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Abstract: The orthogonal triangular factorization (QRF) method is a widespread tool to calculate
eigenvalues and has been used for many practical applications. However, as an emerging topic,
only a few works have been devoted to handling dynamic QR factorization (DQRF). Moreover, the
traditional methods for dynamic problems suffer from lagging errors and are susceptible to noise,
thereby being unable to satisfy the requirements of the real-time solution. In this paper, a bounded
adaptive function activated recurrent neural network (BAFARNN) is proposed to solve the DQRF
with a faster convergence speed and enhance existing solution methods’ robustness. Theoretical
analysis shows that the model can achieve global convergence in different environments. The results
of the systematic experiment show that the BAFARNN model outperforms both the original ZNN
(OZNN) model and the noise-tolerant zeroing neural network (NTZNN) model in terms of accuracy
and convergence speed. This is true for both single constants and time-varying noise disturbances.

Keywords: recurrent neural network; adaptive coefficient; QR factorization; time-varying matrix
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1. Introduction

With the rapid development of engineering [1–3], physics and astronomy [4–6], en-
ergy [7], and other disciplines [8,9], the key problem of QR factorization (QRF) has become
a major research topic. In [10], a new representation and characterization of the outer
inverse of the tensor is solved by QRF, and an innovative algorithm is presented to apply
the tensor inverse to the deblurring of 3D color images. Furthermore, Mehraa et al. [11]
apply QRF to optical system protection, and an encryption scheme based on gyrator
wavelet transform is designed, which resists the attack of iterative algorithms. Likewise,
Rakheja et al. [12] present an asymmetric system that results in an asymmetric image
encryption method using QRF. This approach offers a nonlinear and expanded key space
in the mixed multi-resolution wavelet domain.

The QRF has numerous practical applications [13,14]. An algorithm was proposed
by [15] to calculate the QRF using a derivation diagram, but it could not adapt to the later
common dynamic QRF (DQRF) problem. In their paper, Chen et al. [16] proposed the calcu-
lation of DQRF, which decomposes the original time-varying system into subsystems and
provides algorithms to detect quality and subsystem connection information. The DQRF
was extended to the complex-valued domain by [17], who used the ZNN model [18,19] to
improve the DQRF accuracy. However, this method had poor noise immunity and could
not converge to theoretical solutions under noisy conditions. On the other hand, methods
were proposed by both [17,20] that improved the noise immunity of the OZNN model
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by adding an activation function and discretization model, respectively; however, these
designs are inflexible as the gain coefficients cannot be adjusted according to the degree
of model convergence, leading to the unnecessary consumption of computer resources.
Therefore, there is a need for more efficient methods in dealing with complex-valued DQFR.

As an effective tool to solve dynamic problems [21,22], the ZNN model has been
widely developed, among which the theoretical applications of time-varying cases [23,24]
are also very rich, including noise processing [25–27]. In addition, the discrete ZNN
model is also used in various practical applications [28,29]. Under the dynamic time-
varying system, the algorithm of ZNN models can find the optimal global solution better
after infinite iterations in terms of convergence. It also shows constant stability under
noisy environments and can resist noise well. Xiao et al. [30] designed a ZNN model
that can maintain performance in a noisy environment, with appropriate variations in the
parameters used to solve problems with unsteady parameters. Meanwhile, models also deal
with the dynamic problems of complex dynamic Stein equations, and the method is applied
to robot control. In [31], the ZNN model is presented to achieve convergence in a finite
time, which is adopted to analyze the problem treatment of matrix inequalities in the linear
case. In [32], the varying-parameter ZNNs are shown to be better than the traditional ZNN
model in solving the dynamic Lyapunov function and Stein matrix equation. In practical
applications, considering the variations in algorithm parameter values in different domains,
some researchers have proposed intelligent optimization algorithms incorporating adaptive
coefficients [33–36]. Chen et al. [37] add adaptive parameters to the controller design to
update data adaptively and ensure the controller’s stability. Yue et al. [38] add the adaptive
coefficient to the uncrewed surface vehicle (USV), which can automatically predict possible
situations and improve the flexibility of parameter use. The coefficient related to the model
is obtained by statistical inference, and appropriate adjustment is made under different
application conditions to obtain the best effect. Jia et al. [39] add the adaptive fuzzy control
strategy to the ZNN mode, which improves the model performance. In addition, for
the matrix equation problem under a dynamic system, Song et al. [40] proposed a novel
approach to address intricate matrix equation problems in dynamic systems by utilizing
the ZNN model with adaptive coefficients.

Based on the above research, to better deal with the DQRF, this paper proposes the
bounded adaptive function activated recurrent neural network (BAFARNN), which can
converge quickly. Furthermore, the model’s relevant parameters are highly adaptable and
can be appropriately adjusted for various applications. Therefore, these models are more
suitable for use in fundamental research.

The remaining content of this paper is mainly divided into five parts. In Section 2,
the formula of the DQRF and the existing results are provided for the convenience of
comparison. In Section 3, the model variation required of the OZNN model in dealing with
the DQRF is described in detail, and the BAFARNN with an adaptive coefficient is derived.
In Section 4, we discuss the convergence of the BAFARNN model when applied to the
DQRF. Additionally, we demonstrate its robustness under noisy environments. Section 5
provides simulation examples of different dimensions to confirm the accurate fit of the
BAFARNN model applied to the DQRF. In the Conclusions, the main results of this paper
are summarized. We summarize the key contributions of the paper as follows.

• This paper presents the BAFARNN model, an improved version of the ZNN model
with bounded adaptive functions, designed to solve time-varying QRF problems in
complex-valued domains. The proposed activation function offers a better convergence
speed and accuracy compared to the OZNN and noise-tolerant zeroing neural network
(NTZNN) models.

• The robustness of the BAFARNN model against constant and time-varying noise is
evaluated using a framework.

• Rigorous mathematical derivation is used to prove both the convergence and robust-
ness of the BAFARNN model.



Mathematics 2023, 11, 2308 3 of 18

• Simulation arithmetic is employed to discuss DQRF solutions in different dimensions.
Results show that the proposed BAFARNN model exhibits an excellent convergence
rate, accuracy, and robustness when applied to DQRF problems.

2. Problem and Model Formulation

In this section, the standardized version of the DQRF is presented. Furthermore,
the OZNN variant of the DQRF is introduced. Ultimately, to enhance the OZNN model,
a bounded adaptive coefficient function (BACF) is proposed and results in obtaining the
BACARNN model.

2.1. Problem Formulation

First, we use an equation to summarize the unified form of the DQRF [41,42]:

M(t) = Q(t)R(t), (1)

where t ∈ [0,+∞) denotes time; M(t) ∈ Cm×n is a time-varying matrix that changes
smoothly over time, and there are no limitations on its rank; Q(t) ∈ Cm×m is an unknown
unitary matrix or orthogonal matrix; R(t) ∈ Cm×n is the upper triangular.

2.2. OZNN Model

Following the OZNN model implementation procedure, an error function E(t) is
obtained as

Ė(t) = −ξE(t), (2)

where E(t) ∈ Cm×n is the residual of M(t)−Q(t)R(t), and Ė(t) is numerically and compu-
tationally computable. Moreover, ξ refers to the scale parameter of the OZNN model (2),
which controls the convergence speed.

2.3. BAFARNN Solution

As mentioned previously, the OZNN model (2) can solve the DQRF (1). However,
the OZNN method cannot deal with the DQRF (1) more efficiently. In the noisy case,
even non-convergence can occur [35]. Therefore, the BAFARNN model is proposed in the
following part.

We combine the advantages of the OZNN model (2) to propose a BACF based on
residuals, which is defined as

Π(E(t), t) =


10c1‖E(t)‖F + 2, 0 < t < 0.005,

10c2‖E(t)‖F + 12, 0.005 ≤ t ≤ 1,

10c3‖E(t)‖F, t > 1,

(3)

where c1 > 0, c2 > 0, and c3 > 0 denote design parameters. These parameters are
adjusted during application to obtain a faster solution, and proper parameters can reduce
the consumption of computing time without destroying the convergence. The following
formula constructs the BAFARNN activated by BACF:

Ė(t) = −Π(E(t), t)E(t). (4)

Remark 1. From the following three aspects, we design a bounded adaptive function to enhance
the robustness and convergence of the model. Firstly, when solving the equation model discretely,
we ensure the optimal adaptive selection of sampling intervals. Traditional solution models use
fixed coefficients, and sampling intervals and model update strategies tend to be consistent. When
the model is disturbed by noise in this environment, using a fixed step size causes the model to be
unable to adjust to interference, resulting in the breakdown of the solution. However, with adaptive
coefficients added, the model can adjust itself and ensure that it will not break down even if it is
disturbed by noise. Secondly, while solving the DQRF (1), there exists a large residual between
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the initial solutions and time; as randomness decreases gradually with problem-solving progress
towards theoretical solutions, residuals decrease accordingly. In this process, gain coefficients can be
flexibly adjusted according to different residuals, while consuming minimal resources to maintain
convergence. Finally, starting from the theoretical analysis in this paper, the proof of the robustness
theory for the models shows that the BAFARNN model (4) proposed in this paper can still converge
towards theoretical solutions even under noise disturbance, ensuring the DQRF (1)’s progress in
terms of finding solutions.

Remark 2. Standard activation functions have strict requirements, including the need for the
function to increase monotonically and be odd. However, this paper introduces a specific bounded
adaptive function input that allows for discontinuous, non-derivative, and non-singular activation
functions. This relaxation of the restrictions makes our model more applicable to engineering
problems that involve such functions.

3. BAFARNN for Solving DQRF

In Equation (1), the Q(t) is the unitary matrix or unknown orthogonal matrix that we
have solved so far. Considering the properties of the unitary matrix, we have

I(t) = QH(t)Q(t), (5)

in which I(t) ∈ Rm×m is an identity matrix. (·)H is the transpose operation in the complex
domain. Because the matrix in Equation (1) is a real matrix, the complex matrix is decom-
posed into imaginary parts besides real parts, and the expressions in (1) are decomposed
into 

Q(t) = Qr(t) + Qi(t)ι,
R(t) = Rr(t) + Ri(t)ι,
M(t) = Mr(t) + Mi(t)ι,

(6)

where ι combines with real numbers in four operations according to the same opera-
tion law

(
ι2 = −1

)
, called the imaginary unit. By substituting equation set (6) into

Equations (1) and (5), we obtain{
Mr(t) + Mi(t)ι = Qr(t)Rr(t)−Qi(t)Ri(t) + (Qr(t)Ri(t) + Qi(t)Rr(t))ι,
I(t) = QH

i (t)Qi(t) + QH
r (t)Qr(t) + (QH

r (t)Qi(t)−QH
i (t)Qr(t))ι.

(7)

Since the two components of a complex number on both sides of the equation are equal,
respectively, 

Mr(t) = Qr(t)Rr(t)−Qi(t)Ri(t),
Mi(t) = Qr(t)Ri(t) + Qi(t)Rr(t),
I = QH

r (t)Qr(t) + QH
i (t)Qi(t),

Z = QH
r (t)Qi(t)−QH

i (t)Qr(t),

(8)

where Z = 0 ∈ Rm×m. To find the optimal solution to (1), the OZNN model (2) constructs
the following four error components:

E1(t) = Mr(t)−Qr(t)Rr(t) + Qi(t)Ri(t),
E2(t) = Mi(t)−Qr(t)Ri(t) + Qi(t)Rr(t),
E3(t) = I− (QH

r (t)Qr(t) + QH
i (t)Qi(t)),

E4(t) = −(QH
r (t)Qi(t) + QH

i (t)Qr(t)).

(9)
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Applying BAFARNN model (4) on error function (9), the error function of BAFARNN
model (4) is shown as follows:

−Π1(E1(t), t)E1(t) = Ṁr(t)− Q̇r(t)Rr(t)−Qr(t)Ṙr(t) + Q̇i(t)Ri(t) + Qi(t)Ṙi(t),

−Π2(E2(t), t)E2(t) = Ṁi(t)− Q̇r(t)Ri(t)−Qi(t)Ṙr(t)− Q̇i(t)Rr(t)−Qr(t)Ṙi(t),

−Π3(E3(t), t)E3(t) = −(Q̇H
r (t)Qr(t) + QH

r (t) ˙Qr(t) + Q̇H
i (t)Qi(t) + QH

i (t)Q̇i(t)),

−Π4(E4(t), t)E4(t) = −(Q̇H
r (t)Qi(t)−QH

i (t) ˙Qr(t) + QH
r (t)Q̇i(t)− Q̇H

i (t)Qr(t)).

(10)

Based on the vectorization operation and the Kronecker product [43], when t→ ∞, the fol-
lowing system can obtain the theoretical solution of (1):

D11(t)vec
(
Q̇r(t)

)
+ D12(t)vec

(
Q̇i(t)

)
+ D13(t)vec

(
Ṙr(t)

)
+

D14(t)vec
(
Ṙi(t)

)
= vec(F1(t)),

D21(t)vec
(
Q̇r(t)

)
+ D22(t)vec

(
Q̇i(t)

)
+ D23(t)vec

(
Ṙr(t)

)
+

D24(t)vec
(
Ṙi(t)

)
= vec(F2(t)),

D31(t)vec
(
Q̇r(t)

)
+ D32(t)vec

(
Q̇i(t)

)
+ D33(t)vec

(
Ṙr(t)

)
+

D34(t)vec
(
Ṙi(t)

)
= vec(F3(t)),

D41(t)vec
(
Q̇r(t)

)
+ D42(t)vec

(
Q̇i(t)

)
+ D43(t)vec

(
Ṙr(t)

)
+

D44(t)vec
(
Ṙi(t)

)
= vec(F4(t)),

(11)

where vec(·) represents the vectorization operation. The elements of D(t) ∈ C4×4 are listed
in Table 1. The blocks Dij(t) have different sizes, as in Table 1. Moreover, the detailed
expression of Fi(t), i = 1, 2, 3, 4 is as follows:

F1(t) = −Π1(E1(t), t)E1(t)− Ṁr(t),
F2(t) = −Π2(E2(t), t)E2(t)− Ṁi(t),
F3(t) = −Π3(E3(t), t)E3(t),
F4(t) = −Π4(E4(t), t)E4(t).

The equation set (11) is reformulated as follows:
D11(t) D12(t) D13(t) D14(t)
D21(t) D22(t) D23(t) D24(t)
D31(t) D32(t) D33(t) D34(t)
D41(t) D42(t) D43(t) D44(t)




vec
(
Q̇r(t)

)
vec
(
Q̇i(t)

)
vec
(
Ṙr(t)

)
vec
(
Ṙi(t)

)
 =


vec(F1(t))
vec(F2(t))
vec(F3(t))
vec(F4(t))

. (12)

The expansion solution of Equation (12) is

D(t)Ẋ(t) = F(t), (13)

where D(t) is the square matrix of (12), and Ẋ(t) is
vec
(
Q̇r(t)

)
vec
(
Q̇i(t)

)
vec
(
Ṙr(t)

)
vec
(
Ṙi(t)

)
.

The expansion of F(t) is

F(t) =


vec(F1(t))
vec(F2(t))
vec(F3(t))
vec(F4(t))

.



Mathematics 2023, 11, 2308 6 of 18

According to (13), the following DQRF (1) can also be expressed as

Ẋ(t) = D†(t)F(t), (14)

in which D†(t) represents the generalized inverse of the inverse matrix D(t). Next, substi-
tuting Equation (13) into Equation (14) yields

D(t)D†(t)F(t) = F(t). (15)

Combining Equation (13) with Equation (15), and considering the best approximate solution
of the linear matrix equation [44], we obtain

‖F(t)−D(t)Ẋ(t)‖ ≥ ‖F(t)−D(t)D†(t)F(t)‖,

so we obtain the solution of the above formula:

Ẋ(t) = D†(t)F(t) +
(

I−D†(t)D(t)
)

Z (16)

in which I is the identity matrix, and Z ∈ R2m2×2mn is an arbitrary vector.

Table 1. D(t) matrix element expressions.

Element Form of Expansion Size

D11(t) −RH
r (t)⊗ Im Rmn×m2

D12(t) RH
i (t)⊗ Im Rmn×m2

D13(t) −In ⊗Qr(t) Rmn×mn

D14(t) In ⊗Qi(t) Rmn×mn

D21(t) −RH
i (t)⊗ Im Rmn×m2

D22(t) −RH
r (t)⊗ Im Rmn×m2

D23(t) −RH
r (t)⊗ Im Rmn×mn

D24(t) −In ⊗Qr(t) Rmn×mn

D31(t)
(
QH

r (t)⊗ Im
)
G + Im ⊗QH

r (t) Rm2×m2

D32(t)
(
QH

i (t)⊗ Im
)
G + Im ⊗QH

i (t) Rm2×m2

D33(t) zeros(m2, m ∗ n) Rm2×mn

D34(t) zeros(m2, m ∗ n) Rm2×mn

D41(t)
(
QH

i (t)⊗ Im
)
G + Im ⊗QH

i (t) Rm2×m2

D42(t) Im ⊗QH
r (t) +

(
QH

r (t)⊗ Im
)
G Rm2×m2

D43(t) zeros(m2, m ∗ n) Rm2×mn

D44(t) zeros(m2, m ∗ n) Rm2×mn

4. Theoretical Analysis

This section shows that the BAFARNN model (4) is capable of achieving superior
convergence and robustness in solving the DQRF (1) compared to the OZNN model (2).

4.1. Global Convergence

If the adaptive coefficient is combined with the performance of the OZNN model (2)
itself, no matter what the initial value is, after a finite number of steps, a theoretical solution
can be obtained without interference from other solutions.

Theorem 1. The BAFARNN model (4) is characterized by the error function E(t) ∈ Cm×n. As t
approaches infinity, this smooth error function globally converges to 0. Consequently, the solution
obtained through the BAFARNN model (4) also globally converges to the theoretical solution of
DQRF (1).
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Proof. The representation of the BAFARNN model (4) is divided into two parts as follows
(where Π(E(t), t) is written as Π for convenience):

Ė(t) = −Π(Er(t) + Ei(t)ι), (17)

in which the matrices Er(t) and Ei(t) are the real and complex parts of E(t), respectively.
Then, the BAFARNN model (4) is segmented to obtain

ε̇mn(t) = −Π(εmn,r(t) + εmn,i(t)ι), (18)

where we use εmn,r(t) to replace the Er(t), and Ei(t) in the child model using εmn,i(t). The
m and n are the indexes of the matrix, where m = 1, 2, 3, 4 and n = 1, 2, 3, 4. Subsequently,
we use the Lyapunov function {

lyr(t) = ε2
mn,r(t)/2,

lyi(t) = ε2
mn,i(t)/2.

(19)

Whenever εmn,r(t) 6= 0, lyr(t) > 0. Similarly, whenever εmn,i(t) 6= 0, lyi(t) > 0. Con-
sequently, the Lyapunov function lyr(t) = ε2

mn,r(t)/2 and lyi(t) = ε2
mn,i(t)/2 determinant

are always greater than zero. Then, the derivative is obtained:{
˙lyr(t) = −εmn,r(t)Π(εmn,r(t)),
˙lyi(t) = −εmn,i(t)Π(εmn,i(t)).

(20)

Whenever εmn,r(t) 6= 0, the l̇yr(t) < 0. Accordingly, ˙lyr(t) is a fixed solution. Considering
that the model can converge globally, and because lyr(t) and l̇yr(t) < 0, if the positive
and negative values of 0 are different, the convergence of this part is proven. Similarly,
the proof of the imaginary part can be obtained and is therefore omitted here. Concisely,
after n iterations, the error is a residual error and converges to zero.

Remark 3. This paper addresses the issue of finding the optimal solution for DQRF (1). The pro-
posed algorithm achieves global convergence by generating an iterative point column from any initial
point that converges to the optimal value point of the problem. It is important to note that local
convergence, which only guarantees convergence when the initial and optimal points are sufficiently
close, is not relevant to this study and will not be discussed further.

4.2. Robustness under Constant Noise

This section proves the robustness of the BAFARNN model (4) under constant noise.

Theorem 2. The BAFARNN model (4) converges globally to the theoretical solution Ẋ(t), even
when subjected to constant noise γ in the form of an unknown vector.

Proof. According to the above definition, the BAFARNN model (4) is expressed in the
noise system as follows (where Π(E(t), t) is written as Π for convenience):

Ė(t) = −ΠE(t) + γ. (21)

The Laplace transform [45] is applied to the ith subsystem of the BAFARNN model (4) with
sometimes variable noise, and the result is

sei(s)− ei(0) = −Πei(s) + γi(s).

Rearranging the above equation, we have the following:

ei(s) =
ei(0) + γi(s)

s + Π
.
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For the constant noise, γi(s) = γ̄i/s. According to the final value theorem [45], we can
deduce

lim
t→+∞

ei(t) = lim
s→0

sei(s)

= lim
s→0

s(ei(0) + γ̄i/s)
s + Π

= 0.
(22)

Based on the above, it can be deduced that in a constant noise system, lim
t→+∞

‖E(t)‖2 =

0. The stability of the model is excellent under constant noise, and the robustness is
demonstrated.

4.3. Robustness under Time-Varying Noise

This section proves that the BAFARNN model (4) is still stable when solving the
DQRF (1) in a noisy system.

Theorem 3. After incorporating time-varying linear noise γ(t) in the form of an unknown vector
on Ė(t), the upper bound for the BAFARNN model (4) is given by lim

t→+∞
‖E(t)‖2, which converges

to ‖̄γi‖2/Π of the stable residuals. Therefore, the resulting solution still approaches the theoretical
solution Ẋ(t).

Proof. According to the above definition, the BAFARNN model (4) is expressed in the
noise system as follows (where Π(E(t), t) is written as Π for convenience):

Ė(t) = −ΠE(t) + γ(t). (23)

The Laplace transform [45] is used on the ith subsystem of the BAFARNN model (4), which
may have variable noise. The resulting output is

sei(s)− ei(0) = −Πei(s) + γi(s).

By rearranging the equation above, we obtain the following:

ei(s) =
ei(0) + γi(s)

s + Π
.

For the time-varying noise, γi(s) = γ̄i/s2, we have

lim
t→+∞

ei(t) = lim
s→0

sei(s)

= lim
s→0

s(ei(0) + γ̄i/s2)

s + Π
= γ̄i/Π.

(24)

For this reason, it is intuitively found that lim
t→+∞

‖E(t)‖2 = ‖̄γi‖2/Π in a linear time-varying

noise system. Thus, the theoretical proof of the article is complete.

5. Simulative Verification

In this section, the BAFARNN model (4) is compared to other models such as the
OZNN model (2) and NTZNN model using two examples: one with a low-dimensional
real matrix and another with a high-dimensional complex matrix. The comparison verifies
that the BAFARNN model (4) has good convergence and noise resistance. More detailed
data on the experiments are provided in a table, including information on the convergence
time and maximum steady state residual (MSSRE). The experimental data used in this
paper were sourced from [17].
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5.1. Numerical Simulation of Low-Dimensional Real Matrix

The matrix M(t) is input, and the noise is injected to observe its convergence. We set

M(t) =
[

3/(t + 20) sin(t) + 1
(t + 20)/(3t + 1) cos(t)− 16

]
,

in which M ∈ C2×2. Then, the initial values of Q(t) matrices Qr(t) and Qi(t), R(t) matrices
Rr(t) and Ri(t) are given:

Qr(0) =
[

1 −1
−1/2 1

]
,

Qi(0) =
[

1 1
1 1

]
,

Rr(0) =
[

1 −2
0 1

]
,

Ri(0) = 02×2.

The above matrix is substituted into the BAFARNN model (4), OZNNN model (2)
and NTZNN model to obtain their convergence accuracy. Figures 1–3 show their conver-
gence speeds and convergence accuracy, respectively, under the conditions of no noise,
constant noise and sometimes variable noise. Table 2 records the detailed experimental data.
Generally speaking, the number line can reflect the data more accurately [46]. Therefore,
the number line is used in Figures 1–4 to achieve a more pronounced contrast. The results
show that the convergence time of the OZNN model (2) is 60 times that of the BAFARNN
model (4), and the convergence time of the NTZNN model is 20 times that of the BAFARNN
model (4). The experimental results show that the convergence performance of the BA-
FARNN model (4) is much better than that of the RNN model commonly used in DQRF (1).
However, in a noisy environment, the convergence rate of the NTZNN model is prolonged,
and it cannot reach a steady state in the experimental time. The convergence accuracy of
OZNN (2) is much lower than that of the BAFARNN model (4), and the OZNN model (2)
cannot converge in the case of time-varying noise. In contrast, the BAFARNN model (4)
has excellent stability and robustness. In addition, we also analyzed the convergence of
Q(t) matrices ‖E1(t)‖F and ‖E2(t)‖F, and Q(t) matrices ‖E3(t)‖F and ‖E4(t)‖F in Figure 4
in the noiseless environment. Their convergence is better than that of the OZNN model (2)
and the NTZNN model.

Table 2. Comparison of three different ZNN models in terms of robustness and convergence time for
solving time-varying DRQF.

Model Convergent
Time (s)

MSSRE
with NF

MSSRE
with CN τ

MSSRE
with TVN τ(t)

NTZNN 0.26 NA * NA * 5.65× 10−1

OZNN (2) 0.65 2.67× 10−3 2.82× 100 1.47× 101

BAFARNN (4) 0.01 6.8× 10−4 1.9× 10−2 4.64× 10−1

Note that the parameters NF, CN and TVN in Table 2 correspond to activation noise-free, constant noise and
time-varying noise, respectively. NA * means that the model cannot reach MSSRE within the specified experiment
time (10 s).
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Figure 1. The convergence accuracy (logarithm) of the model without noise. The design parameters
are c1 = 5, c2 = 5 and c3 = 4.
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Figure 2. The convergence accuracy (logarithm) of the model under constant noise. The design
parameters are c1 = 5, c2 = 6 and c3 = 6.
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Figure 3. The convergence accuracy (logarithm) of the model under time-varying noise. The design
parameters are c1 = 5, c2 = 3 and c3 = 3.
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Figure 4. When solving low-dimensional DQRF (1) in noiseless environments, Q(t) matrices ‖E1(t)‖F

and ‖E2(t)‖F, and Q(t) matrices ‖E3(t)‖F and ‖E4(t)‖F, of six results from the three models are
obtained. The design parameters are c1 = 5, c2 = 5 and c3 = 4.

5.2. Numerical Simulation of High-Dimensional Complex Matrix

The high-dimensional matrix M(t) is input. The noise is injected to observe its conver-
gence. Where M(t) ∈ C3×4,

M(t) =

 M11(t) M12(t) M13(t) M14(t)
M21(t) M22(t) M23(t) M24(t)
M31(t) M32(t) M33(t) M34(t)

,

All elements of M(t) ∈ C3×4 are listed as below (Table 3).

Table 3. M(t) matrix element expressions.

M Form of Expansion

M11(t) sin(t)(3 + 2i) + 9 + 10i
M12(t) sin(t)(1 + 2i) + 5 + 5i
M13(t) cos(2t)i + cos(3t) + (2− 3i)
M14(t) sin(t)i + 1 + 2i
M21(t) 5− sin(t)(1 + i)− 2i
M22(t) cos(3t)i + cos(t) + 1/2
M23(t) sin(t)i + 6− cos(t)− 2i
M24(t) cos(2t)i + (2 + 3i/2)− cos(t)
M31(t) cos(2t) + (2− i)− cos(t)i
M32(t) cos(2t)i + (5 + 2i) + cos(t)
M33(t) sin(2t) + 3/2 + sin(t)i + 3/2
M34(t) (1 + 2i)sin(t) + 3 + 10i

Then, the initial states of the other four matrices are given:

Qr(0) =

 0 0 0
0 0 −2/3
−1/3 1/3 0

,

Qi(0) =

 1 1 1
1 1 1
1 1 1

,

Ri(0) =

 1 −1/2 1 0
1 −2/3 2 1
0 0 −1 1/2

,

Rr(0) = 03×4.
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The above matrix is substituted into the BAFARNN model (4) and OZNN model (2)
to obtain their convergence accuracy. Figures 5–7 show their convergence speeds and
convergence accuracy, respectively, under the conditions of no noise, constant noise and
sometimes variable noise. Table 4 records the detailed experimental data. The results
show that the convergence time of the OZNN model (2) is 80 times that of the BAFARNN
model (4). The experimental results show that the convergence performance of the BA-
FARNN model (4) is much better than that of the RNN model commonly used in DQRF
(1). In addition, we also analyze the convergence of Q(t) matrices ‖E1(t)‖F and ‖E2(t)‖F,
and Q(t) matrices ‖E3(t)‖F and ‖E4(t)‖F in Figure 8 in the noiseless environment. Their
convergence is better than that of the OZNN model (2) and the NTZNN model (Figures 9
and 10).

Table 4. Comparison of two different ZNN models in terms of robustness and convergence time for
solving time-varying DRQF.

Model Convergent
Time (s)

MSSRE
with NF

MSSRE
with CN τ

MSSRE
with TVN τ(t)

OZNN (2) 0.83 2.19× 10−3 9.08× 101 2.56× 103

BAFARNN (4) 0.01 1.17× 10−3 2.92× 10−1 7.11× 10−1

Note that the parameters NF, CN and TVN in Table 4 correspond to activation noise-free, constant noise and
time-varying noise, respectively.
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Figure 5. The convergence accuracy (logarithm) of the model without noise. The design parameters
are c1 = 5, c2 = 5 and c3 = 4.
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Figure 6. The convergence accuracy (logarithm) of the model under constant noise. The design
parameters c1 = 5, c2 = 4 and c3 = 4.
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Figure 7. The convergence accuracy (logarithm) of the model under time-varying noise. The design
parameters c1 = 5, c2 = 4 and c3 = 4.
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Figure 8. When solving high-dimensional DQRF (1) in noiseless environments, Q(t) matrices
‖E1(t)‖F and ‖E2(t)‖F, and Q(t) matrices ‖E3(t)‖F and ‖E4(t)‖F, of four results from the two
models are obtained. The design parameters are c1 = 5, c2 = 5 and c3 = 4.

Figure 9. In solving the Q(t) matrix of the high-dimensional DQRF (1), the real and imaginary part
trajectory (pink) computed by the OZNN model (2) and the real and imaginary part trajectory (blue)
computed by the BAFARNN model (4) with parameters c1 = 5, c2 = 5 and c3 = 4 (online color map)
are as shown.
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Figure 10. In solving the R(t) matrix of the high-dimensional DQRF (1), the real and imaginary part
trajectory (pink) computed by the OZNN model (2) and the real and imaginary part trajectory (blue)
computed by the BAFARNN model (4) with parameters c1 = 5, c2 = 5 and c3 = 4 are as shown (online
color map).

Remark 4. Firstly, the example of 3D mobile target positioning in [20] helps us to understand
that models such as BAFARNN, which use the ZNN model to deal with the DQRF, need to be
time-varying linear. This is necessary in processing data provided by the mutual communication
of sensor nodes. Additionally, some constraints are required, such as a limit on the time difference.
Secondly, implementing the BAFARNN model requires techniques such as the Kronecker product
and vectorization techniques to transform the model into a vector form that can be processed using
MATLAB. The common implementation method ode45 in MATLAB is used for accurate experimen-
tal conclusions. Finally, all simulation experiments mentioned in this paper were conducted on an
Intel®CoreTM i7-10510U CPU @ 1.80GHz 2.30 GHz computer with the Windows 11 operating
system and MATLAB R2022a installed with 16 GB RAM.

6. Conclusions

This paper proposes a model to solve the DQRF based on coefficient consideration,
the bounded adaptive function activated recurrent neural network (BAFARNN). It is worth
noting that the bounded adaptive coefficient function (BACF) is innovative, and it is ap-
plied to the BAFARNN model. The BACF not only improves the convergence speed of the
BAFARNN model but also improves the convergence accuracy. Moreover, the model has
strong stability and excellent robustness under noisy environments. Moreover, the con-
vergence and noise resistance of the BAFARNN model under constant and time-varying
noise are demonstrated via a theoretical analysis of the new model. Ultimately, tests using
simulation experiments are conducted on various aspects of the BAFARNN model to con-
firm its accuracy. As the parameters may vary, the suggested adaptive coefficient based on
the ZNN model could be adjusted and applied in future research. In addition, the model
can solve the DQRF in noisy environments and address various issues, such as numerical
analysis and engineering applications.
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