Gorenstein Flat Modules of Hopf-Galois Extensions
Abstract
:1. Introduction
2. Preliminaries
2.1. Hopf Algebra
- (i)
- The comultiplications and are algebra morphisms:
- (ii)
- There exists a k-linear map called an antipode, satisfying
2.2. Hopf-Galois Extension
2.3. Gorenstein Injective Module and Gorenstein Flat Module
3. Gorenstein Flat Dimensions for Hopf-Galois Extensions
- (i)
- Let M be a (left) A-module. If M is Gorenstein flat (resp. Gorenstein injective) as an A-module, then it is also Gorenstein flat (resp. Gorenstein injective) as a B-module.
- (ii)
- Let M be a (left) B-module. If M is Gorenstein flat (resp. Gorenstein injective) as a B-module, then is also Gorenstein flat (resp. Gorenstein injective) as an A-module.
- (i)
- M is a Gorenstein flat (left) A-module if and only if the Pontryagin dual Hom is a Gorenstein injective (right) A-module, if A is right coherent.
- (ii)
- If -Mod is Gorenstein flat, then there is a complete flat resolution , as follows:However, is a right injective B-module, and so is exact. By the above, is exact. Therefore, is a Gorenstein flat left A-module.
- (i)
- For any left B-module M, M has a Gorenstein flat precover if and only if it is .
- (ii)
- For any left A-module M, has a Gorenstein flat precover if and only if it is .
- (i)
- (ii)
- Similar to (i).
4. Applications
- 1.
- If A is a twisted H-module, i.e., and σ is a cocycle, i.e., for all , then the crossed product forms an associative algebra with the unit element .
- 2.
- If σ is trivial in the crossed product , that is for , , then (1) holds only A is an H-module, and (2) holds obviously. It follows that A is a left H-module algebra. In the case in which we obtain the multiplication in a smash product (see Definition 4.1.3 of [13]),
- 3.
- Let be a crossed product. We consider the extension and find that is exactly a right H-Galois extension and has the normal basis property; thus, is a right H-Galois extension (see [20] (Theorem 1.18)). As a special case, is also a right H-Galois extension.
5. Conclusions
- (1)
- We prove that if is a right H-Galois extension over a semisimple Hopf algebra H, then the global Gorenstein flat dimension and the finitistic Gorenstein flat dimension of A is no more than that of B.
- (2)
- We show that the Hopf-Galois extensions preserve Gorenstein flat precovers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chase, S.U.; Harrison, D.K.; Rosenberg, A. Galois Theory and Cohomology of Commutative Rings; Memoirs of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 1965; Volume 52. [Google Scholar]
- Chase, S.U.; Sweedler, M. Hopf Algebras and Galois Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1969; Volume 97. [Google Scholar]
- Kreimer, H.F.; Takeuchi, M. Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J. 1981, 30, 675–692. [Google Scholar] [CrossRef]
- Enochs, E.E.; Jenda, O.M.G. Gorenstein injective and projective modules. Math. Z. 1995, 220, 611–633. [Google Scholar] [CrossRef]
- Auslander, M.; Bridger, M. Stable Module Theory; Memoirs of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 1969; Volume 94. [Google Scholar]
- Avramov, L.L.; Martsinkovsky, A. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc. 2002, 85, 393–440. [Google Scholar] [CrossRef]
- Chen, X.W. An Auslander-type result for Gorenstein-projective modules. Adv. Math. 2008, 218, 2043–2050. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, P. Gorenstein derived categories. J. Algebra 2010, 323, 2041–2057. [Google Scholar] [CrossRef]
- Holm, H. Gorenstein homological dimensions. J. Pure Appl. Algebra 2004, 189, 167–193. [Google Scholar] [CrossRef]
- Körrer, H. Cohen-Macaulay modules on hpersurface singularities. Invent. Math. 1987, 88, 153–164. [Google Scholar] [CrossRef]
- Li, Z.W.; Zhang, P. Gorenstein algebras of finite Cohen-Macaulay type. Adv. Math. 2010, 223, 728–734. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Q.L. Global and finitistic dimension of Hopf-Galois extensions. Turkish J. Math. 2013, 37, 210–217. [Google Scholar] [CrossRef]
- Montgomery, S. Hopf Algebras and Their Actions on Rings; CBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1993; Volume 82. [Google Scholar]
- Sweedler, M.E. Hopf Algebras; Benjamin, Inc.: New York, NY, USA, 1969. [Google Scholar]
- Enochs, E.E.; Jenda, O.M.G. Relative Homological Algebra; De Gruyter Expositions in Mathematics; Walter De Gruyter Co.: Berlin, Germany, 2000; Volume 30. [Google Scholar]
- López-Ramos, J.A. Gorenstein injective and projective modules and actions of finite-dimensional Hopf algebras. Ark. Mat. 2008, 46, 349–361. [Google Scholar] [CrossRef]
- Asensio, M.J.; López-Ramos, J.A.; Torrecillas, B. Covers and envelopes over gr-Gorenstein rings. J. Algebra 1999, 215, 437–459. [Google Scholar] [CrossRef]
- García Rozas, J.R.; Torrecillas, B. Preserving and reflecting covers by functors. Applications to graded modules. J. Pure Appl. Algebra 1996, 112, 91–107. [Google Scholar] [CrossRef]
- Blattner, R.; Cohen, M.; Montgomery, S. Crossed product and inner actions of Hopf algebras. Trans. Amer. Math. Soc. 1986, 298, 671–711. [Google Scholar] [CrossRef]
- Blattner, R.; Montgomery, S. Crossed product and Galois extensions of Hopf algebras. Pac. J. Math. 1989, 137, 37–53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Shan, T.; Shen, B.; Yang, T. Gorenstein Flat Modules of Hopf-Galois Extensions. Mathematics 2023, 11, 2542. https://doi.org/10.3390/math11112542
Guo Q, Shan T, Shen B, Yang T. Gorenstein Flat Modules of Hopf-Galois Extensions. Mathematics. 2023; 11(11):2542. https://doi.org/10.3390/math11112542
Chicago/Turabian StyleGuo, Qiaoling, Tingting Shan, Bingliang Shen, and Tao Yang. 2023. "Gorenstein Flat Modules of Hopf-Galois Extensions" Mathematics 11, no. 11: 2542. https://doi.org/10.3390/math11112542
APA StyleGuo, Q., Shan, T., Shen, B., & Yang, T. (2023). Gorenstein Flat Modules of Hopf-Galois Extensions. Mathematics, 11(11), 2542. https://doi.org/10.3390/math11112542