Fixed Points for (ξ,ω)-Weakly Cyclic Type Generalized Contraction Condition in Metric Spaces with an Application
Abstract
:1. Introduction and Prelimnaries
- 1.
- ξ is continuous and strictly increasing in ;
- 2.
- if and only if .
- 1.
- , are non-void and closed, and
- 2.
- .
2. Main Results
- 1.
- is a cyclic representation of Z with respect to Ω;
- 2.
- for any (with ),
3. An Application to Boundary Value Problem
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Brouwer, L.E.J. Über Abbildungen von Mannigfaltigkeiten. Math. Ann. 1912, 71, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Massa, S. Uńosservazione su un teorema di Browder-Roux-Soardi. Boll. U. M. I. 1973, 4, 151–155. [Google Scholar]
- Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4, 79–89. [Google Scholar]
- Petrushel, G. Cyclic representations and Periodic points. Stud. Univ. Babes-Bloyai Math 2005, 50, 107–112. [Google Scholar]
- Karpagam, S.; Agrawal, S. Best Proximity Points theorems for Cyclic Meir Keeler Contraction Maps. Nonlinear Anal. 2011, 74, 1040–1046. [Google Scholar] [CrossRef]
- Pacurar, M.; Rus, I.A. Fixed Point Theory for ϕ -contractions. Nonlinear Anal. 2010, 72, 1181–1187. [Google Scholar] [CrossRef]
- Derafshpour, M.; Rezapur, S.; Shahzad, N. Best Proximity point of cyclic ϕ contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 2011, 37, 193–202. [Google Scholar]
- George, R.; Rajagopalan, R. Cyclic Contractions and fixed points in a dislocated metric space. Int. J. Math. Anal. 2013, 7, 403–411. [Google Scholar] [CrossRef]
- Rhoades, B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47, 2683–2693. [Google Scholar] [CrossRef]
- Dutta, P.N.; Choudhury, B.S. A generalisation of contraction principle in metric spaces. Fixed Point Theory Appl. 2008, 2008, 406368. [Google Scholar] [CrossRef] [Green Version]
- Ðorić, D. Common fixed point for generalized (ψ, ϕ)-weak contractions. Appl. Math. Lett. 2009, 22, 1896–1900. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Song, Y. Fixed point theory for generalized φ-weak contractions. Appl. Math. Lett. 2009, 22, 75–78. [Google Scholar] [CrossRef]
- Hosseini, V.R. Common fixed for generalized (ϕ-ψ)-weak contractions mappings condition of integral type. Int. J. Math. Anal. 2010, 4, 1535–1543. [Google Scholar]
- Popescu, O. Fixed points for (ψ, ϕ)-weak contractions. Appl. Math. Lett. 2011, 24, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Nashine, H.K.; Golubović, Z.; Kadelburg, Z. Nonlinear cyclic weak contractions in G-metric spaces and applications to boundary value problems. Fixed Point Theory Appl. 2012, 2012, 227. [Google Scholar] [CrossRef] [Green Version]
- Abkar, A.; Choudhury, B.S. Fixed point result in partially ordered metric spaces using weak contractive inequalities. Facta Univ. Ser. Math. Inform. 2012, 27, 1–11. [Google Scholar]
- Ahmad, J.; Arshad, M.; Vetro, P. Coupled coincidence point results for (φ, ψ)-contractive mappings in partially ordered metric spaces. Georgian Math. J. 2014, 21, 113–124. [Google Scholar] [CrossRef]
- Hussain, N.; Arshad, M.; Shoaib, A. Fahimuddin Common fixed point results for α-ψ-contractions on a metric space endowed with graph. J. Inequal. Appl. 2014, 1, 1–14. [Google Scholar]
- Murthy, P.P.; Tas, K.; Patel, U.D. Common fixed point theorems for generalized (ϕ, ψ)-weak contraction condition in complete metric spaces. J. Inequal. Appl. 2015, 2015, 139. [Google Scholar] [CrossRef] [Green Version]
- Okeke, G.A.; Francis, D.; Gibali, A. On fixed point theorems for a class of α-ν-Meir-Keeler-type contraction mapping in modular extended b-metric spaces. J. Anal. 2022, 30, 1257–1282. [Google Scholar] [CrossRef]
- Okeke, G.A.; Francis, D. Fixed point theorems for Geraghty-type mappings applied to solving nonlinear Volterra-Fredholm integral equations in modular G-metric spaces. Arab. J. Math. Sci. 2021, 27, 214–234. [Google Scholar] [CrossRef]
- Okeke, G.A.; Francis, D. Fixed point theorems for asymptotically T-regular mappings in preordered modular G-metric spaces applied to solving nonlinear integral equations. J. Anal. 2022, 30, 501–545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murthy, P.P.; Sahu, P.; Elsonbaty, A.; Khan, K.H.; Ramaswamy, R.; Radenović, S. Fixed Points for (ξ,ω)-Weakly Cyclic Type Generalized Contraction Condition in Metric Spaces with an Application. Mathematics 2023, 11, 166. https://doi.org/10.3390/math11010166
Murthy PP, Sahu P, Elsonbaty A, Khan KH, Ramaswamy R, Radenović S. Fixed Points for (ξ,ω)-Weakly Cyclic Type Generalized Contraction Condition in Metric Spaces with an Application. Mathematics. 2023; 11(1):166. https://doi.org/10.3390/math11010166
Chicago/Turabian StyleMurthy, Penumarthy Parvateesam, Pusplata Sahu, Amr Elsonbaty, Khizar Hyatt Khan, Rajagopalan Ramaswamy, and Stojan Radenović. 2023. "Fixed Points for (ξ,ω)-Weakly Cyclic Type Generalized Contraction Condition in Metric Spaces with an Application" Mathematics 11, no. 1: 166. https://doi.org/10.3390/math11010166
APA StyleMurthy, P. P., Sahu, P., Elsonbaty, A., Khan, K. H., Ramaswamy, R., & Radenović, S. (2023). Fixed Points for (ξ,ω)-Weakly Cyclic Type Generalized Contraction Condition in Metric Spaces with an Application. Mathematics, 11(1), 166. https://doi.org/10.3390/math11010166