
Citation: Murthy, P.P.; Sahu, P.;

Elsonbaty, A.; Khan, K.H.;

Ramaswamy, R.; Radenović, S. Fixed
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Abstract: In the present work, we have introduced a new type of (ξ, ω)-weakly cyclic generalized
contraction in the setting of metric spaces and established some fixed-point results. Fixed-point
results are useful in establishing the existence of unique solution to differential equations. We have
supplemented the derived results with suitable non-trivial examples with an application to the
Boundary Value Problem, generalizing some known results. The analytical result has been verified
with numerical simulation.
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1. Introduction and Prelimnaries

The foundation of Metric Fixed-Point Theory was laid in the year 1922, when S. Banach
gave the famous Contraction Mapping Theorem (CMT) [1], in the setting of complete
Metric space (M, ρ) by making rich hypothesis than of Brouwer’s [2] particularly to obtain
a unique fixed point. In real-life situations as well, uniqueness plays an essential role in
our life. The past few decades have seen many generalizations of the CMT being reported
in the literature by various mathematicians using different contractive conditions in the
setting of metric and metric-like spaces such as dislocated metric space, quasi metric space,
rectangular metric space, b metric space, fuzzy metric space, to name a few.

Throughout this paper, R+ denotes non-negative reals, while N denotes positive
integers.

In the sequel, Khan, Swaleh, and Sessa [3] introduced the altering distance function
ξ in the year 1984, extending the condition used by Massa [4] in the setting of complete
metric space (M, ρ). Khan et al. [3] furnished the following definition:

Definition 1 ([3]). A function ξ : R+ → R+ is called an altering distance function if the following
properties are satisfied:

1. ξ is continuous and strictly increasing in R+;
2. ξ(t) = 0 if and only if t = 0.

Later, Kirk et al. [5] presented a fixed-point result using cyclic maps, which is as
follows:
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Definition 2 ([5]). Consider the metric space (M, ρ). Let q ∈ N, ℘1,℘2, . . . ,℘q be subsets of M,

Z =
q⋃

i=1
℘i and Ω : Z → Z. Then, Z is a cyclic representation of Z with respect to Ω if

1. ℘i, i = 1, 2, . . . , q are non-void and closed, and
2. Ω(℘1) ⊆ ℘2, . . . , Ω(℘q−1) ⊆ ℘q, Ω(℘q) ⊆ ℘1.

Subsequently, many mathematicians proved fixed-point results using different types
cyclic contractions in various topological spaces, see [6–10].

The concept of weak contractive condition was first proposed at WCNA-2000 by Billy
Rhoades [11]. He proposed the following:

Definition 3 ([11]). Let (M, ρ) be a metric space. The map Ω : M→ M is weakly contractive if

ρ(Ωη, Ωδ) ≤ ρ(η, δ)− ξ(ρ(η, δ)), for all η, δ ∈ M,

where ξ is an altering distance function.

Subsequently, various fixed-point results using weak contraction conditions were
reported in various types of topological spaces. Readers may consult the following for
more knowledge on weak contractions and their generalizations, [12–20], etc.

Later, Murthy et al. [21] generalized the weakly contractive map for two pairs of maps
and established fixed-point result as follows:

Theorem 1 ([21]). Let (M, ρ) be a complete metric space, and let Υ, Γ, ζ, and Ω : M → M be
mappings satisfying

ω(ρ(Υη, Γδ)) ≤ ω(σ1(η, δ))− ξ(σ2(η, δ)) (1)

for all η, δ ∈ M, with η 6= δ and

σ1(η, δ) = max

{
ρ(ζη, Ωδ),

1
2
(ρ(ζη, Υη) + ρ(Ωδ, Γδ)),

1
2
(ρ(ζη, Γδ) + ρ(Ωδ, Υη))

}

and

σ2(η, δ) = min

{
ρ(ζη, Ωδ),

1
2
(ρ(ζη, Υη) + ρ(Ωδ, Γ)),

1
2
(ρ(ζη, Γδ) + ρ(Ωδ, Υη))

}

Υ(M) ⊆ Ω(M) and Γ(M) ⊆ ζ(M), (Υ, ζ) and (Γ, Ω) are weak compatible pairs, ξ : R+ → R+

is lower semi-continuous, such that ξ(t) > 0, for all t > 0 and discontinuous at t = 0 with
ξ(0) = 0, ω : R+ → R+ is an altering distance function.

Then Υ, Γ, ζ, and Ω have a unique common fixed point in M.

The authors of this note recommend the readers to refer to [22–24] for various new con-
cepts of fixed-point theory and applications such as Volterra–Fredholm integral equations,
solving nonlinear integral equations, etc.

In the present work, we extend the contraction condition (1) for cyclic maps in complete
metric space and present our work as follows. In Section 2, we present our main results
by defining (ξ, ω)-weakly cyclic generalized contraction in metric spaces and establish
fixed-point results therein. In Section 3, we apply the derived result to find a unique
analytical solution to the boundary value problem. We also present a numerical simulation
of the derived result.

2. Main Results

We present the following definition:
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Definition 4. Let (M, ρ) be a metric space. Let q ∈ N , ℘1,℘2, . . . ,℘q be non-void subsets of M

and Z =
q⋃

i=1
℘i. An operator Ω : Z → Z is a (ξ, ω)-weakly cyclic generalized contraction if

1. Z =
q⋃

i=1
℘i is a cyclic representation of Z with respect to Ω;

2. for any (η, δ) ∈ ℘i × ℘i+1, i = 1, 2, . . . , q (with ℘q+1 = ℘1),

ξ(ρ(Ωη, Ωδ)) ≤ ξ(∆1(η, δ))−ω(∆2(η, δ)), (2)

where

∆1(η, δ) = max

{
ρ(η, δ),

1
2
[ρ(η, Ωη) + ρ(δ, Ωδ)],

1
2
[ρ(η, Ωδ) + ρ(δ, Ωη)]

}
(3)

and

∆2(η, δ) = min

{
ρ(η, δ),

1
2
[ρ(η, Ωδ) + ρ(δ, Ωη)]

}
; (4)

ξ : R+ → R+ is an altering distance function and ω : R+ → R+ is continuous with ω(t) = 0 if
and only if t = 0.

We now present our main result:

Theorem 2. Let (M, ρ) be a complete metric space, q ∈ N, ℘1, ℘2, . . . , ℘q be non-void closed

subsets of M and Z =
q⋃

i=1
℘i. Suppose Ω : Z → Z is a (ξ, ω)-weakly cyclic generalized contraction.

Then there exists a unique fixed point for Ω in
q⋂

i=1
℘i.

Proof. Let η0 ∈ ℘1( ℘i is non-void for all i). Consider the sequence {ηn} in M given by

ηn+1 = Ωηn, for all n ∈ N∪ {0}.

If ηn = ηn+1, then ηn is a fixed point of Ω.
Now, we can assume that

ηn 6= ηn+1, for all n ∈ N∪ {0}. (5)

We shall prove that
lim

n→+∞
ρ(ηn, ηn+1) = 0. (6)

By the assumption, ρ(ηn, ηn+1) > 0 for all n. From (1), we have i = i(n) ∈ {1, 2, . . . , q}
for all n, such that (ηn, ηn+1) ∈ ℘i × ℘i+1. Putting η = ηn and δ = ηn+1 in the condition
(2), we have

ξ(ρ(Ωηn, Ωηn+1)) = ξ(ρ(ηn+1, ηn+2))

≤ ξ(∆1(ηn, ηn+1))−ω(∆2(ηn, ηn+1)), (7)
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where

∆1(ηn, ηn+1) =max

{
ρ(ηn, ηn+1),

1
2
[ρ(ηn, Ωηn) + ρ(ηn+1, Ωηn+1)],

1
2
[ρ(ηn, Ωηn+1) + ρ(ηn+1, Ωηn)]

}

=max

{
ρ(ηn, ηn+1),

1
2
[ρ(ηn, ηn+1) + ρ(ηn+1, ηn+2)],

1
2
[ρ(ηn, ηn+2) + ρ(ηn+1, ηn+1)]

}

and

∆2(ηn, ηn+1) = min

{
ρ(ηn, ηn+1),

1
2
[ρ(ηn, Ωηn+1) + ρ(ηn+1, Ωηn)]

}

= min

{
ρ(ηn, ηn+1),

1
2
[ρ(ηn, ηn+2) + ρ(ηn+1, ηn+1)]

}

Then, by the triangle inequality, we have

∆1(ηn, ηn+1) ≤max

{
ρ(ηn, ηn+1),

1
2
[ρ(ηn, ηn+1) + ρ(ηn+1, ηn+2)],

1
2
[ρ(ηn, ηn+1) + ρ(ηn+1, ηn+2)]

}

∆1(ηn, ηn+1) ≤ max

{
ρ(ηn, ηn+1), 1

2 [ρ(ηn, ηn+1) + ρ(ηn+1, ηn+2)]

}
(8)

and

∆2(ηn, ηn+1) = min

{
ρ(ηn, ηn+1),

1
2
[ρ(ηn, ηn+2)]

}
(9)

If possible, let for some n, ρ(ηn, ηn+1) < ρ(ηn+1, ηn+2).
Then, by the triangle inequality, 0 < ρ(ηn+1, ηn+2)− ρ(ηn, ηn+1) ≤ ρ(ηn, ηn+2). Hence,

by (5), we have ∆2(ηn, ηn+1) > 0.
Now, if ρ(ηn, ηn+1) < ρ(ηn+1, ηn+2) then we obtain

∆1(ηn, ηn+1) ≤ ρ(ηn+1, ηn+2), (10)

and (7) implies that this inequality

ξ(ρ(ηn+1, ηn+2)) ≤ ξ(∆1(ηn, ηn+1))−ω(∆2(ηn, ηn+1))

≤ ξ(∆1(ηn, ηn+1)).

As ξ is monotonically increasing, we have

ρ(ηn+1, ηn+2) ≤ ∆1(ηn, ηn+1). (11)
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From (10) and (11), we have

∆1(ηn, ηn+1) = ρ(ηn+1, ηn+2).

Then, from (7)–(9) and our assumption, we have

ξ(ρ(ηn+1, ηn+2)) ≤ ξ(ρ(ηn+1, ηn+2))−ω(∆2(ηn, ηn+1))

< ξ(ρ(ηn+1, ηn+2))

which is a contradiction. Hence, for all n ≥ 0,

ρ(ηn+1, ηn+2) ≤ ρ(ηn, ηn+1) (12)

By (12), we obtain from (8) and (9), for all n ≥ 0,

∆1(ηn, ηn+1) = ρ(ηn, ηn+1) (13)

∆2(ηn, ηn+1) =
1
2

ρ(ηn, ηn+2) (14)

Putting (12) and (13) in (7), we have for all n ≥ 0,

ξ(ρ(ηn+1, ηn+2)) ≤ ξ(ρ(ηn, ηn+1))−ω

(
1
2

ρ(ηn, ηn+2)

)
. (15)

Again (12) implies that the sequence {ρ(ηn, ηn+1)} decreases monotonically. Hence,
there exists r ≥ 0 such that

lim
n→+∞

ρ(ηn, ηn+1) = r.

Again, by the triangle inequality, we have

ρ(ηn, ηn+2) ≤ ρ(ηn, ηn+1) + ρ(xn+1,ηn+2)

ρ(ηn, ηn+2)− 2r ≤ ρ(ηn, ηn+1) + ρ(ηn+1, ηn+2)− 2r

ρ(ηn, ηn+2)− 2r ≤ [ρ(ηn, ηn+1)− r] + [ρ(ηn+1, ηn+2)− r].

As n→ +∞, we have
lim

n→+∞
ρ(ηn, ηn+2) = 2r.

and as n→ +∞ in (15), we have

lim
n→+∞

ξ(ρ(ηn+1, ηn+2)) ≤ lim
n→+∞

ξ(ρ(ηn, ηn+1))− lim
n→+∞

ω

(
1
2

ρ(ηn, ηn+2)

)
.

As ξ and ω are continuous,

ξ(r) ≤ ξ(r)−ω(r).

Therefore, ω(r) = 0 and hence r = 0. Thus,

lim
n→+∞

ρ(ηn, ηn+1) = 0. (16)

We now claim {ηn} is a Cauchy sequence in M. Suppose not.
Then, for some ε > 0, we can find two subsequences {ηm(k)} and {ηn(k)} of {ηn} such that
n(k) > m(k) > k for k ∈ N and

ρ(ηm(k), ηn(k)) ≥ ε. (17)

which implies,
ρ(ηm(k), ηn(k)−1) < ε. (18)
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From (17) and (18) and by the triangle inequality, we have

ε ≤ ρ(ηm(k), ηn(k))

≤ ρ(ηm(k), ηn(k)−1) + ρ(ηn(k)−1, ηn(k))

< ε + ρ(ηn(k)−1, ηn(k))

Letting k→ +∞ and using (16), we obtain

lim
k→+∞

ρ(ηm(k), ηn(k)) = ε. (19)

Putting η = ηm(k)−1 and δ = ηn(k)−1 in (2)–(4) respectively, for all k ∈ N,

ξ(ρ(Ωηm(k)−1, Ωηn(k)−1)) = ξ(ρ(ηm(k), ηn(k)))

≤ ξ(∆1(ηm(k)−1, ηn(k)−1))−ω(∆2(ηm(k)−1, ηn(k)−1)), (20)

where

∆1(ηm(k)−1, ηn(k)−1)=max

{
ρ(ηm(k)−1, ηn(k)−1),

1
2

[
ρ(ηm(k)−1, Ωηm(k)−1)+ρ(ηn(k)−1, Ωηn(k)−1)

]
,

1
2

[
ρ(ηm(k)−1, Ωηn(k)−1) + ρ(ηn(k)−1, Ωηm(k)−1)

]}

=max

{
ρ(ηm(k)−1, ηn(k)−1),

1
2

[
ρ(ηm(k)−1, ηm(k)) + ρ(ηn(k)−1, ηn(k))

]
,

1
2

[
ρ(ηm(k)−1, ηn(k)) + ρ(ηn(k)−1, ηm(k))

]}

and

∆2(ηm(k)−1, ηn(k)−1)=min
{

ρ(ηm(k)−1, ηn(k)−1),
1
2

[
ρ(ηm(k)−1, Ωηn(k)−!1)+ρ(ηn(k)−1, Ωηm(k)−1)

]}
=min

{
ρ(ηm(k)−1, ηn(k)−1),

1
2

[
ρ(ηm(k)−1, ηn(k)) + ρ(ηn(k)−1, ηm(k))

]}
.

Now, for all k ∈ N, we have

ρ(ηm(k)−1, ηn(k)−1) ≤ ρ(ηm(k)−1, ηm(k)) + ρ(ηm(k), ηn(k)) + ρ(ηn(k), ηn(k)−1)

and

ρ(ηm(k), ηn(k)) ≤ ρ(ηm(k), ηm(k)−1) + ρ(ηm(k)−1, ηn(k)−1) + ρ(ηn(k)−1, ηn(k)).

Letting k→ +∞ and using (16) and (19), we have

lim
k→+∞

ρ(ηm(k)−1, ηn(k)−1) = ε. (21)

Now, for any k ∈ N, we have

ρ(ηm(k)−1, ηn(k)) ≤ ρ(ηm(k)−1, ηm(k)) + ρ(ηm(k), ηn(k))

and

ρ(ηm(k), ηn(k)) ≤ ρ(ηm(k), ηm(k)−1) + ρ(ηm(k)−1, ηn(k)).
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As k→ +∞, from (16) and (19), we have

lim
k→+∞

ρ(ηm(k)−1, ηn(k)) = ε. (22)

For k ∈ N, we have

ρ(ηn(k)−1, ηm(k)) ≤ ρ(ηn(k)−1, ηn(k)) + ρ(ηn(k), ηm(k))

and

ρ(ηn(k), ηm(k)) ≤ ρ(ηn(k), ηn(k)−1) + ρ(ηn(k)−1, ηm(k))

Letting k→ +∞ and using (16) and (19), we have

lim
k→+∞

ρ(ηn(k)−1, ηm(k)) = ε. (23)

As k → +∞ in (20) and from (16), (19)–(23) and with ξ and ω being continuous, we
have

ξ(ε) ≤ ξ(ε)−ω(ε),

a contradiction as ε > 0. Hence, {ηn} is Cauchy.
By completeness of (M, ρ), there exists some η∗ ∈ M such that

lim
n→+∞

ηn = η∗. (24)

We now claim

η∗ ∈
q⋂

i=1

℘i.

From condition (1), and since η0 ∈ ℘1, we have (ηnq)n≥0 ⊆ ℘1. Since ℘1 is closed,
from (24), we obtain η∗ ∈ ℘1. Again, from condition (1), we have (ηnq+1)n≥0 ⊆ ℘2. Since
℘2 is closed, from (24), we obtain η∗ ∈ ℘2. Continuing this process, we obtain

η∗ ∈
q⋂

i=1

℘i. (25)

We now prove η∗ is a fixed point of Ω. Clearly, from (25), since for all n there exists
i(n) ∈ {1, 2, . . . , q} such that ηn ∈ ℘i(n), applying (2) with η = ηn and δ = η∗, we have

ξ(ρ(Ωηn, Ωη∗)) = ξ(ρ(ηn+1, Ωη∗))

≤ ξ(∆1(ηn, η∗))−ω(∆2(ηn, η∗))

where

∆1(ηn, η∗) = max
{

ρ(ηn, η∗),
1
2
[ρ(ηn, Ωηn) + ρ(η∗, Ωη∗)],

1
2
[ρ(ηn, Ωη∗) + ρ(η∗, Ωηn)]

}
= max

{
ρ(ηn, η∗),

1
2
[ρ(ηn, ηn+1) + ρ(η∗, Ωη∗)],

1
2
[ρ(ηn, Ωη∗) + ρ(η∗, ηn+1)]

}
and

∆2(ηn, η∗) = min
{

ρ(ηn, η∗),
1
2
[ρ(ηn, Ωη∗) + ρ(η∗, Ωηn)]

}
= min

{
ρ(ηn, η∗),

1
2
[ρ(ηn, Ωη∗) + ρ(η∗, ηn+1)]

}
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Now,

ξ(ρ(η∗, Ωη∗)) ≤ ξ

(
1
2

ρ(η∗, Ωη∗)

)
−ω(0).

as n→ +∞ Therefore,

ξ(ρ(η∗, Ωη∗)) ≤ ξ

(
1
2

ρ(η∗, Ωη∗)

)
.

ξ is monotonically increasing. Hence,

ρ(η∗, Ωη∗) ≤ 1
2

ρ(η∗, Ωη∗)

a contradiction. Therefore, ρ(η∗, Ωη∗) = 0 and hence Ωη∗ = η∗. Thus, η∗ is a fixed point
of Ω.

For uniqueness, suppose that δ∗ is another fixed point with Ωδ∗ = δ∗. By condition

(1), this implies that δ∗ ∈
q⋂

i=1
℘i. By using (2) for η = η∗ and δ = δ∗,

ξ(ρ(Ωη∗, Tδ∗)) = ξ(ρ(η∗, δ∗))

≤ ξ(∆1(η
∗, δ∗))−ω(∆2(η

∗, δ∗)) (26)

where

∆1(η
∗, δ∗)=max

{
ρ(η∗, δ∗),

1
2
[ρ(η∗, Ωη∗)+ρ(δ∗, Ωδ∗)],

1
2
[ρ(η∗, Ωδ∗)+ρ(δ∗, Ωη∗)]

}
(27)

and

∆2(η
∗, δ∗) = min

{
ρ(η∗, δ∗),

1
2
[ρ(η∗, Ωδ∗) + ρ(δ∗, Ωη∗)]

}
(28)

Since η∗ and δ∗ are both fixed points of Ω, from (26)–(28), we have

ξ(ρ(η∗, δ∗)) ≤ ξ(ρ(η∗, δ∗))−ω(ρ(η∗, δ∗))

which implies ρ(η∗, δ∗) = 0, Hence, η∗ = δ∗.

Remark 1. Letting ξ(t) = t in Theorem 2 results in the following:

Corollary 1. Let (M, ρ) be a complete metric space, q ∈ N, ℘1,℘2, . . . ,℘q be non-empty closed

subsets of M and Z =
q⋃

i=1
℘i. Suppose Ω : Z → Z such that

ρ(Ωη, Ωδ) ≤ ∆1(η, δ)−ω(∆2(η, δ)),

where η, δ ∈ M, η 6= δ and

∆1(η, δ) = max
{

ρ(η, δ),
1
2
[ρ(η, Ωη) + ρ(δ, Ωδ)],

1
2
[ρ(η, Ωδ) + ρ(δ, Ωη)]

}
∆2(η, δ) = min

{
ρ(η, δ),

1
2
[ρ(η, Ωδ) + ρ(δ, Ωη)]

}
;

ω : R+ → R+ is a continuous function with ω(t) = 0 if and only if t = 0.

Then, Ω has a unique fixed point in
q⋂

i=1
℘i.

We supplement our derived result with the following example:
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Example 1. Let M = R2 and let ρ : M×M→ R+ be given as

ρ((η1, δ1), (η2, δ2)) = |η1 − η2|+ |δ1 − δ2|.

(M, ρ) is complete and let

℘1 = {(a, 0) : 0 ≤ a ≤ 1} and ℘2 = {(0, b) : 0 ≤ b ≤ 1},

be the closed subsets of M. Let Ω : ℘1 ∪ ℘2 → ℘1 ∪ ℘2 be a map, such that

Ω((a, 0)) =
(

0,
a
2

)
, Ω((0, b)) =

(
b
2

, 0
)

.

Clearly, Z = ℘1 ∪ ℘2 is a cyclic representation of Z with respect to Ω.
Claim: Ω satisfies (2).
Let ξ(t) = t and ω(t) = 1

2 t such that ω(0) = 0. Let η = (a, 0) and δ = (0, b) then

Ωη =
(
0, a

2
)
, Ωδ =

(
b
2 , 0
)

and

ρ(Ωη, Ωδ) =
1
2
(a + b)

ρ(η, δ) = a + b
1
2
[ρ(η, Ωη) + ρ(δ, Ωδ)] =

3
4
(a + b)

1
2
[ρ(η, Ωδ) + ρ(δ, Ωη)] =

1
2

[∣∣∣∣a− b
2

∣∣∣∣+ ∣∣∣b− a
2

∣∣∣].

Hence,

ξ(ρ(Ωη, Ωδ)) =
1
2
(a + b)

=
1
2

ξ(ρ(η, δ))

≤ ξ(∆1(η, δ))−ω(∆2(η, δ)).

All conditions of Theorem 2 are satisfied and Ω has a unique fixed point (0, 0) ∈
℘1 ∩ ℘2.

3. An Application to Boundary Value Problem

The derived result is applied to the following Boundary Value Problem to find an
analytical solution:

− d2δ

dη2 = F(η, δ(η)), η ∈ [0, 1],

δ(0) = δ(1) = 0,

 (29)

where F : [0, 1]×R→ R is continuous function. This problem is equivalent to the integral
equation

δ(η) =
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ, for η ∈ [0, 1], (30)

where G(η, γ) is the Green’s function defined as

G(η, γ) =

{
γ(1− η); 0 ≤ γ < η,
η(1− γ); η < γ ≤ 1.



Mathematics 2023, 11, 166 10 of 14

Let M = C([0, 1],R+) be a space of non-negative continuous real-valued functions
defined on [0, 1]. Now, we define the metric ρ on M, that is,

ρ(δ, µ) = max
η∈[0,1]

|δ(η)− µ(η)|

for δ, µ ∈ M. Then, (M, ρ) is a complete metric space.
Let ℘1 = ℘2 = M = C([0, 1],R+). It is clear that ℘1 and ℘2 are closed subsets of M.

Consider the self mapping Ω : ℘1 ∪ ℘2 → ℘1 ∪ ℘2 is defined by

Ωδ(η) =
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ, η ∈ [0, 1].

Clearly, Ω(℘1) ⊆ ℘2 and Ω(℘2) ⊆ ℘1. Thus, Ω is cyclic map on ℘1 ∪ ℘2.
Suppose the following condition hold:

|F(γ, α)− F(γ, β)| ≤ |α− β|, for all γ ∈ [0, 1] and α, β ∈ R+.

Then, (30) has a unique solution δ∗ ∈ M.
Finally, we will show that, for each δ ∈ ℘1 and µ ∈ ℘2, we have

ξ(ρ(Ωδ, Ωµ)) ≤ ξ(∆1(δ, µ))−ω(∆2(δ, µ))

for ξ(η) = η and ω(η) = 1
2 η. Now, let (δ, µ) ∈ ℘1 × ℘2. Therefore, by (2) we deduce that

for each η ∈ [0, 1].

ρ(Ωδ, Ωµ) = max
η∈[0,1]

|Ωδ(η)−Ωµ(η)|

= max
η∈[0,1]

∣∣∣∣∫ 1

0
G(η, γ)F(γ, δ(γ))dγ−

∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣
= max

η∈[0,1]

∣∣∣∣∫ 1

0
G(η, γ)[F(γ, δ(γ))− F(γ, µ(γ))]dγ

∣∣∣∣
≤ max

η∈[0,1]

∫ 1

0
G(η, γ)|F(γ, δ(γ))− F(γ, µ(γ))|dγ

≤ max
η∈[0,1]

∫ 1

0
G(η, γ)|δ(γ)− µ(γ)|dγ

≤ max
η∈[0,1]

∫ 1

0
G(η, γ) max

γ∈[0,1]
|δ(γ)− µ(γ)|dγ

= ρ(δ, µ) max
η∈[0,1]

∫ 1

0
G(η, γ)dγ. (31)

It is easy to verify that
∫ 1

0 G(η, γ)dγ = η
2 −

η2

2 and thus, max
η∈[0,1]

∫ 1
0 G(η, γ)dγ = 1

8 .

Considering the above facts, the inequality (31) gives us

ρ(Ωδ, Ωµ) ≤ 1
8

ρ(δ, µ). (32)

Now,
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∆1(δ, µ) =max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣δ(η)− ∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

∣∣∣∣
+ max

η∈[0,1]

∣∣∣∣µ(η)− ∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣
]

,

1
2

[
max

η∈[0,1]

∣∣∣∣δ(η)− ∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣
+ max

η∈[0,1]

∣∣∣∣µ(η)− ∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

∣∣∣∣
]}

=max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣δ(η)− ∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

∣∣∣∣
+ max

η∈[0,1]

∣∣∣∣∫ 1

0
G(η, γ)F(γ, µ(γ))dγ−µ(η)

∣∣∣∣
]

,
1
2

[
max

η∈[0,1]

∣∣∣∣δ(η)−∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣
+ max

η∈[0,1]

∣∣∣∣∫ 1

0
G(η, γ)F(γ, δ(γ))dγ− µ(η)

∣∣∣∣
]}

≥max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣δ(η)−
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

+
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ− µ(η)

∣∣∣∣∣
]

,
1
2

[
max

η∈[0,1]

∣∣∣∣∣δ(η)−
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

+
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ− µ(η)

∣∣∣∣∣
]}

=max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣δ(η)− µ(η)−
(∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

−
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

)∣∣∣∣∣
]

,
1
2

[
max

η∈[0,1]

∣∣∣∣∣δ(η)− µ(η)−
(∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

−
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

)∣∣∣∣∣
]}

≥max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)− µ(η)| −
∣∣∣∣∣
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

−
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣∣
∣∣∣∣∣
]

,
1
2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)− µ(η)| −
∣∣∣∣∣
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

−
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

∣∣∣∣∣
∣∣∣∣∣
]}

=max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)− µ(η)| −
∣∣∣∣∣
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

−
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣∣
∣∣∣∣∣
]

,
1
2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)− µ(η)| −
∣∣∣∣∣
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

−
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣∣
∣∣∣∣∣
]}
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=max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)− µ(η)| −
∣∣∣∣∣
∫ 1

0
G(η, γ)F(γ, δ(γ))dγ

−
∫ 1

0
G(η, γ)F(γ, µ(γ))dγ

∣∣∣∣∣
∣∣∣∣∣
]}

≥max

{
max

η∈[0,1]
|δ(η)−µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)−µ(η)| −
∫ 1

0
G(η, γ)|F(γ, δ(γ))−F(γ, µ(γ))|dγ

∣∣∣∣∣
]}

≥max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)− µ(η)| −
∫ 1

0
G(η, γ)|δ(γ)− µ(γ)|dγ

∣∣∣∣∣
]}

≥max

{
max

η∈[0,1]
|δ(η)− µ(η)|, 1

2

[
max

η∈[0,1]

∣∣∣∣∣|δ(η)− µ(η)| −
∫ 1

0
G(η, γ) max

γ∈[0,1]
|δ(γ)− µ(γ)|dγ

∣∣∣∣∣
]}

=max

{
ρ(δ, µ),

1
2

[
max

η∈[0,1]

∣∣∣∣|δ(η)− µ(η)| − ρ(δ, µ)
∫ 1

0
G(η, γ)dγ

∣∣∣∣
]}

≥max

{
ρ(δ, µ),

1
2

[
ρ(δ, µ)− 1

8
ρ(δ, µ)

]}

=max

{
ρ(δ, µ),

7
16

ρ(δ, µ)

}
.

Therefore, we have
∆1(δ, µ) ≥ ρ(δ, µ). (33)

Additionally, we have

∆2(δ, µ) ≤ 7
16

ρ(δ, µ). (34)

Moreover, from (32)–(34), we have

ξ(ρ(δ, µ)) ≤ ξ(∆1(δ, µ))−ω(∆2(δ, µ)).

Using the same procedure, we can show that the above inequality also holds if we
take (δ, µ) ∈ ℘2 × ℘1. Thus, Ω satisfies the contraction condition of Theorem 2.

Hence, by Theorem 2, Ω has a unique fixed point δ∗ ∈ ℘1 ∩ ℘2. Hence, the integral
equation (30) has a unique solution.

Now, we present a numerical solution of an ODE of Green’s function to supplement
the derived results.

Example 2. As an example, suppose that F(η, δ(η)) takes the form of F(η, δ(η)) = 0.2sin(πη)−
0.5δ(η). The exact form of the unique solution for this case can be obtained as follows:

δ(η) = 0.0192871 sin(πη).

The graph of the solution is shown in Figure 1.
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Figure 1. Solution of the boundary value problem.

4. Conclusions

In this paper, we have established fixed-point results by introducing a new type of
(ξ, ω)-weakly cyclic generalized contraction in the setting of metric spaces. Our results are
extensions or generalizations of the results proven in the past. We have also provided a
non-trivial example to substantiate the derived result. To supplement the example, we have
provided an application to find the analytical solution to the boundary value problem of
second-order differential equations. There is scope for applying the proposed contraction
in this paper in the setting of various topological spaces and their extensions.
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