Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression
Abstract
1. Introduction
2. Materials and Methods
2.1. Geographically Weighted Nonparametric Regression (GWNR)
2.2. Weighted Maximum Likelihood Estimator (WMLE)
- Defining a mixed GWNR model
- Assuming distribution
- Determining the distribution of y
- Forming a likelihood function
- Forming a weighted likelihood function
- Specifying the first partial derivative of the likelihood function against the mixed GWNR model parameter
- Getting an estimate of mixed GWNR model parameters.
3. Results
3.1. Parameter Estimation
- P: number of spline components
- M: polynomial degree of spline
- R: number of knot points
- Q: number of Fourier components
- H: number of oscillation parameters.
- t = knot point for spline component
- h = oscillation parameter component.
3.2. Unbiased and Linear Estimator Properties
3.3. Data Application
- Making a scatter plot between the variables and y, as well as and y
- Defining the initial model
- Selecting optimum knots and oscillation parameters
- Estimating parameters of global model with the OLS method based on the initial model formed
- Testing assumptions of spatial heterogeneity on residual values on global models
- Determining the weighting matrix
- Estimating parameters of the GWNR model with the WMLE method
- Choosing the best model based on MSE and R2
- Making conclusions
- yken = estimated poverty percentage for Kendari City
- ymks = estimated poverty percentage for Makassar City
- yman = estimated poverty percentage for Manado City
- ypal = estimated poverty percentage for Palu City
- ygor = estimated poverty percentage for Gorontalo City
- ymaj = estimated poverty percentage for Mamuju City.
4. Conclusions
- The GWNR model using a mixed estimator of truncated spline and Fourier series isWhere is a truncated spline component, is a component of a Fourier series, and is a residual component.
- Estimators of GWNR are , , and . The estimator is an unbiased and linear estimator to observe the response variable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014; pp. 1–716. [Google Scholar] [CrossRef]
- Budiantara, I.N. The combination of spline and kernel estimator for nonparametric regression and its properties. Appl. Math. Sci. 2015, 9, 6083–6094. [Google Scholar] [CrossRef]
- Cheng, M.; Paige, R.L.; Sun, S.; Yan, K. Variance reduction for kernel estimators in clustered/longitudinal data analysis. J. Stat. Plan. Inference 2010, 140, 1389–1397. [Google Scholar] [CrossRef]
- Octavanny, M.A.D.; Budiantara, I.N.; Ratnasari, V. Pemodelan faktor-faktor yang memengaruhi provinsi jawa timur menggunakan pendekatan regresi semiparametrik spline. J. Sains Seni ITS 2017, 6, 1–7. [Google Scholar]
- Hidayat, M.F.; Achmad, R.F.A.; Solimun. Estimation of truncated spline function in non-parametric path analysis based on weighted least square (WLS). IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 5–10. [Google Scholar] [CrossRef]
- Sudiarsa, W.; Budiantara, I.N.; Suhartono, S.; Purnami, S.W. Combined estimator fourier series and spline truncated in multivariable nonparametric regression. Appl. Math. Sci. 2015, 9, 4997–5010. [Google Scholar] [CrossRef]
- Mariati, N.P.A.M.; Budiantara, I.N.; Ratnasari, V. Combination estimation of smoothing spline and fourier series in nonparametric regression. J. Math. 2020, 2020, 4712531. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brundson, C.; Charlton, M. Geographically Weighted Regression, the Analysis of Spatially Varying Relationships; John Wiley & Sons Ltd.: Chichester, UK, 2002. [Google Scholar]
- Tang, J.; Gao, F.; Liu, F.; Zhang, W.; Qi, Y. Understanding spatio-temporal characteristics of urban travel demand based on the combination of GWR and GLM. Sustainabily 2019, 11, 5525. [Google Scholar] [CrossRef]
- Dziauddin, M.F. Estimating land value uplift around light rail transit stations in Greater Kuala Lumpur: An empirical study based on geographically weighted regression (GWR). Res. Transp. Econ. 2019, 74, 10–20. [Google Scholar] [CrossRef]
- Sifriyani; Kartiko, S.H.; Budiantara, I.N.; Gunardi. Development of nonparametric geographically weighted regression using truncated spline approach. Songklanakarin J. Sci. Technol. 2018, 40, 909–920. [Google Scholar]
- Fitri, N.; Sifriyani, S.; Yuniarti, D. Nonparametric geographically weighted regression dengan pendekatan spline truncated. Pros. Semin. Nas. Mat. Dan Stat. 2019, 98–105. [Google Scholar]
- Sifriyani, S. Simultaneous hypothesis testing of multivariable nonparametric spline regression in the GWR model. Int. J. Stat. Probab. 2019, 8, 32. [Google Scholar] [CrossRef]
- Nurcahayani, H.; Budiantara, I.N.; Zain, I. The curve estimation of combined truncated spline and fourier series estimator for multiresponse nonparametric regression. Mathematics 2021, 9, 1141. [Google Scholar] [CrossRef]
- Akbarov, A.; Wu, S. Waranty claim forecasting based on weighted maximum likelihood estimator. Qual. Reliab. Eng. Int. 2012, 28, 663–669. [Google Scholar] [CrossRef]
- BPS. Provinsi Sulawesi Tenggara dalam Angka 2021; UD. Resky Bersama: Kendari, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Selatan dalam Angka 2021; BPS Press: Makassar, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Utara dalam Angka 2021; Perum Percetakan NRI: Manado, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Tengah dalam Angka 2021; UD. Rio: Palu, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Barat dalam Angka 2021; Erlangga: Mamuju, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Gorontalo dalam Angka 2021; CV. Rifaldi: Gorontalo, Indonesia, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laome, L.; Budiantara, I.N.; Ratnasari, V. Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression. Mathematics 2023, 11, 152. https://doi.org/10.3390/math11010152
Laome L, Budiantara IN, Ratnasari V. Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression. Mathematics. 2023; 11(1):152. https://doi.org/10.3390/math11010152
Chicago/Turabian StyleLaome, Lilis, I Nyoman Budiantara, and Vita Ratnasari. 2023. "Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression" Mathematics 11, no. 1: 152. https://doi.org/10.3390/math11010152
APA StyleLaome, L., Budiantara, I. N., & Ratnasari, V. (2023). Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression. Mathematics, 11(1), 152. https://doi.org/10.3390/math11010152