Bounded Adaptive Function Activated Recurrent Neural Network for Solving the Dynamic QR Factorization
Abstract
:1. Introduction
- This paper presents the BAFARNN model, an improved version of the ZNN model with bounded adaptive functions, designed to solve time-varying QRF problems in complex-valued domains. The proposed activation function offers a better convergence speed and accuracy compared to the OZNN and noise-tolerant zeroing neural network (NTZNN) models.
- The robustness of the BAFARNN model against constant and time-varying noise is evaluated using a framework.
- Rigorous mathematical derivation is used to prove both the convergence and robustness of the BAFARNN model.
- Simulation arithmetic is employed to discuss DQRF solutions in different dimensions. Results show that the proposed BAFARNN model exhibits an excellent convergence rate, accuracy, and robustness when applied to DQRF problems.
2. Problem and Model Formulation
2.1. Problem Formulation
2.2. OZNN Model
2.3. BAFARNN Solution
3. BAFARNN for Solving DQRF
4. Theoretical Analysis
4.1. Global Convergence
4.2. Robustness under Constant Noise
4.3. Robustness under Time-Varying Noise
5. Simulative Verification
5.1. Numerical Simulation of Low-Dimensional Real Matrix
5.2. Numerical Simulation of High-Dimensional Complex Matrix
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Xu, A. Tensor completion via tensor QR decomposition and l2,1-norm minimization. Signal Process. 2021, 189, 108240. [Google Scholar] [CrossRef]
- Terao, T.; Ozaki, K.; Ogita, T. Lu-cholesky QR algorithms for thin QR decomposition. Parallel Comput. 2020, 92, 102571. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, C.; Zhao, C.; Bai, X. Temperature-field reconstruction algorithm based on reflected sigmoidal radial basis function and QR decomposition. Appl. Therm. Eng. 2020, 171, 114987. [Google Scholar] [CrossRef]
- Dabbakuti, J.K.; Mallika, Y.; Rao, M.V.; Rao, K.R.; Ratnam, D.V. Modeling of GPS-TEC using QR-decomposition over the low latitude sector during disturbed geomagnetic conditions. Adv. Space Res. 2019, 64, 2088–2103. [Google Scholar] [CrossRef]
- Zhu, M.; Liang, D.; Yan, P. A point pattern matching algorithm based on QR decomposition. Optik 2014, 125, 3485–3490. [Google Scholar] [CrossRef]
- Shigeta, T.; Young, D.L.; Liu, C.-S. Adaptive multilayer method of fundamental solutions using a weighted greedy QR decomposition for the laplace equation. J. Comput. Phys. 2012, 231, 7118–7132. [Google Scholar] [CrossRef]
- Du, Z.; Niu, Z.; Fang, W. Block QR decomposition based power system state estimation algorithm. Electr. Power Syst. Res. 2005, 76, 86–92. [Google Scholar]
- Wang, K.; Chen, Z.; Ying, S.; Xu, X. Low-rank matrix completion via qr-based retraction on manifolds. Mathematics 2023, 11, 1155. [Google Scholar] [CrossRef]
- Sethi, A.; O’Donoghue, P.; Luthey-Schulten, Z. Evolutionary profiles from the qr factorization of multiple sequence alignments. Proc. Natl. Acad. Sci. USA 2005, 102, 4045–4050. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Behera, R.; Stanimirović, P.S.; Katsikis, V.N. Computation of outer inverses of tensors using the QR decomposition. Comput. Appl. Math. 2020, 39, 1–20. [Google Scholar] [CrossRef]
- Mehra, I.; Nishchal, N.K. Fingerprint image encryption using phase retrieval algorithm in gyrator wavelet transform domain using QR decomposition. Opt. Commun. 2023, 533, 129265. [Google Scholar] [CrossRef]
- Rakheja, P.; Singh, P.; Vig, R. An asymmetric image encryption mechanism using QR decomposition in hybrid multi-resolution wavelet domain. Opt. Lasers Eng. 2020, 134, 106177. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Ming, L.; Guo, J.; Katsikis, V.N. Real-domain QR decomposition models employing zeroing neural network and time-discretization formulas for time-varying matrices. Neurocomputing 2021, 448, 217–227. [Google Scholar] [CrossRef]
- Ghaderyan, P.; Abbasi, A.; Ebrahimi, A. Time-varying singular value decomposition analysis of electrodermal activity: A novel method of cognitive load estimation. Measurement 2018, 126, 102–109. [Google Scholar] [CrossRef]
- Yanev, P.; Foschi, P.; Kontoghiorghes, E.J. Algorithms for computing the qr decomposition of a set of matrices with common columns. Algorithmica 2004, 39, 83–93. [Google Scholar] [CrossRef]
- Chen, T.; He, H.; He, C.; Chen, G. New parameter-identification method based on QR decomposition for nonlinear time-varying systems. J. Eng. Mech. 2019, 145, 04018118. [Google Scholar] [CrossRef]
- Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S.; Zhang, Y. Continuous-time varying complex QR decomposition via zeroing neural dynamics. Neural Process. Lett. 2021, 53, 3573–3590. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, C. Zhang Neural Networks and Neural-Dynamic Method; Nova Science Publishers, Inc.: New York, NY, USA, 2011; Volume 1, pp. 1–261. [Google Scholar]
- Zhang, Y.; Ge, S.S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 2005, 16, 1477–1490. [Google Scholar] [CrossRef]
- Xiao, L.; He, Y.; Li, Y.; Dai, J. Design and analysis of two nonlinear znn models for matrix lr and qr factorization with application to 3d moving target location. IEEE Trans. Ind. Inform. 2022, 1–11. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, J.; Chen, W.; Gong, J. A combined power activation function based convergent factor-variable ZNN model for solving dynamic matrix inversion. Math. Comput. Simul. 2022, 197, 291–307. [Google Scholar] [CrossRef]
- He, Y.; Xiao, L.; Sun, F.; Wang, Y. A variable-parameter ZNN with predefined-time convergence for dynamic complex-valued Lyapunov equation and its application to AOA positioning. Appl. Soft Comput. 2022, 130, 109703. [Google Scholar] [CrossRef]
- Jiang, C.; Xiao, X.; Liu, D.; Huang, H.; Xiao, H.; Lu, H. Nonconvex and bound constraint zeroing neural network for solving time-varying complex-valued quadratic programming problem. IEEE Trans. Ind. Inform. 2021, 17, 6864–6874. [Google Scholar] [CrossRef]
- Jiang, C.; Xiao, X. Norm-based adaptive coefficient znn for solving the time-dependent algebraic riccati equation. IEEE CAA J. Autom. Sin. 2023, 10, 298–300. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Dai, J.; Chen, K.; Yang, S.; Li, W.; Liao, B.; Ding, L.; Li, J. A new noise-tolerant and predefined-time ZNN model for time-dependent matrix inversion. Neural Netw. 2019, 117, 124–134. [Google Scholar] [CrossRef]
- Liao, B.; Wang, Y.; Li, W.; Peng, C.; Xiang, Q. Prescribed-time convergent and noise-tolerant z-type neural dynamics for calculating time-dependent quadratic programming. Neural Comput. Appl. 2021, 33, 5327–5337. [Google Scholar] [CrossRef]
- Li, Z.; Liao, B.; Xu, F.; Guo, D. A new repetitive motion planning scheme with noise suppression capability for redundant robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 5244–5254. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Hu, H. Discrete ZNN models of Adams-Bashforth (AB) type solving various future problems with motion control of mobile manipulator. Neurocomputing 2020, 384, 84–93. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y. Discrete-time ZNN-based noise-handling ten-instant algorithm solving Yang-Baxter-like matrix equation with disturbances. Neurocomputing 2022, 488, 391–401. [Google Scholar] [CrossRef]
- Xiao, L.; Li, L.; Tao, J.; Li, W. A predefined-time and anti-noise varying-parameter ZNN model for solving time-varying complex stein equations. Neurocomputing 2023, 526, 158–168. [Google Scholar] [CrossRef]
- Zeng, Y.; Xiao, L.; Li, K.; Li, J.; Li, K.; Jian, Z. Design and analysis of three nonlinearly activated ZNN models for solving time-varying linear matrix inequalities in finite time. Neurocomputing 2020, 390, 78–87. [Google Scholar] [CrossRef]
- Luo, J.; Yang, H.; Yuan, L.; Chen, H.; Wang, X. Hyperbolic tangent variant-parameter robust ZNN schemes for solving time-varying control equations and tracking of mobile robot. Neurocomputing 2022, 510, 218–232. [Google Scholar] [CrossRef]
- Ren, X.; Yue, C.; Ma, T.; Wang, J.; Wang, J.; Wu, Y.; Weng, Z. Adaptive parameters optimization model with 3D information extraction for infrared small target detection based on particle swarm optimization algorithm. Infrared Phys. Technol. 2021, 117, 103838. [Google Scholar] [CrossRef]
- Lv, L.; Zhao, L.; Li, H. Design of adaptive parameter observer and laser network controller based on sliding mode control technology. Optik 2022, 257, 168790. [Google Scholar]
- Jiang, C.; Wu, C.; Xiao, X.; Lin, C. Robust neural dynamics with adaptive coefficient applied to solve the dynamic matrix square root. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Feng, S.; Huang, M. Pansharpening using unsupervised generative adversarial networks with recursive mixed-scale feature fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2023, 16, 3742–3759. [Google Scholar] [CrossRef]
- Chen, C.; Lu, J. Data-driven adaptive compensation control for a class of nonlinear discrete-time system with bounded disturbances. ISA Trans. 2022, 135, 492–508. [Google Scholar] [CrossRef]
- Yue, J.; Liu, L.; Gu, N.; Peng, Z.; Wang, D.; Dong, Y. Online adaptive parameter identification of an unmanned surface vehicle without persistency of excitation. Ocean Eng. 2022, 250, 110232. [Google Scholar] [CrossRef]
- Jia, L.; Xiao, L.; Dai, J.; Qi, Z.; Zhang, Z.; Zhang, Y. Design and application of an adaptive fuzzy control strategy to zeroing neural network for solving time-variant QP problem. IEEE Trans. Fuzzy Syst. 2021, 29, 1544–1555. [Google Scholar] [CrossRef]
- Song, Z.; Lu, Z.; Wu, J.; Xiao, X.; Wang, G. Improved ZND model for solving dynamic linear complex matrix equation and its application. Neural Comput. Appl. 2022, 34, 1–14. [Google Scholar] [CrossRef]
- Auckenthaler, T.; Huckle, T.; Wittmann, R. A blocked qr-decomposition for the parallel symmetric eigenvalue problem. Parallel Comput. 2014, 40, 186–194. Available online: https://www.sciencedirect.com/science/article/pii/S0167819114000404 (accessed on 13 March 2023). [CrossRef]
- Cosnard, M.; Muller, J.M.; Robert, Y. Parallel qr decomposition of a rectangular matrix. Numer. Math. 1986, 48, 239–249. [Google Scholar] [CrossRef]
- Brewer, J. Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 1978, 25, 772–781. [Google Scholar] [CrossRef]
- Penrose, R. On best approximate solutions of linear matrix equations. Math. Proc. Camb. Philos. Soc. 1956, 52, 17–19. [Google Scholar] [CrossRef]
- Fox, H.; Bolton, B. (Eds.) 6—Laplace transform. In Mathematics for Engineers and Technologists; IIE Core Textbooks Series; Butterworth-Heinemann: Oxford, UK, 2002; pp. 198–234. [Google Scholar]
- Fowler, S.; Stanwick, V. (Eds.) Chapter 10—Designing graphs and charts. In Web Application Design Handbook; Interactive Technologies; Morgan Kaufmann: San Francisco, CA, USA, 2004; pp. 265–323. [Google Scholar]
Element | Form of Expansion | Size |
---|---|---|
− | ||
− | ||
− | ||
− | ||
− | ||
− | ||
Model | Convergent Time (s) | MSSRE with NF | MSSRE with CN | MSSRE with TVN |
---|---|---|---|---|
NTZNN | 0.26 | NA * | NA * | |
OZNN (2) | 0.65 | |||
BAFARNN (4) | 0.01 |
M | Form of Expansion |
---|---|
(t) | |
(t) | |
(t) | |
(t) | |
(t) | |
(t) | |
(t) | |
(t) | |
(t) | |
(t) | |
(t) | |
(t) |
Model | Convergent Time (s) | MSSRE with NF | MSSRE with CN | MSSRE with TVN |
---|---|---|---|---|
OZNN (2) | 0.83 | |||
BAFARNN (4) | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Gu, Y.; Xie, X.; Jiang, C.; Song, Z.; Zhang, Y. Bounded Adaptive Function Activated Recurrent Neural Network for Solving the Dynamic QR Factorization. Mathematics 2023, 11, 2308. https://doi.org/10.3390/math11102308
Yang W, Gu Y, Xie X, Jiang C, Song Z, Zhang Y. Bounded Adaptive Function Activated Recurrent Neural Network for Solving the Dynamic QR Factorization. Mathematics. 2023; 11(10):2308. https://doi.org/10.3390/math11102308
Chicago/Turabian StyleYang, Wenrui, Yang Gu, Xia Xie, Chengze Jiang, Zhiyuan Song, and Yudong Zhang. 2023. "Bounded Adaptive Function Activated Recurrent Neural Network for Solving the Dynamic QR Factorization" Mathematics 11, no. 10: 2308. https://doi.org/10.3390/math11102308
APA StyleYang, W., Gu, Y., Xie, X., Jiang, C., Song, Z., & Zhang, Y. (2023). Bounded Adaptive Function Activated Recurrent Neural Network for Solving the Dynamic QR Factorization. Mathematics, 11(10), 2308. https://doi.org/10.3390/math11102308