A Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness
Abstract
:1. Introduction
2. Existence of Optimal Solutions
- 1.
- Consider a closed ball in the Banach space X whose center is at which is usually known as the zero of the space X.
- 2.
- If we consider an optimal ball with center at the initial condition .
3. Numerical Solutions of Glycolysis Model with Analysis
3.1. Order of Accuracy
3.2. Stability of Proposed Scheme
3.3. Positivity of Proposed Scheme
3.4. The Upwind Implicit Scheme
3.5. The Classical Crank Nicolson Scheme
4. Numerical Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hess, B.; Boiteux, A.; Krüger, J. Cooperation of glycolytic enzymes. Biol. Chem. 1968, 349, 1567–1574. [Google Scholar] [CrossRef] [PubMed]
- Bagyan, S.; Mair, T.; Dulos, E.; Boissonade, J.; De-Kepper, P.; Miller, S.C. Glycolytic oscillations and waves in an open spatial reactor: Impact of feedback regulation of phosphofructokinase. Biophys. Chem. 2005, 116, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Camacho, E.T.; Brager, D.; Elachouri, G.; Korneyeva, T.; Millet-Puel, G.; Sahel, J.; Léveillard, T. Mathematical Analysis of Aerobic Glycolysis Triggered by Glucose Uptake in Cones. Sci. Rep. 2019, 9, 4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, B.; Wazwaz, A.M. Rational and Semi-Rational Solutions to the Nonlocal Mel’nikov Equation via Determinants. Rom. J. Phys. 2020, 65, 109. [Google Scholar]
- Cristescu, I.A. Finite Element Approximation for the Coupled Two-Dimensional Burgers’ Equation. Rom. J. Phys. 2018, 63, 105. [Google Scholar]
- Youssri, Y.H.; Abd-Elhameed, W.M. Numerical Spectral Legendre-Galerkin Algorithm for Solving Time Fractional Telegraph Equation. Rom. J. Phys. 2018, 63, 107. [Google Scholar]
- Baleanua, D.; Yusuf, M.I.A.; Aliyu, A.I. Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws. J. Comput. Nonlinear Dynam. 2017, 13, 021011. [Google Scholar] [CrossRef]
- Baleanua, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Dark optical solitons and conservation laws to the resonance nonlinear Shrödinger’s equation with Kerr law nonlinearity. Optik 2017, 147, 248–255. [Google Scholar] [CrossRef]
- Ahmed, N.; Rafiq, M.; Baleanu, D.; Rehman, M.A. Spatio-Temporal Numerical Modeling of Auto-Catalytic Brusselator Model. Rom. J. Phys. 2019, 64, 110. [Google Scholar]
- Hafez, R.M.; Doha, E.H.; Bhrawy, A.H.; Baleanu, D. Numerical solutions of two-dimensional mixed volterra-fredholm integral equations via bernoulli collocation method. Rom. J. Phys. 2017, 62, 111. [Google Scholar]
- Younis, M.; Ali, S. Solitary wave and shock wave solutions of (1+1)-dimensional perturbed Klein-Gordon,(1+1)-dimensional Kaup-Keperschmidt and (2+1)-dimensional ZK-BBM equations. Open Eng. 2015, 5, 124–130. [Google Scholar] [CrossRef]
- Ali, K.; Rizvi, S.T.R.; Nawaz, B.; Younis, M. Optical solitons for paraxial wave equation in Kerr media. Mod. Phys. Lett. B 2019, 33, 1950020. [Google Scholar] [CrossRef]
- Younis, M.; Shahid, I.; Anbreen, S.; Rizvi, S.T.R. Exact optical solitons in (n+1)-dimensions with anti-cubic nonlinearity. Mod. Phys. Lett. B 2018, 32, 1850071. [Google Scholar] [CrossRef]
- Dai, Z.; Locasale, J.W. Metabolic pattern formation in the tumor microenvironment. Mol. Syst. Biol. 2017, 13, 915. [Google Scholar] [CrossRef]
- Romano, A.H.; Conway, T. Evolution of carbohydrate metabolic pathways. Res. Microbiol. 1996, 147, 448–455. [Google Scholar] [CrossRef]
- Lane, A.N.; Fan, T.W.M.; Higashi, R.M. Metabolic acidosis and the importance of balanced equations. Metabolomics 2009, 5, 163–165. [Google Scholar] [CrossRef]
- Shah, K.; Wang, J.; Khalil, H.; Khan, R.A. Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations. Adv. Differ. Equ. 2018, 2018, 149. [Google Scholar] [CrossRef] [Green Version]
- Tutschke, W. Optimal balls for the application of the Schauder Fixed-Point Theorem. Complex Var. Theory Appl. Int. J. 2005, 50, 697–705. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, J. Pattern formation in a general glycolysis reaction–diffusion system. IMA J. Appl. Math. 2015, 80, 1703–1738. [Google Scholar] [CrossRef] [Green Version]
- Meihua, W.; Yanling, L.; Xi, W. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete Cont. DYN-B 2019, 24, 5203–5224. [Google Scholar]
- Dehghana, M.; Saadatmandi, A. The numerical solution of a nonlinear system of second-order boundary value problems using the sinc-collocation method. Math. Comput. Model. 2007, 46, 1434–1441. [Google Scholar] [CrossRef]
- Malik, Z.U.; Soleymani, F.; Al-Fhaid, A.S. Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs. Numer. Algor. 2014, 67, 223–242. [Google Scholar]
- Sel’Kov, E.E. Self-Oscillations in Glycolysis 1. A Simple Kinetic Model. Eur. J. Biochem. 1968, 4, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Mickens, R.E. Positivity preserving discrete model for the coupled ODES modeling glycolysis. In Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, Wilmington, NC, USA, 24–27 May 2002; pp. 623–629. [Google Scholar]
- Iqbal, M.S. Boundary Value Problems for Non-linear First Order Systems of Partial Differential Equations in Higher Dimensions, Especially in Three Dimensions. Adv. Appl. Clifford Algebras 2019, 29, 98. [Google Scholar] [CrossRef]
- Verveyko, D.V.; Verisokin, A.Y. Computational analysis of glycolytic reaction in open spatial reactor. Appl. Math. Model. 2014, 38, 4796–4803. [Google Scholar] [CrossRef]
- Ahmed, N.; Tahira, S.S.; Imran, M.; Rafiq, M.; Rehman, M.A.; Younis, M. Numerical analysis of auto-catalytic glycolysis model. AIP Adv. 2019, 9, 085213. [Google Scholar] [CrossRef] [Green Version]
- Twizell, E.H.; Gumel, A.B.; Cao, Q. A second-order scheme for the “Brusselator” reaction–diffusion system. J. Math. Chem. 1999, 26, 297–316. [Google Scholar] [CrossRef]
- Zhou, P.; Xiao, D. Global dynamics of a classical Lotka–Volterra competition–diffusion–advection system. J. Funct. Anal. 2018, 275, 356–380. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Zhou, P. On a Lotka–Volterra competition model: The effects of advection and spatial variation. Calc. Var. 2016, 55, 73. [Google Scholar] [CrossRef]
- Peng, R.; Zhao, X.Q. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species. J. Math. Biol. 2016, 72, 755–791. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, X.Q. Propagation Phenomena for A Reaction–Advection–Diffusion Competition Model in A Periodic Habitat. J. Dyn. Diff. Equat. 2017, 29, 41–66. [Google Scholar] [CrossRef]
- Zhang, L.; Wanga, Z.C.; Zhao, X.Q. Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period. J. Differ. Equ. 2015, 258, 3011–3036. [Google Scholar] [CrossRef]
- He, X.; Ni, W.M. The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system II: The general case. J. Differ. Equ. 2013, 254, 4088–4108. [Google Scholar] [CrossRef]
- Dockery, J.; Hutson, V.; Mischaikow, K.; Pernarowski, M. The evolution of slow dispersal rates: A reaction diffusion model. J. Math. Biol. 1998, 37, 61–83. [Google Scholar] [CrossRef]
- Kostic, M. Abstract Volterra Integro-Differential Equations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ahmed, N.; Wei, Z.; Baleanu, D.; Rafiq, M.; Rehman, M.A. Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system. Chaos 2019, 29, 103101. [Google Scholar] [CrossRef]
- Ahmed, N.; Rafiq, M.; Rehman, M.A.; Iqbal, M.S.; Ali, M. Numerical modeling of three dimensional Brusselator reaction diffusion system. AIP Adv. 2019, 9, 015205. [Google Scholar] [CrossRef] [Green Version]
- Fatima, U.; Ali, M.; Ahmed, N.; Rafiq, M. Numerical modeling of susceptible latent breaking-out quarantine computer virus epidemic dynamics. Heliyon 2018, 4, 00631. [Google Scholar] [CrossRef]
- Arson, D.G. A Comparison Method for Stability Analysis of Nonlinear Parabolic Problems. SIAM Rev. 1978, 20, 245–264. [Google Scholar] [CrossRef]
- Bebernes, J.W.; Schmitt, K. On the existence of maximal and minimal solutions for parabolic partial differential equations. Proc. Am. Math. Soc. 1979, 73, 211–218. [Google Scholar] [CrossRef]
- Escobedo, M.; Herrero, M.A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differ. Equ. 1991, 89, 176–202. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.C.; Dong, M.Z.; Li, F.J. Asymptotic properties of blow-up solutions in reaction–diffusion equations with nonlocal boundary flux. Z. Angew. Math. Phys. 2018, 69, 27. [Google Scholar] [CrossRef]
- Lin, H.; Wang, F. On a reaction–diffusion system modeling the dengue transmission with nonlocal infections and crowding effects. Appl. Math. Comput. 2014, 248, 184–194. [Google Scholar] [CrossRef]
- Strogatz, S.H. Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering; Adisson-Wesley: New York, NY, USA, 1994; pp. 205–209. [Google Scholar]
- Mickens, R.E. Nonstandard Finite Difference Models of Differential Equations; World Scientific: Singapore, 1994. [Google Scholar]
- Chen-Charpentier, B.M.; Kojouharov, H.V. An unconditionally positivity preserving scheme for advection–diffusion reaction equations. Math. Comput. Model. 2013, 57, 2177–2185. [Google Scholar] [CrossRef]
- Fujimoto, T.; Ranade, R. Two characterizations of inverse-positive matrices: The Hawkins-Simon condition and the Le Chatelier-Braun principle. Electron. J. Linear Algebra 2004, 11, 59–65. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaikh, T.S.; Akgül, A.; Rehman, M.A.-u.; Ahmed, N.; Iqbal, M.S.; Shahid, N.; Rafiq, M.; De la Sen, M. A Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness. Mathematics 2023, 11, 37. https://doi.org/10.3390/math11010037
Shaikh TS, Akgül A, Rehman MA-u, Ahmed N, Iqbal MS, Shahid N, Rafiq M, De la Sen M. A Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness. Mathematics. 2023; 11(1):37. https://doi.org/10.3390/math11010037
Chicago/Turabian StyleShaikh, Tahira Sumbal, Ali Akgül, Muhammad Aziz-ur Rehman, Nauman Ahmed, Muhammad Sajid Iqbal, Naveed Shahid, Muhammad Rafiq, and Manuel De la Sen. 2023. "A Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness" Mathematics 11, no. 1: 37. https://doi.org/10.3390/math11010037
APA StyleShaikh, T. S., Akgül, A., Rehman, M. A.-u., Ahmed, N., Iqbal, M. S., Shahid, N., Rafiq, M., & De la Sen, M. (2023). A Nonlinear Structure of a Chemical Reaction Model and Numerical Modeling with the New Aspect of Existence and Uniqueness. Mathematics, 11(1), 37. https://doi.org/10.3390/math11010037