Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus
Abstract
:1. Introduction
2. Preliminaries
3. Diffusion Process with Invariant Measures
4. Computation of
5. Example
5.1. Scheffe’s Theorem
5.2. General Distance
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nualart, D.; Peccati, G. Central limit theorems for sequences of multiple stochastic integrals. Annu. Probab. 2005, 33, 177–193. [Google Scholar] [CrossRef]
- Nourdin, I.; Peccati, G. Stein’s method on Wiener Chaos. Probab. Theory Relat. Fields 2009, 145, 75–118. [Google Scholar] [CrossRef]
- Kim, Y.T.; Park, H.S. An Edgeworth expansion for functionals of Gaussian fields and its applications. Stoch. Process. Appl. 2018, 44, 312–320. [Google Scholar] [CrossRef]
- Nourdin, I.; Viens, F.G. Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 2009, 14, 2287–2309. [Google Scholar] [CrossRef]
- Nourdin, I.; Peccati, G. Stein’s method meets Malliavin calculus: A short survey with new estimates. In Recent Development in Stochastic Dynamics and Stochasdtic Analysis; Interdisciplinary Mathematical Sciences; World Scientific Publishing: Hackensack, NJ, USA, 2010; Volume 8, pp. 207–236. [Google Scholar]
- Nourdin, I.; Peccati, G. Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality; Cambridge Tracts in Mathematica; Cambridge University Press: Cambridge, UK, 2012; Volume 192. [Google Scholar]
- Nualart, D. The Malliavin Calculus and Related Topics, 2nd ed.; Probability and Its Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chen, L.H.Y.; Goldstein, L.; Shao, Q.-M. Normal Approximation by Stein’s Method; Probability and Its Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Stein, C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume II: Probability Theory, Berkeley, CA, USA, 21 June–18 July 1970; University of California Press: Berkeley, CA, USA, 1972; pp. 583–602. [Google Scholar]
- Stein, C. Approximate Computation of Expectations; IMS: Hayward, CA, USA, 1986. [Google Scholar]
- Eden, R.; Viens, F. General upper and lower tail estimates using Malliavin calculus and Stein’s equations. arXiv 2010, arXiv:1007.0514. [Google Scholar]
- Nourdin, I.; Peccati, G. Non-central convergence of multiple integrals. Annu. Probab. 2009, 37, 1412–1426. [Google Scholar]
- Kusuoka, S.; Tudor, C.A. Stein’s method for invariant measures of diffusions via Malliavin calculus. Stoch. Process. Appl. 2012, 122, 1627–1651. [Google Scholar] [CrossRef]
- Bibby, B.M.; Skovgaard, I.M.; Sorensen, M. Diffusion-type models with given marginals and auto-correlation function. Bernoulli 2003, 11, 191–220. [Google Scholar]
- Bourguin, S.; Campese, S.; Leonenko, N.; Taqqu, M.S. Four moments theorem on Markov chaos. Annu. Probab. 2019, 47, 1417–1446. [Google Scholar] [CrossRef]
- Jameson, G.J.O. A simple proof of Stirling’s formula for the gamma function. Math. Gaz. 2015, 99, 68–74. [Google Scholar] [CrossRef]
- Azmoodeh, E.; Campese, S.; Poly, G. Fourth moment theorems for Markov diffusion generators. J. Funct. Anal. 2014, 266, 2341–2359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-T.; Park, H.-S. Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus. Mathematics 2023, 11, 2302. https://doi.org/10.3390/math11102302
Kim Y-T, Park H-S. Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus. Mathematics. 2023; 11(10):2302. https://doi.org/10.3390/math11102302
Chicago/Turabian StyleKim, Yoon-Tae, and Hyun-Suk Park. 2023. "Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus" Mathematics 11, no. 10: 2302. https://doi.org/10.3390/math11102302
APA StyleKim, Y.-T., & Park, H.-S. (2023). Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus. Mathematics, 11(10), 2302. https://doi.org/10.3390/math11102302