Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials
Abstract
:1. Introduction, Definitions and Preliminaries
2. The q-Jack Lemma and ITS Consequences
3. The q-Bernardi Integral Operator
4. Strict Inequalities Involving the Linear Convolution Operator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference Operator. Trans. R. Soc. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators. Math. Slov. 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Elhaddad, S.; Aldweby, H.; Darus, M. Some properties on a class of harmonic univalent functions defined by q-analogue of Ruscheweyh operator. J. Math. Anal. 2018, 9, 28–35. [Google Scholar]
- Elhaddad, S.; Darus, M. On meromorphic functions defined by a new operator containing the Mittag-Leffter function. Symmetry 2019, 11, 210. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. A note on q-integral operators. Electron. Notes Discrete Math. 2018, 67, 25–30. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, Ş.; Yalçın, S. Subclass of k-uniformly starlike functions defined by the symmetric q-derivative Operator. Ukr. Math. J. 2019, 70, 727–1740. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slov. 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. New subclass of analytic functions defined by q-differential operator with respect to k-symmetric points. Int. J. Math. Comput. Sci. 2019, 14, 761–773. [Google Scholar]
- Alsoboh, A.; Darus, M. On Fekete-Szegö problem associatedwith q-derivative operator. J. Phys. Conf. Ser. 2019, 1212, 012003. [Google Scholar] [CrossRef]
- Ganigi, M.R.; Uralegaddi, B.A. New criteria for meromorphic univalent functions. Bull. Math. Soc. Sci. Math. Roum. 1989, 33, 9–13. [Google Scholar]
- Ahmad, B.; Arif, M. New subfamily of meromorphic convex functions in circular domain involving q-operator. Int. J. Anal. Appl. 2018, 16, 75–82. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Gasper, G.; Rahman, M. Encyclopedia of Mathematics and Its Applications. In Basic Hypergeometric Series, 2nd ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 2004; Volume 96. [Google Scholar]
- Aldawish, I.; Aouf, M.K.; Frasin, B.A.; Al-Hawary, T. New subclass of analytic functions defined by q-analogue of p-valent Noor integral operator. AIMS Math. 2021, 6, 10466–10484. [Google Scholar] [CrossRef]
- Ali, E.E.; Bulboacă, T. Subclasses of multivalent analytic functions associated with a q-difference operator. Mathematics 2020, 8, 2184. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Khan, R.; Zubair, M.; Salleh, Z. On q-analogue of Janowski-type starlike functions with respect to symmetric points. Demonstr. Math. 2021, 54, 37–46. [Google Scholar] [CrossRef]
- Piejko, K.; Sokół, J. On convolution and q-calculus. Bol. Soc. Mat. Mex. 2020, 26, 349–359. [Google Scholar] [CrossRef]
- Piejko, K.; Sokół, J.; Trabka-Wiecław, K. On q-calculus and starlike Functions. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2879–2883. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
- Ademogullari, K.; Kahramaner, Y.; Polatoglu, Y. q-Harmonic mappings for which analytic part is q-convex functions. Nonlinear Anal. Differ. Equ. 2016, 4, 283–293. [Google Scholar] [CrossRef]
- Long, P.-H.; Tang, H.; Wang, W.-S. Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Math. 2021, 6, 1191–1208. [Google Scholar] [CrossRef]
- Noor, K.I. On analytic functions involving the q-Ruscheweyh derivative. Fractal Fract. 2019, 3, 10. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Srivastava, H.M.; Hadi, S.H.; Darus, M. Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2023, 117, 50. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of the Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials. Symmetry 2023, 15, 822. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer Science and Business Media: Berlin/Heidelberg, Germany; New York, NY, USA, 2001. [Google Scholar]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2012. [Google Scholar]
- Ismail, M.E.-H.; Masson, D.R.; Rahman, M. (Eds.) Fields Institute Communications. In Special Functions, q-Series and Related Topics; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; Srivastava, H.M.; Lashin, A.M.Y.; Albalahi, A.M. Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials. Mathematics 2023, 11, 2496. https://doi.org/10.3390/math11112496
Ali EE, Srivastava HM, Lashin AMY, Albalahi AM. Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials. Mathematics. 2023; 11(11):2496. https://doi.org/10.3390/math11112496
Chicago/Turabian StyleAli, Ekram E., Hari M. Srivastava, Abdel Moneim Y. Lashin, and Abeer M. Albalahi. 2023. "Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials" Mathematics 11, no. 11: 2496. https://doi.org/10.3390/math11112496
APA StyleAli, E. E., Srivastava, H. M., Lashin, A. M. Y., & Albalahi, A. M. (2023). Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials. Mathematics, 11(11), 2496. https://doi.org/10.3390/math11112496