. J. Econom. 2019, 210, 155–169. [Google Scholar] [CrossRef]
- Odendahl, F.; Rossi, B.; Sekhposyan, T. Evaluating forecast performance with state dependence. J. Econom. 2022, in press. [CrossRef]
- Altansukh, G.; Osborn, D. Using structural break inference for forecasting time series. Empir. Econ. 2022, 63, 1–41. [Google Scholar] [CrossRef]
- Clark, T.E.; McCracken, M.W. Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts. Int. Econ. Rev. 2009, 50, 363–395. [Google Scholar] [CrossRef]
- Inoue, A.; Jin, L.; Rossi, B. Rolling window selection for out-of-sample forecasting with time-varying parameters. J. Econom. 2017, 196, 55–67. [Google Scholar] [CrossRef]
- Timmermann, A. Chapter 4 Forecast Combinations. In Handbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 135–196. [Google Scholar]
Maturity (Month) | Mean | Std Dev. | Maximum | Minimum | (1) | (12) | (24) |
---|---|---|---|---|---|---|---|
1M | 0.1293 | 0.0404 | 0.2682 | 0.0697 | 0.9561 | 0.4454 | 0.3688 |
3M | 0.1290 | 0.0397 | 0.2758 | 0.0704 | 0.9487 | 0.4421 | 0.3446 |
6M | 0.1290 | 0.0388 | 0.2825 | 0.0707 | 0.9389 | 0.4386 | 0.3193 |
9M | 0.1292 | 0.0380 | 0.2866 | 0.0708 | 0.9313 | 0.4293 | 0.2993 |
12M | 0.1299 | 0.0375 | 0.2933 | 0.0715 | 0.9232 | 0.4179 | 0.2854 |
15M | 0.1306 | 0.0371 | 0.3026 | 0.0722 | 0.9130 | 0.4061 | 0.2775 |
18M | 0.1314 | 0.0368 | 0.3118 | 0.0740 | 0.9024 | 0.3965 | 0.2722 |
21M | 0.1320 | 0.0366 | 0.3217 | 0.0759 | 0.8915 | 0.3893 | 0.2683 |
24M | 0.1327 | 0.0366 | 0.3324 | 0.0776 | 0.8799 | 0.3816 | 0.2646 |
27M | 0.1333 | 0.0367 | 0.3418 | 0.0791 | 0.8700 | 0.3764 | 0.2605 |
30M | 0.1337 | 0.0369 | 0.3509 | 0.0800 | 0.8611 | 0.3735 | 0.2563 |
33M | 0.1342 | 0.0371 | 0.3593 | 0.0810 | 0.8533 | 0.3724 | 0.2515 |
36M | 0.1346 | 0.0374 | 0.3673 | 0.0820 | 0.8458 | 0.3700 | 0.2459 |
39M | 0.1350 | 0.0378 | 0.3768 | 0.0830 | 0.8379 | 0.3665 | 0.2391 |
48M | 0.1360 | 0.0392 | 0.3965 | 0.0845 | 0.8286 | 0.3548 | 0.2230 |
60M | 0.1370 | 0.0409 | 0.4034 | 0.0868 | 0.8352 | 0.3467 | 0.2075 |
72M | 0.1378 | 0.0420 | 0.4072 | 0.0881 | 0.8371 | 0.3406 | 0.2072 |
Slope | −0.0085 | 0.0235 | 0.0430 | −0.1391 | 0.7756 | 0.0140 | −0.0696 |
Curvature | −0.0013 | 0.0152 | 0.0314 | −0.0823 | 0.8054 | 0.0211 | 0.0698 |
Mean Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-SLambda | MDNS-Smedia Macro | MDNS-Smacro | |
1M | 3.67 · 10−4 | 3.64 · 10−4 | 3.68 · 10−4 | 3.04 · 10−4 | 3.57 · 10−4 | 3.56 · 10−4 | 3.52 · 10−4 | 3.44 · 10−4 | 3.53 · 10−4 | 3.68 · 10−4 | 1.133 · 10−3 | 8.40 · 10−4 | 3.14 · 10−4 |
3M | 3.0 · 10−5 | 2.9 · 10−5 | 3.0 · 10−5 | 8.98 · 10−4 | 2.8 · 10−5 | 2.9 · 10−5 | 2.7 · 10−5 | 2.1 · 10−5 | 2.8 · 10−5 | 3.1 · 10−5 | −1.043 · 10−3 | −7.13 · 10−4 | 1.68 · 10−4 |
6M | −2.45 · 10−4 | −2.43 · 10−4 | −2.44 · 10−4 | −5.29 · 10−4 | −2.39 · 10−4 | −2.38 · 10−4 | −2.37 · 10−4 | −2.41 · 10−4 | −2.37 · 10−4 | −2.44 · 10−4 | −2.045 · 10−3 | −1.227 · 10−3 | −2.46 · 10−4 |
9M | −3.98 · 10−4 | −3.95 · 10−4 | −3.97 · 10−4 | −1.109 · 10−3 | −3.90 · 10−4 | −3.89 · 10−4 | −3.86 · 10−4 | −3.89 · 10−4 | −3.87 · 10−4 | −3.97 · 10−4 | −2.251 · 10−3 | −1.359 · 10−3 | −4.43 · 10−4 |
12M | −3.00 · 10−4 | −2.98 · 10−4 | −3.00 · 10−4 | −1.070 · 10−3 | −2.93 · 10−4 | −2.92 · 10−4 | −2.90 · 10−4 | −2.91 · 10−4 | −2.90 · 10−4 | −2.99 · 10−4 | −1.983 · 10−3 | −1.157 · 10−3 | −3.59 · 10−4 |
15M | −1.19 · 10−4 | −1.16 · 10−4 | −1.18 · 10−4 | −7.99 · 10−4 | −1.13 · 10−4 | −1.13 · 10−4 | −1.11 · 10−4 | −1.11 · 10−4 | −1.11 · 10−4 | −1.18 · 10−4 | −1.535 · 10−3 | −8.33 · 10−4 | −1.80 · 10−4 |
18M | 3.7 · 10−5 | 3.8 · 10−5 | 3.7 · 10−5 | −4.95 · 10−4 | 4.0 · 10−5 | 4.0 · 10−5 | 4.1 · 10−5 | 4.2 · 10−5 | 4.1 · 10−5 | 3.7 · 10−5 | −1.070 · 10−3 | −5.16 · 10−4 | −2.0 · 10−5 |
21M | 1.27 · 10−4 | 1.28 · 10−4 | 1.27 · 10−4 | −2.39 · 10−4 | 1.28 · 10−4 | 1.28 · 10−4 | 1.28 · 10−4 | 1.29 · 10−4 | 1.28 · 10−4 | 1.27 · 10−4 | −6.52 · 10−4 | −2.57 · 10−4 | 7.9 · 10−5 |
24M | 2.18 · 10−4 | 2.19 · 10−4 | 2.18 · 10−4 | 1.7 · 10−5 | 2.17 · 10−4 | 2.17 · 10−4 | 2.16 · 10−4 | 2.18 · 10−4 | 2.17 · 10−4 | 2.19 · 10−4 | −2.29 · 10−4 | 4 · 10−6 | 1.80 · 10−4 |
27M | 2.36 · 10−4 | 2.35 · 10−4 | 2.35 · 10−4 | 1.87 · 10−4 | 2.33 · 10−4 | 2.32 · 10−4 | 2.31 · 10−4 | 2.32 · 10−4 | 2.31 · 10−4 | 2.36 · 10−4 | 1.14 · 10−4 | 1.87 · 10−4 | 2.09 · 10−4 |
30M | 1.84 · 10−4 | 1.83 · 10−4 | 1.84 · 10−4 | 2.72 · 10−4 | 1.80 · 10−4 | 1.79 · 10−4 | 1.78 · 10−4 | 1.79 · 10−4 | 1.78 · 10−4 | 1.84 · 10−4 | 3.76 · 10−4 | 2.95 · 10−4 | 1.69 · 10−4 |
33M | 1.23 · 10−4 | 1.21 · 10−4 | 1.22 · 10−4 | 3.29 · 10−4 | 1.18 · 10−4 | 1.17 · 10−4 | 1.15 · 10−4 | 1.17 · 10−4 | 1.16 · 10−4 | 1.22 · 10−4 | 6.12 · 10−4 | 3.86 · 10−4 | 1.19 · 10−4 |
36M | 8.8 · 10−5 | 8.7 · 10−5 | 8.8 · 10−5 | 3.95 · 10−4 | 8.3 · 10−5 | 8.2 · 10−5 | 8.1 · 10−5 | 8.1 · 10−5 | 8.1 · 10−5 | 8.7 · 10−5 | 8.58 · 10−4 | 4.95 · 10−4 | 9.7 · 10−5 |
39M | 1.04 · 10−4 | 1.03 · 10−4 | 1.04 · 10−4 | 4.95 · 10−4 | 9.9 · 10−5 | 9.8 · 10−5 | 9.7 · 10−5 | 9.7 · 10−5 | 9.7 · 10−5 | 1.03 · 10−4 | 1.137 · 10−3 | 6.46 · 10−4 | 1.24 · 10−4 |
48M | −4.6 · 10−5 | −4.8 · 10−5 | −4.6 · 10−5 | 5.07 · 10−4 | −4.9 · 10−5 | −4.9 · 10−5 | −5.0 · 10−5 | −5.1 · 10−5 | −5.0 · 10−5 | −4.7 · 10−5 | 1.666 · 10−3 | 8.46 · 10−4 | 5 · 10−6 |
60M | −1.95 · 10−4 | −1.96 · 10−4 | −1.95 · 10−4 | 4.33 · 10−4 | −1.94 · 10−4 | −1.93 · 10−4 | −1.92 · 10−4 | −1.95 · 10−4 | −1.93 · 10−4 | −1.96 · 10−4 | 2.205 · 10−3 | 1.057 · 10−3 | −1.10 · 10−4 |
72M | −2.11 · 10−4 | −2.10 · 10−4 | −2.10 · 10−4 | 4.07 · 10−4 | −2.04 · 10−4 | −2.03 · 10−4 | −2.00 · 10−4 | −2.05 · 10−4 | −2.02 · 10−4 | −2.12 · 10−4 | 2.692 · 10−3 | 1.308 · 10−3 | −1.00 · 10−4 |
Root Mean Squared Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-SLambda | MDNS-Smedia Macro | MDNS-Smacro | |
1M | 1.994 · 10−3 | 1.993 · 10−3 | 1.993 · 10−3 | 1.532 · 10−3 | 1.987 · 10−3 | 1.978 · 10−3 | 1.961 · 10−3 | 1.943 · 10−3 | 1.960 · 10−3 | 1.994 · 10−3 | 2.699 · 10−3 | 2.539 · 10−3 | 1.973 · 10−3 |
3M | 6.39 · 10−4 | 6.42 · 10−4 | 6.46 · 10−4 | 4.084 · 10−3 | 6.40 · 10−4 | 6.44 · 10−4 | 6.47 · 10−4 | 6.50 · 10−4 | 6.56 · 10−4 | 6.40 · 10−4 | 0.004070 | 2.724 · 10−3 | 7.44 · 10−4 |
6M | 1.567 · 10−3 | 1.566 · 10−3 | 1.572 · 10−3 | 2.208 · 10−3 | 1.564 · 10−3 | 1.570 · 10−3 | 1.566 · 10−3 | 1.585 · 10−3 | 1.574 · 10−3 | 1.572 · 10−3 | 4.708 · 10−3 | 3.436 · 10−3 | 1.605 · 10−3 |
9M | 1.670 · 10−3 | 1.665 · 10−3 | 1.670 · 10−3 | 3.853 · 10−3 | 1.661 · 10−3 | 1.663 · 10−3 | 1.653 · 10−3 | 1.670 · 10−3 | 1.659 · 10−3 | 1.672 · 10−3 | 4.736 · 10−3 | 3.313 · 10−3 | 1.711 · 10−3 |
12M | 1.399 · 10−3 | 1.393 · 10−3 | 1.396 · 10−3 | 4.012 · 10−3 | 1.389 · 10−3 | 1.387 · 10−3 | 1.376 · 10−3 | 1.390 · 10−3 | 1.380 · 10−3 | 1.399 · 10−3 | 4.307 · 10−3 | 2.800 · 10−3 | 1.437 · 10−3 |
15M | 1.060 · 10−3 | 1.055 · 10−3 | 1.057 · 10−3 | 3.542 · 10−3 | 1.051 · 10−3 | 1.049 · 10−3 | 1.038 · 10−3 | 1.049 · 10−3 | 1.040 · 10−3 | 1.060 · 10−3 | 3.609 · 10−3 | 2.138 · 10−3 | 1.075 · 10−3 |
18M | 8.08 · 10−4 | 8.05 · 10−4 | 8.05 · 10−4 | 2.846 · 10−3 | 8.03 · 10−4 | 8.02 · 10−4 | 7.95 · 10−4 | 8.01 · 10−4 | 7.93 · 10−4 | 8.09 · 10−4 | 2.851 · 10−3 | 1.580 · 10−3 | 8.03 · 10−4 |
21M | 6.92 · 10−4 | 6.92 · 10−4 | 6.91 · 10−4 | 2.137 · 10−3 | 6.92 · 10−4 | 6.91 · 10−4 | 6.92 · 10−4 | 6.92 · 10−4 | 6.88 · 10−4 | 6.92 · 10−4 | 2.158 · 10−3 | 1.182 · 10−3 | 6.79 · 10−4 |
24M | 7.70 · 10−4 | 7.71 · 10−4 | 7.70 · 10−4 | 1.498 · 10−3 | 7.72 · 10−4 | 7.73 · 10−4 | 7.78 · 10−4 | 7.77 · 10−4 | 7.75 · 10−4 | 7.70 · 10−4 | 1.661 · 10−3 | 1.042 · 10−3 | 7.61 · 10−4 |
27M | 9.35 · 10−4 | 9.36 · 10−4 | 9.35 · 10−4 | 1.128 · 10−3 | 9.37 · 10−4 | 9.39 · 10−4 | 9.43 · 10−4 | 9.43 · 10−4 | 9.41 · 10−4 | 9.35 · 10−4 | 1.539 · 10−3 | 1.193 · 10−3 | 9.40 · 10−4 |
30M | 1.094 · 10−3 | 1.094 · 10−3 | 1.094 · 10−3 | 1.114 · 10−3 | 1.095 · 10−3 | 1.097 · 10−3 | 1.099 · 10−3 | 1.100 · 10−3 | 1.098 · 10−3 | 1.094 · 10−3 | 1.669 · 10−3 | 1.417 · 10−3 | 1.106 · 10−3 |
33M | 1.264 · 10−3 | 1.262 · 10−3 | 1.262 · 10−3 | 1.390 · 10−3 | 1.263 · 10−3 | 1.264 · 10−3 | 1.264 · 10−3 | 1.267 · 10−3 | 1.264 · 10−3 | 1.263 · 10−3 | 1.962 · 10−3 | 1.647 · 10−3 | 1.276 · 10−3 |
36M | 1.434 · 10−3 | 1.431 · 10−3 | 1.431 · 10−3 | 1.795 · 10−3 | 1.432 · 10−3 | 1.432 · 10−3 | 1.430 · 10−3 | 1.434 · 10−3 | 1.429 · 10−3 | 1.433 · 10−3 | 2.332 · 10−3 | 1.901 · 10−3 | 1.441 · 10−3 |
39M | 1.619 · 10−3 | 1.615 · 10−3 | 1.613 · 10−3 | 2.272 · 10−3 | 1.615 · 10−3 | 1.613 · 10−3 | 1.609 · 10−3 | 1.613 · 10−3 | 1.608 · 10−3 | 1.617 · 10−3 | 2.790 · 10−3 | 2.216 · 10−3 | 1.623 · 10−3 |
48M | 1.220 · 10−3 | 1.211 · 10−3 | 1.209 · 10−3 | 3.038 · 10−3 | 1.209 · 10−3 | 1.204 · 10−3 | 1.198 · 10−3 | 1.202 · 10−3 | 1.195 · 10−3 | 1.214 · 10−3 | 3.713 · 10−3 | 2.611 · 10−3 | 1.228 · 10−3 |
60M | 1.559 · 10−3 | 1.575 · 10−3 | 1.576 · 10−3 | 4.157 · 10−3 | 1.580 · 10−3 | 1.589 · 10−3 | 1.611 · 10−3 | 1.592 · 10−3 | 1.600 · 10−3 | 1.569 · 10−3 | 0.005351 | 3.677 · 10−3 | 1.626 · 10−3 |
72M | 2.833 · 10−3 | 2.852 · 10−3 | 2.855 · 10−3 | 5.033 · 10−3 | 2.861 · 10−3 | 2.873 · 10−3 | 2.891 · 10−3 | 2.880 · 10−3 | 2.881 · 10−3 | 2.847 · 10−3 | 0.006927 | 4.676 · 10−3 | 2.864 · 10−3 |
Mean Absolute Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-SLambda | MDNS-Smedia Macro | MDNS-Smacro | |
1M | 1.531 · 10−3 | 1.527 · 10−3 | 1.524 · 10−3 | 9.30 · 10−4 | 1.515 · 10−3 | 1.508 · 10−3 | 1.501 · 10−3 | 1.483 · 10−3 | 1.498 · 10−3 | 1.527 · 10−3 | 2.123 · 10−3 | 1.994 · 10−3 | 1.497 · 10−3 |
3M | 4.53 · 10−4 | 4.55 · 10−4 | 4.58 · 10−4 | 2.865 · 10−3 | 4.55 · 10−4 | 4.58 · 10−4 | 4.63 · 10−4 | 4.59 · 10−4 | 4.63 · 10−4 | 4.57 · 10−4 | 3.118 · 10−3 | 2.175 · 10−3 | 5.29 · 10−4 |
6M | 1.237 · 10−3 | 1.236 · 10−3 | 1.244 · 10−3 | 1.719 · 10−3 | 1.232 · 10−3 | 1.238 · 10−3 | 1.236 · 10−3 | 1.248 · 10−3 | 1.242 · 10−3 | 1.244 · 10−3 | 3.778 · 10−3 | 2.780 · 10−3 | 1.270 · 10−3 |
9M | 1.305 · 10−3 | 1.300 · 10−3 | 1.307 · 10−3 | 2.970 · 10−3 | 1.296 · 10−3 | 1.296 · 10−3 | 1.292 · 10−3 | 1.301 · 10−3 | 1.295 · 10−3 | 1.306 · 10−3 | 3.773 · 10−3 | 2.639 · 10−3 | 1.350 · 10−3 |
12M | 1.039 · 10−3 | 1.036 · 10−3 | 1.043 · 10−3 | 3.056 · 10−3 | 1.031 · 10−3 | 1.033 · 10−3 | 1.024 · 10−3 | 1.033 · 10−3 | 1.022 · 10−3 | 1.043 · 10−3 | 3.338 · 10−3 | 2.169 · 10−3 | 1.078 · 10−3 |
15M | 7.02 · 10−4 | 7.00 · 10−4 | 7.06 · 10−4 | 2.675 · 10−3 | 6.95 · 10−4 | 6.97 · 10−4 | 6.89 · 10−4 | 6.97 · 10−4 | 6.88 · 10−4 | 7.07 · 10−4 | 2.772 · 10−3 | 1.606 · 10−3 | 7.46 · 10−4 |
18M | 5.33 · 10−4 | 5.31 · 10−4 | 5.32 · 10−4 | 2.129 · 10−3 | 5.31 · 10−4 | 5.31 · 10−4 | 5.32 · 10−4 | 5.32 · 10−4 | 5.26 · 10−4 | 5.33 · 10−4 | 2.207 · 10−3 | 1.127 · 10−3 | 5.49 · 10−4 |
21M | 5.31 · 10−4 | 5.33 · 10−4 | 5.31 · 10−4 | 1.608 · 10−3 | 5.33 · 10−4 | 5.34 · 10−4 | 5.35 · 10−4 | 5.36 · 10−4 | 5.32 · 10−4 | 5.32 · 10−4 | 1.652 · 10−3 | 8.34 · 10−4 | 5.20 · 10−4 |
24M | 6.40 · 10−4 | 6.41 · 10−4 | 6.40 · 10−4 | 1.189 · 10−3 | 6.42 · 10−4 | 6.43 · 10−4 | 6.46 · 10−4 | 6.44 · 10−4 | 6.41 · 10−4 | 6.41 · 10−4 | 1.257 · 10−3 | 7.63 · 10−4 | 6.27 · 10−4 |
27M | 7.20 · 10−4 | 7.20 · 10−4 | 7.20 · 10−4 | 9.07 · 10−4 | 7.19 · 10−4 | 7.21 · 10−4 | 7.20 · 10−4 | 7.23 · 10−4 | 7.20 · 10−4 | 7.20 · 10−4 | 1.160 · 10−3 | 8.93 · 10−4 | 7.13 · 10−4 |
30M | 7.48 · 10−4 | 7.48 · 10−4 | 7.49 · 10−4 | 8.26 · 10−4 | 7.45 · 10−4 | 7.47 · 10−4 | 7.45 · 10−4 | 7.47 · 10−4 | 7.46 · 10−4 | 7.49 · 10−4 | 1.296 · 10−3 | 1.068 · 10−3 | 7.49 · 10−4 |
33M | 7.43 · 10−4 | 7.42 · 10−4 | 7.45 · 10−4 | 9.74 · 10−4 | 7.39 · 10−4 | 7.40 · 10−4 | 7.37 · 10−4 | 7.40 · 10−4 | 7.37 · 10−4 | 7.46 · 10−4 | 1.480 · 10−3 | 1.202 · 10−3 | 7.53 · 10−4 |
36M | 7.56 · 10−4 | 7.56 · 10−4 | 7.61 · 10−4 | 1.243 · 10−3 | 7.53 · 10−4 | 7.53 · 10−4 | 7.50 · 10−4 | 7.53 · 10−4 | 7.49 · 10−4 | 7.61 · 10−4 | 1.723 · 10−3 | 1.350 · 10−3 | 7.77 · 10−4 |
39M | 7.81 · 10−4 | 7.79 · 10−4 | 7.85 · 10−4 | 1.562 · 10−3 | 7.77 · 10−4 | 7.77 · 10−4 | 7.73 · 10−4 | 7.76 · 10−4 | 7.71 · 10−4 | 7.85 · 10−4 | 2.040 · 10−3 | 1.508 · 10−3 | 8.05 · 10−4 |
48M | 5.72 · 10−4 | 5.72 · 10−4 | 5.78 · 10−4 | 2.200 · 10−3 | 5.72 · 10−4 | 5.75 · 10−4 | 5.73 · 10−4 | 5.75 · 10−4 | 5.64 · 10−4 | 5.76 · 10−4 | 2.855 · 10−3 | 1.679 · 10−3 | 5.95 · 10−4 |
60M | 7.99 · 10−4 | 8.08 · 10−4 | 8.04 · 10−4 | 2.934 · 10−3 | 8.11 · 10−4 | 8.16 · 10−4 | 8.16 · 10−4 | 8.18 · 10−4 | 8.11 · 10−4 | 8.03 · 10−4 | 3.919 · 10−3 | 2.106 · 10−3 | 7.39 · 10−4 |
72M | 1.524 · 10−3 | 1.529 · 10−3 | 1.525 · 10−3 | 3.615 · 10−3 | 1.526 · 10−3 | 1.530 · 10−3 | 1.527 · 10−3 | 1.534 · 10−3 | 1.528 · 10−3 | 1.524 · 10−3 | 4.866 · 10−3 | 2.419 · 10−3 | 1.448 · 10−3 |
Mean Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | −3.939 · 10−3 | −2.799 · 10−3 | −2.448 · 10−3 | −2.820 · 10−3 | 2.611 · 10−3 | 1.749 · 10−3 | −1.915 · 10−3 | 2.165 · 10−3 | −2.06 · 10−4 | −3.751 · 10−3 | 2.248 · 10−3 | −4.37 · 10−4 | 1.6458 · 10−2 |
3M | −6.278 · 10−3 | −5.204 · 10−3 | −4.893 · 10−3 | 2.749 · 10−3 | −2.8 · 10−5 | −8.02 · 10−4 | −4.158 · 10−3 | −1.366 · 10−3 | −2.593 · 10−3 | −6.113 · 10−3 | −4.07 · 10−4 | −8.39 · 10−4 | 2.2750 · 10−2 |
6M | −7.760 · 10−3 | −6.778 · 10−3 | −6.514 · 10−3 | −5.651 · 10−3 | −1.947 · 10−3 | −2.616 · 10−3 | −5.569 · 10−3 | −3.678 · 10−3 | −4.194 · 10−3 | −7.622 · 10−3 | −2.328 · 10−3 | −7.621 · 10−3 | 2.8095 · 10−2 |
9M | −7.349 · 10−3 | −6.450 · 10−3 | −6.222 · 10−3 | −9.367 · 10−3 | −1.946 · 10−3 | −2.535 · 10−3 | −5.145 · 10−3 | −3.820 · 10−3 | −3.933 · 10−3 | −7.229 · 10−3 | −2.313 · 10−3 | −9.697 · 10−3 | 3.0831 · 10−2 |
12M | −6.708 · 10−3 | −5.885 · 10−3 | −5.684 · 10−3 | −1.0598 · 10−2 | −1.684 · 10−3 | −2.212 · 10−3 | −4.528 · 10−3 | −3.535 · 10−3 | −3.455 · 10−3 | −6.602 · 10−3 | −2.028 · 10−3 | −1.0036 · 10−2 | 3.4132 · 10−2 |
15M | −5.828 · 10−3 | −5.072 · 10−3 | −4.893 · 10−3 | −1.0329 · 10−2 | −1.151 · 10−3 | −1.629 · 10−3 | −3.693 · 10−3 | −2.862 · 10−3 | −2.740 · 10−3 | −5.732 · 10−3 | −1.467 · 10−3 | −9.230 · 10−3 | 3.6183 · 10−2 |
18M | −4.868 · 10−3 | −4.172 · 10−3 | −4.011 · 10−3 | −9.223 · 10−3 | −5.04 · 10−4 | −9.43 · 10−4 | −2.789 · 10−3 | −1.996 · 10−3 | −1.939 · 10−3 | −4.781 · 10−3 | −7.94 · 10−4 | −7.769 · 10−3 | 3.6732 · 10−2 |
21M | −3.849 · 10−3 | −3.207 · 10−3 | −3.061 · 10−3 | −7.587 · 10−3 | 2.33 · 10−4 | −1.73 · 10−4 | −1.830 · 10−3 | −9.87 · 10−4 | −1.069 · 10−3 | −3.768 · 10−3 | −3.0 · 10−5 | −5.881 · 10−3 | 3.6674 · 10−2 |
24M | −2.871 · 10−3 | −2.277 · 10−3 | −2.143 · 10−3 | −5.702 · 10−3 | 9.58 · 10−4 | 5.80 · 10−4 | −9.13 · 10−4 | 4.2 · 10−5 | −2.28 · 10−4 | −2.795 · 10−3 | 7.20 · 10−4 | −3.808 · 10−3 | 3.5870 · 10−2 |
27M | −2.602 · 10−3 | −2.050 · 10−3 | −1.926 · 10−3 | −4.355 · 10−3 | 1.003 · 10−3 | 6.48 · 10−4 | −7.00 · 10−4 | 4.06 · 10−4 | −8.1 · 10−5 | −2.529 · 10−3 | 7.85 · 10−4 | −2.315 · 10−3 | 3.5338 · 10−2 |
30M | −2.201 · 10−3 | −1.688 · 10−3 | −1.572 · 10−3 | −2.787 · 10−3 | 1.203 · 10−3 | 8.68 · 10−4 | −3.53 · 10−4 | 9.31 · 10−4 | 2.09 · 10−4 | −2.132 · 10−3 | 1.004 · 10−3 | −6.32 · 10−4 | 3.3997 · 10−2 |
33M | −1.757 · 10−3 | −1.278 · 10−3 | −1.169 · 10−3 | −1.142 · 10−3 | 1.468 · 10−3 | 1.152 · 10−3 | 4.3 · 10−5 | 1.518 · 10−3 | 5.55 · 10−4 | −1.691 · 10−3 | 1.284 · 10−3 | 1.109 · 10−3 | 3.2926 · 10−2 |
36M | −1.525 · 10−3 | −1.076 · 10−3 | −9.74 · 10−4 | 2.89 · 10−4 | 1.541 · 10−3 | 1.242 · 10−3 | 2.31 · 10−4 | 1.905 · 10−3 | 7.00 · 10−4 | −1.462 · 10−3 | 1.370 · 10−3 | 2.619 · 10−3 | 3.1747 · 10−2 |
39M | −1.622 · 10−3 | −1.200 · 10−3 | −1.104 · 10−3 | 1.363 · 10−3 | 1.302 · 10−3 | 1.017 · 10−3 | 9.6 · 10−5 | 1.968 · 10−3 | 5.26 · 10−4 | −1.562 · 10−3 | 1.142 · 10−3 | 3.759 · 10−3 | 3.1183 · 10−2 |
48M | −1.778 · 10−3 | −1.421 · 10−3 | −1.341 · 10−3 | 4.428 · 10−3 | 8.05 · 10−4 | 5.58 · 10−4 | −1.50 · 10−4 | 2.287 · 10−3 | 1.91 · 10−4 | −1.724 · 10−3 | 6.64 · 10−4 | 6.975 · 10−3 | 2.8862 · 10−2 |
60M | −3.046 · 10−3 | −2.750 · 10−3 | −2.685 · 10−3 | 6.641 · 10−3 | −7.77 · 10−4 | −9.87 · 10−4 | −1.494 · 10−3 | 1.575 · 10−3 | −1.233 · 10−3 | −2.999 · 10−3 | −9.09 · 10−4 | 9.320 · 10−3 | 2.6963 · 10−2 |
72M | −4.013 · 10−3 | −3.759 · 10−3 | −3.706 · 10−3 | 8.321 · 10−3 | −1.959 · 10−3 | −2.139 · 10−3 | −2.507 · 10−3 | 1.054 · 10−3 | −2.299 · 10−3 | −3.972 · 10−3 | −2.091 · 10−3 | 1.1090 · 10−2 | 2.5544 · 10−2 |
Root Mean Squared Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 7.519 · 10−3 | 5.967 · 10−3 | 5.499 · 10−3 | 4.683 · 10−3 | 2.618 · 10−3 | 1.868 · 10−3 | 4.687 · 10−3 | 2.224 · 10−3 | 2.607 · 10−3 | 7.279 · 10−3 | 2.257 · 10−3 | 2.692 · 10−3 | 1.6458 · 10−2 |
3M | 8.917 · 10−3 | 7.403 · 10−3 | 6.960 · 10−3 | 5.127 · 10−3 | 1.20 · 10−4 | 1.199 · 10−3 | 5.911 · 10−3 | 1.694 · 10−3 | 3.725 · 10−3 | 8.690 · 10−3 | 6.30 · 10−4 | 2.873 · 10−3 | 2.2750 · 10−2 |
6M | 9.724 · 10−3 | 8.356 · 10−3 | 7.981 · 10−3 | 6.918 · 10−3 | 1.952 · 10−3 | 2.745 · 10−3 | 6.706 · 10−3 | 3.789 · 10−3 | 4.834 · 10−3 | 9.529 · 10−3 | 2.377 · 10−3 | 7.975 · 10−3 | 2.8095 · 10−2 |
9M | 9.243 · 10−3 | 7.991 · 10−3 | 7.664 · 10−3 | 1.0098 · 10−2 | 1.973 · 10−3 | 2.703 · 10−3 | 6.224 · 10−3 | 3.936 · 10−3 | 4.572 · 10−3 | 9.071 · 10−3 | 2.399 · 10−3 | 9.929 · 10−3 | 3.0831 · 10−2 |
12M | 8.546 · 10−3 | 7.395 · 10−3 | 7.107 · 10−3 | 1.1162 · 10−2 | 1.730 · 10−3 | 2.405 · 10−3 | 5.555 · 10−3 | 3.647 · 10−3 | 4.087 · 10−3 | 8.392 · 10−3 | 2.140 · 10−3 | 1.0209 · 10−2 | 3.4132 · 10−2 |
15M | 7.622 · 10−3 | 6.562 · 10−3 | 6.304 · 10−3 | 1.0809 · 10−2 | 1.202 · 10−3 | 1.833 · 10−3 | 4.677 · 10−3 | 2.958 · 10−3 | 3.361 · 10−3 | 7.483 · 10−3 | 1.592 · 10−3 | 9.362 · 10−3 | 3.6183 · 10−2 |
18M | 6.620 · 10−3 | 5.641 · 10−3 | 5.408 · 10−3 | 9.650 · 10−3 | 5.46 · 10−4 | 1.151 · 10−3 | 3.731 · 10−3 | 2.065 · 10−3 | 2.545 · 10−3 | 6.492 · 10−3 | 9.20 · 10−4 | 7.865 · 10−3 | 3.6732 · 10−2 |
21M | 5.616 · 10−3 | 4.712 · 10−3 | 4.501 · 10−3 | 7.999 · 10−3 | 2.43 · 10−4 | 5.10 · 10−4 | 2.799 · 10−3 | 1.039 · 10−3 | 1.736 · 10−3 | 5.498 · 10−3 | 3.14 · 10−4 | 5.954 · 10−3 | 3.6674 · 10−2 |
24M | 4.755 · 10−3 | 3.927 · 10−3 | 3.737 · 10−3 | 6.161 · 10−3 | 9.58 · 10−4 | 6.89 · 10−4 | 2.067 · 10−3 | 1.99 · 10−4 | 1.194 · 10−3 | 4.647 · 10−3 | 7.55 · 10−4 | 3.877 · 10−3 | 3.5870 · 10−2 |
27M | 4.230 · 10−3 | 3.459 · 10−3 | 3.285 · 10−3 | 4.782 · 10−3 | 1.037 · 10−3 | 6.54 · 10−4 | 1.596 · 10−3 | 4.19 · 10−4 | 8.14 · 10−4 | 4.129 · 10−3 | 7.86 · 10−4 | 2.346 · 10−3 | 3.5338 · 10−2 |
30M | 3.855 · 10−3 | 3.144 · 10−3 | 2.987 · 10−3 | 3.375 · 10−3 | 1.230 · 10−3 | 8.71 · 10−4 | 1.345 · 10−3 | 9.40 · 10−4 | 7.52 · 10−4 | 3.762 · 10−3 | 1.004 · 10−3 | 7.04 · 10−4 | 3.3997 · 10−2 |
33M | 3.422 · 10−3 | 2.770 · 10−3 | 2.629 · 10−3 | 2.106 · 10−3 | 1.505 · 10−3 | 1.152 · 10−3 | 1.102 · 10−3 | 1.536 · 10−3 | 7.95 · 10−4 | 3.336 · 10−3 | 1.290 · 10−3 | 1.124 · 10−3 | 3.2926 · 10−2 |
36M | 3.213 · 10−3 | 2.611 · 10−3 | 2.483 · 10−3 | 1.777 · 10−3 | 1.570 · 10−3 | 1.242 · 10−3 | 1.050 · 10−3 | 1.919 · 10−3 | 8.77 · 10−4 | 3.134 · 10−3 | 1.374 · 10−3 | 2.624 · 10−3 | 3.1747 · 10−2 |
39M | 3.082 · 10−3 | 2.505 · 10−3 | 2.383 · 10−3 | 2.128 · 10−3 | 1.357 · 10−3 | 1.023 · 10−3 | 8.51 · 10−4 | 1.995 · 10−3 | 6.51 · 10−4 | 3.006 · 10−3 | 1.156 · 10−3 | 3.760 · 10−3 | 3.1183 · 10−2 |
48M | 2.947 · 10−3 | 2.449 · 10−3 | 2.346 · 10−3 | 4.707 · 10−3 | 8.78 · 10−4 | 5.70 · 10−4 | 6.66 · 10−4 | 2.312 · 10−3 | 3.25 · 10−4 | 2.881 · 10−3 | 6.84 · 10−4 | 6.975 · 10−3 | 2.8862 · 10−2 |
60M | 3.676 · 10−3 | 3.269 · 10−3 | 3.185 · 10−3 | 6.820 · 10−3 | 8.54 · 10−4 | 9.99 · 10−4 | 1.556 · 10−3 | 1.620 · 10−3 | 1.238 · 10−3 | 3.619 · 10−3 | 9.26 · 10−4 | 9.320 · 10−3 | 2.6963 · 10−2 |
72M | 4.366 · 10−3 | 4.038 · 10−3 | 3.972 · 10−3 | 8.438 · 10−3 | 2.020 · 10−3 | 2.163 · 10−3 | 2.512 · 10−3 | 1.181 · 10−3 | 2.302 · 10−3 | 4.318 · 10−3 | 2.116 · 10−3 | 1.1091 · 10−2 | 2.5544 · 10−2 |
Mean Absolute Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 6.405 · 10−3 | 5.269 · 10−3 | 4.924 · 10−3 | 3.739 · 10−3 | 2.611 · 10−3 | 1.749 · 10−3 | 4.278 · 10−3 | 2.165 · 10−3 | 2.599 · 10−3 | 6.237 · 10−3 | 2.248 · 10−3 | 2.656 · 10−3 | 1.6458 · 10−2 |
3M | 6.332 · 10−3 | 5.266 · 10−3 | 4.951 · 10−3 | 4.328 · 10−3 | 1.16 · 10−4 | 8.91 · 10−4 | 4.201 · 10−3 | 1.366 · 10−3 | 2.675 · 10−3 | 6.177 · 10−3 | 4.81 · 10−4 | 2.748 · 10−3 | 2.2750 · 10−2 |
6M | 7.760 · 10−3 | 6.778 · 10−3 | 6.514 · 10−3 | 5.651 · 10−3 | 1.947 · 10−3 | 2.616 · 10−3 | 5.569 · 10−3 | 3.678 · 10−3 | 4.194 · 10−3 | 7.622 · 10−3 | 2.328 · 10−3 | 7.621 · 10−3 | 2.8095 · 10−2 |
9M | 7.349 · 10−3 | 6.450 · 10−3 | 6.222 · 10−3 | 9.367 · 10−3 | 1.946 · 10−3 | 2.535 · 10−3 | 5.145 · 10−3 | 3.820 · 10−3 | 3.933 · 10−3 | 7.229 · 10−3 | 2.313 · 10−3 | 9.697 · 10−3 | 3.0831 · 10−2 |
12M | 6.708 · 10−3 | 5.885 · 10−3 | 5.684 · 10−3 | 1.0598 · 10−2 | 1.684 · 10−3 | 2.212 · 10−3 | 4.528 · 10−3 | 3.535 · 10−3 | 3.455 · 10−3 | 6.602 · 10−3 | 2.028 · 10−3 | 1.0036 · 10−2 | 3.4132 · 10−2 |
15M | 5.828 · 10−3 | 5.072 · 10−3 | 4.893 · 10−3 | 1.0329 · 10−2 | 1.151 · 10−3 | 1.629 · 10−3 | 3.693 · 10−3 | 2.862 · 10−3 | 2.740 · 10−3 | 5.732 · 10−3 | 1.467 · 10−3 | 9.230 · 10−3 | 3.6183 · 10−2 |
18M | 4.868 · 10−3 | 4.172 · 10−3 | 4.011 · 10−3 | 9.223 · 10−3 | 5.04 · 10−4 | 9.43 · 10−4 | 2.789 · 10−3 | 1.996 · 10−3 | 1.939 · 10−3 | 4.781 · 10−3 | 7.94 · 10−4 | 7.769 · 10−3 | 3.6732 · 10−2 |
21M | 4.089 · 10−3 | 3.452 · 10−3 | 3.300 · 10−3 | 7.587 · 10−3 | 2.33 · 10−4 | 4.80 · 10−4 | 2.118 · 10−3 | 9.87 · 10−4 | 1.368 · 10−3 | 4.004 · 10−3 | 3.12 · 10−4 | 5.881 · 10−3 | 3.6674 · 10−2 |
24M | 3.790 · 10−3 | 3.199 · 10−3 | 3.062 · 10−3 | 5.702 · 10−3 | 9.58 · 10−4 | 5.80 · 10−4 | 1.855 · 10−3 | 1.95 · 10−4 | 1.172 · 10−3 | 3.712 · 10−3 | 7.20 · 10−4 | 3.808 · 10−3 | 3.5870 · 10−2 |
27M | 3.335 · 10−3 | 2.786 · 10−3 | 2.662 · 10−3 | 4.355 · 10−3 | 1.003 · 10−3 | 6.48 · 10−4 | 1.435 · 10−3 | 4.06 · 10−4 | 8.10 · 10−4 | 3.264 · 10−3 | 7.85 · 10−4 | 2.315 · 10−3 | 3.5338 · 10−2 |
30M | 3.165 · 10−3 | 2.653 · 10−3 | 2.540 · 10−3 | 2.787 · 10−3 | 1.203 · 10−3 | 8.68 · 10−4 | 1.298 · 10−3 | 9.31 · 10−4 | 7.23 · 10−4 | 3.099 · 10−3 | 1.004 · 10−3 | 6.32 · 10−4 | 3.3997 · 10−2 |
33M | 2.936 · 10−3 | 2.458 · 10−3 | 2.354 · 10−3 | 1.770 · 10−3 | 1.468 · 10−3 | 1.152 · 10−3 | 1.102 · 10−3 | 1.518 · 10−3 | 5.69 · 10−4 | 2.876 · 10−3 | 1.284 · 10−3 | 1.109 · 10−3 | 3.2926 · 10−2 |
36M | 2.828 · 10−3 | 2.379 · 10−3 | 2.284 · 10−3 | 1.754 · 10−3 | 1.541 · 10−3 | 1.242 · 10−3 | 1.024 · 10−3 | 1.905 · 10−3 | 7.00 · 10−4 | 2.772 · 10−3 | 1.370 · 10−3 | 2.619 · 10−3 | 3.1747 · 10−2 |
39M | 2.621 · 10−3 | 2.199 · 10−3 | 2.112 · 10−3 | 1.634 · 10−3 | 1.302 · 10−3 | 1.017 · 10−3 | 8.45 · 10−4 | 1.968 · 10−3 | 5.26 · 10−4 | 2.569 · 10−3 | 1.142 · 10−3 | 3.759 · 10−3 | 3.1183 · 10−2 |
48M | 2.350 · 10−3 | 1.995 · 10−3 | 1.925 · 10−3 | 4.428 · 10−3 | 8.05 · 10−4 | 5.58 · 10−4 | 6.49 · 10−4 | 2.287 · 10−3 | 2.63 · 10−4 | 2.308 · 10−3 | 6.64 · 10−4 | 6.975 · 10−3 | 2.8862 · 10−2 |
60M | 3.046 · 10−3 | 2.750 · 10−3 | 2.685 · 10−3 | 6.641 · 10−3 | 7.77 · 10−4 | 9.87 · 10−4 | 1.494 · 10−3 | 1.575 · 10−3 | 1.233 · 10−3 | 2.999 · 10−3 | 9.09 · 10−4 | 9.320 · 10−3 | 2.6963 · 10−2 |
72M | 4.013 · 10−3 | 3.759 · 10−3 | 3.706 · 10−3 | 8.321 · 10−3 | 1.959 · 10−3 | 2.139 · 10−3 | 2.507 · 10−3 | 1.054 · 10−3 | 2.299 · 10−3 | 3.972 · 10−3 | 2.091 · 10−3 | 1.1090 · 10−2 | 2.5544 · 10−2 |
Mean Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | −1.3453 · 10−2 | −2.2373 · 10−2 | −3.6912 · 10−2 | −2.6520 · 10−2 | −9.96 · 10−4 | −2.0082 · 10−2 | −4.663 · 10−3 | −2.4004 · 10−2 | −2.470 · 10−3 | −1.3076 · 10−2 | −3.8745 · 10−2 | −1.4409 · 10−2 | −1.000 79 · 10−1 |
3M | −1.6449 · 10−2 | −2.4534 · 10−2 | −3.7980 · 10−2 | −2.9988 · 10−2 | −4.395 · 10−3 | −2.2240 · 10−2 | −8.359 · 10−3 | −2.6055 · 10−2 | −6.109 · 10−3 | −1.6015 · 10−2 | −4.0246 · 10−2 | −1.7478 · 10−2 | −9.7008 · 10−2 |
6M | −1.9861 · 10−2 | −2.6869 · 10−2 | −3.8882 · 10−2 | −2.8273 · 10−2 | −8.589 · 10−3 | −2.4817 · 10−2 | −1.2911 · 10−2 | −2.8480 · 10−2 | −1.0601 · 10−2 | −1.9368 · 10−2 | −4.1775 · 10−2 | −2.1046 · 10−2 | −9.1441 · 10−2 |
9M | −2.1746 · 10−2 | −2.7854 · 10−2 | −3.8640 · 10−2 | −2.8314 · 10−2 | −1.1388 · 10−2 | −2.6248 · 10−2 | −1.5984 · 10−2 | −2.9769 · 10−2 | −1.3637 · 10−2 | −2.1218 · 10−2 | −4.2204 · 10−2 | −2.3215 · 10−2 | −8.5034 · 10−2 |
12M | −2.2659 · 10−2 | −2.8011 · 10−2 | −3.7745 · 10−2 | −2.8588 · 10−2 | −1.3284 · 10−2 | −2.6980 · 10−2 | −1.8089 · 10−2 | −3.0369 · 10−2 | −1.5721 · 10−2 | −2.2113 · 10−2 | −4.1998 · 10−2 | −2.4503 · 10−2 | −7.9434 · 10−2 |
15M | −2.2860 · 10−2 | −2.7576 · 10−2 | −3.6402 · 10−2 | −2.8497 · 10−2 | −1.4491 · 10−2 | −2.7195 · 10−2 | −1.9455 · 10−2 | −3.0462 · 10−2 | −1.7077 · 10−2 | −2.2309 · 10−2 | −4.1342 · 10−2 | −2.5134 · 10−2 | −7.4483 · 10−2 |
18M | −2.2669 · 10−2 | −2.6845 · 10−2 | −3.4888 · 10−2 | −2.8096 · 10−2 | −1.5298 · 10−2 | −2.7152 · 10−2 | −2.0380 · 10−2 | −3.0304 · 10−2 | −1.8002 · 10−2 | −2.2122 · 10−2 | −4.0497 · 10−2 | −2.5398 · 10−2 | −7.0357 · 10−2 |
21M | −2.2139 · 10−2 | −2.5856 · 10−2 | −3.3219 · 10−2 | −2.7353 · 10−2 | −1.5738 · 10−2 | −2.6860 · 10−2 | −2.0906 · 10−2 | −2.9906 · 10−2 | −1.8534 · 10−2 | −2.1602 · 10−2 | −3.9468 · 10−2 | −2.5331 · 10−2 | −6.6635 · 10−2 |
24M | −2.1514 · 10−2 | −2.4839 · 10−2 | −3.1610 · 10−2 | −2.6491 · 10−2 | −1.6040 · 10−2 | −2.6531 · 10−2 | −2.1272 · 10−2 | −2.9478 · 10−2 | −1.8910 · 10−2 | −2.0992 · 10−2 | −3.8465 · 10−2 | −2.5163 · 10−2 | −6.3537 · 10−2 |
27M | −2.0863 · 10−2 | −2.3851 · 10−2 | −3.0104 · 10−2 | −2.5576 · 10−2 | −1.6267 · 10−2 | −2.6209 · 10−2 | −2.1544 · 10−2 | −2.9064 · 10−2 | −1.9194 · 10−2 | −2.0359 · 10−2 | −3.7530 · 10−2 | −2.4955 · 10−2 | −6.0774 · 10−2 |
30M | −2.0234 · 10−2 | −2.2931 · 10−2 | −2.8729 · 10−2 | −2.4662 · 10−2 | −1.6462 · 10−2 | −2.5925 · 10−2 | −2.1770 · 10−2 | −2.8696 · 10−2 | −1.9434 · 10−2 | −1.9749 · 10−2 | −3.6687 · 10−2 | −2.4748 · 10−2 | −5.9177 · 10−2 |
33M | −1.9472 · 10−2 | −2.1916 · 10−2 | −2.7313 · 10−2 | −2.3603 · 10−2 | −1.6469 · 10−2 | −2.5514 · 10−2 | −2.1796 · 10−2 | −2.8206 · 10−2 | −1.9475 · 10−2 | −1.9006 · 10−2 | −3.5766 · 10−2 | −2.4385 · 10−2 | −5.8134 · 10−2 |
36M | −1.8792 · 10−2 | −2.1016 · 10−2 | −2.6059 · 10−2 | −2.2620 · 10−2 | −1.6503 · 10−2 | −2.5180 · 10−2 | −2.1842 · 10−2 | −2.7800 · 10−2 | −1.9537 · 10−2 | −1.8347 · 10−2 | −3.4969 · 10−2 | −2.4080 · 10−2 | −5.7549 · 10−2 |
39M | −1.8252 · 10−2 | −2.0283 · 10−2 | −2.5011 · 10−2 | −2.1778 · 10−2 | −1.6625 · 10−2 | −2.4977 · 10−2 | −2.1970 · 10−2 | −2.7529 · 10−2 | −1.9680 · 10−2 | −1.7826 · 10−2 | −3.4344 · 10−2 | −2.3891 · 10−2 | −5.6574 · 10−2 |
48M | −1.7212 · 10−2 | −1.8789 · 10−2 | −2.2760 · 10−2 | −1.9873 · 10−2 | −1.7283 · 10−2 | −2.4861 · 10−2 | −2.2622 · 10−2 | −2.7241 · 10−2 | −2.0376 · 10−2 | −1.6843 · 10−2 | −3.3176 · 10−2 | −2.3762 · 10−2 | −5.4747 · 10−2 |
60M | −1.6479 · 10−2 | −1.7644 · 10−2 | −2.0911 · 10−2 | −1.8151 · 10−2 | −1.8262 · 10−2 | −2.5127 · 10−2 | −2.3569 · 10−2 | −2.7330 · 10−2 | −2.1372 · 10−2 | −1.6171 · 10−2 | −3.2414 · 10−2 | −2.3960 · 10−2 | −5.3842 · 10−2 |
72M | −1.5869 · 10−2 | −1.6755 · 10−2 | −1.9534 · 10−2 | −1.6758 · 10−2 | −1.8905 · 10−2 | −2.5281 · 10−2 | −2.4178 · 10−2 | −2.7353 · 10−2 | −2.2019 · 10−2 | −1.5611 · 10−2 | −3.1833 · 10−2 | −2.4039 · 10−2 | −5.3564 · 10−2 |
Root Mean Squared Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 1.9581 · 10−2 | 2.6511 · 10−2 | 4.4188 · 10−2 | 3.2294 · 10−2 | 6.533 · 10−3 | 2.5864 · 10−2 | 1.0366 · 10−2 | 3.0501 · 10−2 | 9.044 · 10−3 | 1.9233 · 10−2 | 4.7274 · 10−2 | 2.0489 · 10−2 | 1.123 25 · 10−1 |
3M | 2.3064 · 10−2 | 2.9457 · 10−2 | 4.5828 · 10−2 | 3.5435 · 10−2 | 9.280 · 10−3 | 2.8638 · 10−2 | 1.4229 · 10−2 | 3.3147 · 10−2 | 1.2405 · 10−2 | 2.2658 · 10−2 | 4.9301 · 10−2 | 2.4097 · 10−2 | 1.097 94 · 10−1 |
6M | 2.6448 · 10−2 | 3.2168 · 10−2 | 4.6784 · 10−2 | 3.4985 · 10−2 | 1.2965 · 10−2 | 3.1297 · 10−2 | 1.8585 · 10−2 | 3.5626 · 10−2 | 1.6405 · 10−2 | 2.5979 · 10−2 | 5.0765 · 10−2 | 2.7576 · 10−2 | 1.051 69 · 10−1 |
9M | 2.7769 · 10−2 | 3.2904 · 10−2 | 4.6004 · 10−2 | 3.4793 · 10−2 | 1.5130 · 10−2 | 3.2216 · 10−2 | 2.1081 · 10−2 | 3.6376 · 10−2 | 1.8719 · 10−2 | 2.7260 · 10−2 | 5.0565 · 10−2 | 2.9156 · 10−2 | 9.9725 · 10−2 |
12M | 2.8114 · 10−2 | 3.2697 · 10−2 | 4.4496 · 10−2 | 3.4426 · 10−2 | 1.6524 · 10−2 | 3.2397 · 10−2 | 2.2644 · 10−2 | 3.6399 · 10−2 | 2.0180 · 10−2 | 2.7585 · 10−2 | 4.9695 · 10−2 | 2.9878 · 10−2 | 9.5030 · 10−2 |
15M | 2.7858 · 10−2 | 3.1937 · 10−2 | 4.2618 · 10−2 | 3.3729 · 10−2 | 1.7394 · 10−2 | 3.2171 · 10−2 | 2.3626 · 10−2 | 3.6022 · 10−2 | 2.1107 · 10−2 | 2.7321 · 10−2 | 4.8478 · 10−2 | 3.0062 · 10−2 | 9.0733 · 10−2 |
18M | 2.7320 · 10−2 | 3.0957 · 10−2 | 4.0674 · 10−2 | 3.2849 · 10−2 | 1.7991 · 10−2 | 3.1806 · 10−2 | 2.4300 · 10−2 | 3.5515 · 10−2 | 2.1751 · 10−2 | 2.6785 · 10−2 | 4.7191 · 10−2 | 2.9996 · 10−2 | 8.7087 · 10−2 |
21M | 2.6431 · 10−2 | 2.9686 · 10−2 | 3.8565 · 10−2 | 3.1647 · 10−2 | 1.8220 · 10−2 | 3.1186 · 10−2 | 2.4573 · 10−2 | 3.4763 · 10−2 | 2.2013 · 10−2 | 2.5905 · 10−2 | 4.5724 · 10−2 | 2.9597 · 10−2 | 8.4014 · 10−2 |
24M | 2.5434 · 10−2 | 2.8362 · 10−2 | 3.6511 · 10−2 | 3.0348 · 10−2 | 1.8297 · 10−2 | 3.0524 · 10−2 | 2.4666 · 10−2 | 3.3979 · 10−2 | 2.2102 · 10−2 | 2.4922 · 10−2 | 4.4288 · 10−2 | 2.9093 · 10−2 | 8.1647 · 10−2 |
27M | 2.4610 · 10−2 | 2.7235 · 10−2 | 3.4750 · 10−2 | 2.9205 · 10−2 | 1.8473 · 10−2 | 3.0055 · 10−2 | 2.4849 · 10−2 | 3.3397 · 10−2 | 2.2293 · 10−2 | 2.4116 · 10−2 | 4.3111 · 10−2 | 2.8736 · 10−2 | 7.9517 · 10−2 |
30M | 2.3837 · 10−2 | 2.6202 · 10−2 | 3.3165 · 10−2 | 2.8116 · 10−2 | 1.8632 · 10−2 | 2.9660 · 10−2 | 2.5009 · 10−2 | 3.2900 · 10−2 | 2.2460 · 10−2 | 2.3362 · 10−2 | 4.2073 · 10−2 | 2.8409 · 10−2 | 7.8395 · 10−2 |
33M | 2.2960 · 10−2 | 2.5099 · 10−2 | 3.1570 · 10−2 | 2.6925 · 10−2 | 1.8632 · 10−2 | 2.9164 · 10−2 | 2.5003 · 10−2 | 3.2307 · 10−2 | 2.2469 · 10−2 | 2.2504 · 10−2 | 4.0987 · 10−2 | 2.7953 · 10−2 | 7.7560 · 10−2 |
36M | 2.2183 · 10−2 | 2.4122 · 10−2 | 3.0161 · 10−2 | 2.5839 · 10−2 | 1.8663 · 10−2 | 2.8761 · 10−2 | 2.5018 · 10−2 | 3.1817 · 10−2 | 2.2498 · 10−2 | 2.1748 · 10−2 | 4.0052 · 10−2 | 2.7573 · 10−2 | 7.7133 · 10−2 |
39M | 2.1601 · 10−2 | 2.3362 · 10−2 | 2.9019 · 10−2 | 2.4955 · 10−2 | 1.8821 · 10−2 | 2.8539 · 10−2 | 2.5160 · 10−2 | 3.1515 · 10−2 | 2.2656 · 10−2 | 2.1187 · 10−2 | 3.9347 · 10−2 | 2.7359 · 10−2 | 7.6395 · 10−2 |
48M | 2.0252 · 10−2 | 2.1616 · 10−2 | 2.6346 · 10−2 | 2.2804 · 10−2 | 1.9411 · 10−2 | 2.8208 · 10−2 | 2.5680 · 10−2 | 3.0976 · 10−2 | 2.3218 · 10−2 | 1.9891 · 10−2 | 3.7805 · 10−2 | 2.6992 · 10−2 | 7.4974 · 10−2 |
60M | 1.9401 · 10−2 | 2.0395 · 10−2 | 2.4273 · 10−2 | 2.1064 · 10−2 | 2.0469 · 10−2 | 2.8440 · 10−2 | 2.6659 · 10−2 | 3.1004 · 10−2 | 2.4244 · 10−2 | 1.9102 · 10−2 | 3.6869 · 10−2 | 2.7133 · 10−2 | 7.4274 · 10−2 |
72M | 1.8759 · 10−2 | 1.9504 · 10−2 | 2.2791 · 10−2 | 1.9744 · 10−2 | 2.1220 · 10−2 | 2.8624 · 10−2 | 2.7340 · 10−2 | 3.1037 · 10−2 | 2.4963 · 10−2 | 1.8508 · 10−2 | 3.6218 · 10−2 | 2.7225 · 10−2 | 7.3873 · 10−2 |
Mean Absolute Error | |||||||||||||
MDNS | MDNS-M | MDNS-P | MDNS-λ | MDNS-Macro | MDNS-MMacro | MDNS-PMacro | MDNS-MMacro End | MDNS-PMacro End | MDNS-S | MDNS-Smedia Macro | MDNS-Smacro | RW | |
1M | 1.4231 · 10−2 | 2.2373 · 10−2 | 3.6912 · 10−2 | 2.6576 · 10−2 | 5.275 · 10−3 | 2.0122 · 10−2 | 9.031 · 10−3 | 9.031 · 10−3 | 7.775 · 10−3 | 1.3912 · 10−2 | 3.8745 · 10−2 | 1.4478 · 10−2 | 1.000 79 · 10−1 |
3M | 1.7324 · 10−2 | 2.4626 · 10−2 | 3.8074 · 10−2 | 2.9988 · 10−2 | 7.186 · 10−3 | 2.2531 · 10−2 | 1.2344 · 10−2 | 1.2344 · 10−2 | 1.0843 · 10−2 | 1.6921 · 10−2 | 4.0351 · 10−2 | 1.7939 · 10−2 | 9.7008 · 10−2 |
6M | 2.0635 · 10−2 | 2.7091 · 10−2 | 3.9104 · 10−2 | 2.8753 · 10−2 | 1.0317 · 10−2 | 2.5214 · 10−2 | 1.5785 · 10−2 | 1.5785 · 10−2 | 1.4216 · 10−2 | 2.0198 · 10−2 | 4.2018 · 10−2 | 2.1451 · 10−2 | 9.1441 · 10−2 |
9M | 2.2157 · 10−2 | 2.7996 · 10−2 | 3.8783 · 10−2 | 2.8871 · 10−2 | 1.2277 · 10−2 | 2.6430 · 10−2 | 1.7681 · 10−2 | 1.7681 · 10−2 | 1.5751 · 10−2 | 2.1651 · 10−2 | 4.2369 · 10−2 | 2.3402 · 10−2 | 8.5034 · 10−2 |
12M | 2.2733 · 10−2 | 2.8044 · 10−2 | 3.7777 · 10−2 | 2.8928 · 10−2 | 1.3476 · 10−2 | 2.7032 · 10−2 | 1.8841 · 10−2 | 1.8841 · 10−2 | 1.6881 · 10−2 | 2.2214 · 10−2 | 4.2051 · 10−2 | 2.4568 · 10−2 | 7.9801 · 10−2 |
15M | 2.2860 · 10−2 | 2.7576 · 10−2 | 3.6402 · 10−2 | 2.8622 · 10−2 | 1.4491 · 10−2 | 2.7195 · 10−2 | 1.9610 · 10−2 | 1.9610 · 10−2 | 1.7553 · 10−2 | 2.2309 · 10−2 | 4.1342 · 10−2 | 2.5134 · 10−2 | 7.5589 · 10−2 |
18M | 2.2669 · 10−2 | 2.6845 · 10−2 | 3.4888 · 10−2 | 2.8100 · 10−2 | 1.5298 · 10−2 | 2.7152 · 10−2 | 2.0380 · 10−2 | 2.0380 · 10−2 | 1.8092 · 10−2 | 2.2122 · 10−2 | 4.0497 · 10−2 | 2.5398 · 10−2 | 7.2201 · 10−2 |
21M | 2.2139 · 10−2 | 2.5856 · 10−2 | 3.3219 · 10−2 | 2.7353 · 10−2 | 1.5738 · 10−2 | 2.6860 · 10−2 | 2.0906 · 10−2 | 2.0906 · 10−2 | 1.8534 · 10−2 | 2.1602 · 10−2 | 3.9468 · 10−2 | 2.5331 · 10−2 | 6.9721 · 10−2 |
24M | 2.1514 · 10−2 | 2.4839 · 10−2 | 3.1610 · 10−2 | 2.6491 · 10−2 | 1.6040 · 10−2 | 2.6531 · 10−2 | 2.1272 · 10−2 | 2.1272 · 10−2 | 1.8910 · 10−2 | 2.0992 · 10−2 | 3.8465 · 10−2 | 2.5163 · 10−2 | 6.7874 · 10−2 |
27M | 2.0863 · 10−2 | 2.3851 · 10−2 | 3.0104 · 10−2 | 2.5576 · 10−2 | 1.6267 · 10−2 | 2.6209 · 10−2 | 2.1544 · 10−2 | 2.1544 · 10−2 | 1.9194 · 10−2 | 2.0359 · 10−2 | 3.7530 · 10−2 | 2.4955 · 10−2 | 6.6181 · 10−2 |
30M | 2.0234 · 10−2 | 2.2931 · 10−2 | 2.8729 · 10−2 | 2.4662 · 10−2 | 1.6462 · 10−2 | 2.5925 · 10−2 | 2.1770 · 10−2 | 2.1770 · 10−2 | 1.9434 · 10−2 | 1.9749 · 10−2 | 3.6687 · 10−2 | 2.4748 · 10−2 | 6.5368 · 10−2 |
33M | 1.9472 · 10−2 | 2.1916 · 10−2 | 2.7313 · 10−2 | 2.3603 · 10−2 | 1.6469 · 10−2 | 2.5514 · 10−2 | 2.1796 · 10−2 | 2.1796 · 10−2 | 1.9475 · 10−2 | 1.9006 · 10−2 | 3.5766 · 10−2 | 2.4385 · 10−2 | 6.4680 · 10−2 |
36M | 1.8798 · 10−2 | 2.1026 · 10−2 | 2.6069 · 10−2 | 2.2620 · 10−2 | 1.6503 · 10−2 | 2.5180 · 10−2 | 2.1842 · 10−2 | 2.1842 · 10−2 | 1.9537 · 10−2 | 1.8352 · 10−2 | 3.4969 · 10−2 | 2.4080 · 10−2 | 6.4373 · 10−2 |
39M | 1.8294 · 10−2 | 2.0331 · 10−2 | 2.5058 · 10−2 | 2.1778 · 10−2 | 1.6658 · 10−2 | 2.5011 · 10−2 | 2.2003 · 10−2 | 2.2003 · 10−2 | 1.9715 · 10−2 | 1.7868 · 10−2 | 3.4378 · 10−2 | 2.3910 · 10−2 | 6.3761 · 10−2 |
48M | 1.7247 · 10−2 | 1.8832 · 10−2 | 2.2803 · 10−2 | 1.9873 · 10−2 | 1.7303 · 10−2 | 2.4881 · 10−2 | 2.2644 · 10−2 | 2.2644 · 10−2 | 2.0400 · 10−2 | 1.6875 · 10−2 | 3.3196 · 10−2 | 2.3769 · 10−2 | 6.2520 · 10−2 |
60M | 1.6500 · 10−2 | 1.7677 · 10−2 | 2.0943 · 10−2 | 1.8187 · 10−2 | 1.8263 · 10−2 | 2.5129 · 10−2 | 2.3576 · 10−2 | 2.3576 · 10−2 | 2.1381 · 10−2 | 1.6188 · 10−2 | 3.2417 · 10−2 | 2.3960 · 10−2 | 6.1924 · 10−2 |
72M | 1.5969 · 10−2 | 1.6869 · 10−2 | 1.9646 · 10−2 | 1.6974 · 10−2 | 1.8982 · 10−2 | 2.5358 · 10−2 | 2.4262 · 10−2 | 2.4262 · 10−2 | 2.2106 · 10−2 | 1.5704 · 10−2 | 3.1911 · 10−2 | 2.4107 · 10−2 | 6.1575 · 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavanielli, R.; Laurini, M. Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market. Mathematics 2023, 11, 2549. https://doi.org/10.3390/math11112549
Tavanielli R, Laurini M. Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market. Mathematics. 2023; 11(11):2549. https://doi.org/10.3390/math11112549
Chicago/Turabian StyleTavanielli, Renata, and Márcio Laurini. 2023. "Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market" Mathematics 11, no. 11: 2549. https://doi.org/10.3390/math11112549
APA StyleTavanielli, R., & Laurini, M. (2023). Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market. Mathematics, 11(11), 2549. https://doi.org/10.3390/math11112549