Low-Space Bit-Parallel Systolic Structure for AOP-Based Multiplier Suitable for Resource-Constrained IoT Edge Devices
Abstract
:1. Introduction
1.1. Literature Review
1.2. Paper Contribution
1.3. Paper Organization
2. Formulation of the Finite Field Multiplication Algorithm
3. Dependency Graph
4. Extraction of the Bit-Parallel Systolic Multiplier Architecture
4.1. Scheduling Function
4.2. Projection Function
4.3. Extraction of the Bit-Parallel Systolic Multiplier Structure
- Throughout the initial clock period, MUXes are deactivated () to pass the input bits of K and , to be localized in each PE. Furthermore, the latches, in each PE, are cleared to initialize the signal with zero values. The input bit is fed to all PEs in this clock period.
- Throughout the subsequent clock periods, the PEs generate the internal bit values of and , and . Furthermore, input bits of and are fed in a bit sequence to all PEs.
- In the last clock period (clock period n), the XOR gates shown in Figure 3 generate the resultant output bits of the product d, . They are produced in parallel, as displayed in the figure.
5. Results and Discussion
- The proposed systolic multiplier structure shows significant savings in area and power consumption over the competitive design presented by Chen [36]. The average savings of area for and are 30.9% and 33.7%, respectively. Furthermore, the table shows that the achievable average reductions in power consumption, for and , of the developed multiplier structure over the multiplier structure of Chen [36] are 37.1% and 39.3%, respectively.
- The developed systolic structure shows a significant reduction in area-delay product (ADP) and power-delay product (PDP) over the competitive systolic design presented by Chen [36]. The average reductions of ADP at and are equivalent to 18.3% and 24.8%, respectively. Furthermore, the achievable average reductions of PDP offered by our proposed multiplier structure over the competitive design for and represent savings of 25.6% and 31.2%, respectively.
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
ADP | Area-Delay Product |
PDP | Power-Delay Product |
ASIC | Application-Specific Integrated Circuit |
ECC | Elliptic Curve Cryptography |
DG | Dependency Graph |
AOP | All-One Polynomial |
VLSI | Very Large Scale Integrated Circuit |
CSL | Cyclic-Shift-Left |
CPD | Critical Path Delay |
References
- Chen, C.C.; Lee, C.Y.; Lu, E.H. Scalable and Systolic Montgomery Multipliers Over GF(2m). IEICE Trans. Fundam. 2008, E91-A, 1763–1771. [Google Scholar] [CrossRef]
- Chiou, C.W.; Lee, C.Y.; Deng, A.W.; Lin, J.M. Concurrent error detection in Montgomery multiplication over GF(2m). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2006, E89-A, 566–574. [Google Scholar] [CrossRef]
- Huang, W.T.; Chang, C.; Chiou, C.; Chou, F. Concurrent error detection and correction in a polynomial basis multiplier over GF(2m). IET Inf. Secur. 2010, 4, 111–124. [Google Scholar] [CrossRef]
- Kim, K.W.; Jeon, J.C. Polynomial Basis Multiplier Using Cellular Systolic Architecture. IETE J. Res. 2014, 60, 194–199. [Google Scholar] [CrossRef]
- Choi, S.; Lee, K. Efficient systolic modular multiplier/squarer for fast exponentiation over GF(2m). IEICE Electron. Express 2015, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Reyhani-Masoleh, A. A new bit-serial architecture for field multiplication using polynomial bases. In Proceedings of the 7th International Workshop Cryptographic Hardware Embedded Systems (CHES 2008), Edinburgh, UK, 29 August–1 September 2008; pp. 300–314. [Google Scholar]
- Abdulrahman, E.A.H.; Reyhani-Masoleh, A. High-Speed Hybrid-Double Multiplication Architectures Using New Serial-Out Bit-Level Mastrovito Multipliers. IEEE Trans. Comput. 2016, 65, 1734–1747. [Google Scholar] [CrossRef]
- Kim, K.W.; Jeon, J.C. A semi-systolic Montgomery multiplier over GF(2m). IEICE Electron. Express 2015, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A. Novel Bit-Serial Semi-Systolic Array Structure for Simultaneously Computing Field Multiplication and Squaring. IEICE Electron. Express 2019, 16, 20190600. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Lee, J.D. Efficient unified semi-systolic arrays for multiplication and squaring over GF(2m). Electron. Express 2017, 14, 1–10. [Google Scholar]
- Kim, K.W.; Kim, S.H. Efficient bit-parallel systolic architecture for multiplication and squaring over GF(2m). IEICE Electron. Express 2018, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A. Efficient Parallel and Serial Systolic Structures for Multiplication and Squaring Over GF (2m). Can. J. Electr. Comput. Eng. 2019, 42, 114–120. [Google Scholar] [CrossRef]
- Roman, S. Field Theory, 2nd ed.; Springer: New York, NY, USA, 1983. [Google Scholar]
- Pillutla, S.R.; Boppana, L. Area-efficient low-latency polynomial basis finite field GF(2m) systolic multiplier for a class of trinomials. Microelectron. J. 2020, 97, 104709. [Google Scholar] [CrossRef]
- Imana, J.L. LFSR-Based Bit-Serial GF(2m) Multipliers Using Irreducible Trinomials. IEEE Trans. Comput. 2020, 70, 156–162. [Google Scholar]
- Pillutla, S.R.; Boppana, L. Low-latency area-efficient systolic bit-parallel GF(2m) multiplier for a narrow class of trinomials. Microelectron. J. 2021, 117, 105275. [Google Scholar] [CrossRef]
- Li, Y.; Cui, X.; Zhang, Y. An Efficient CRT-based Bit-parallel Multiplier for Special Pentanomials. IEEE Trans. Comput. 2021, 71, 736–742. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; He, W. Fast hybrid Karatsuba multiplier for type II pentanomials. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2459–2463. [Google Scholar] [CrossRef]
- Meher, P.K.; Lou, X. Low-Latency, Low-Area, and Scalable Systolic-Like Modular Multipliers for GF(2m) Based on Irreducible All-One Polynomials. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 64, 399–408. [Google Scholar] [CrossRef]
- Mohaghegh, S.; Yemiscoglu, G.; Muhtaroglu, A. Low-power and area-efficient finite field multiplier architecture based on irreducible all-one polynomials. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar]
- Zhang, Y.; Li, Y. Efficient Hybrid GF(2m) Multiplier for All-One Polynomial Using Varied Karatsuba Algorithm. IEICE Trans. Fundam. Electron. Comput. Sci. 2021, 104, 636–639. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lu, E.H.; Lee, J.Y. Bit-Parallel Systolic Multipliers for GF(2m) Fields Defined by All-One and Equally-Spaced Polynomials. IEEE Trans. Comput. 2001, 50, 358–393. [Google Scholar]
- Lee, C.Y.; Lu, E.H.; Sun, L.F. Low-Complexity Bit-Parallel Systolic Architecture for Computing AB2+C in a Class of Finite Field GF(2m). IEEE Trans. Circuits Syst. II 2001, 50, 519–523. [Google Scholar]
- Lee, C.Y.; Chiou, C.W. Efficient Design of Low-Complexity Bit-Parallel Systolic Hankel Multipliers to Implement Multiplication in Normal and Dual Bases of GF(2m). IEICE Trans. Fund. Electron. Comm. Comp. Sci. 2005, E88-A, 3169–3179. [Google Scholar] [CrossRef]
- Lee, C.Y. Low-latency bit-pararallel systolic multiplier for irreducible xm+xn+1 with GCD(m,n)=1. IEICE Trans. Fund. Electron. Commun. Comp. Sci. 2008, 55, 828–837. [Google Scholar]
- Bayat-Sarmadi, S.; Farmani, M. High-Throughput Low-Complexity Systolic Montgomery Multiplication Over GF(2m) Based on Trinomials. IEEE Trans. Circuits Syst. II 2015, 62, 377–381. [Google Scholar] [CrossRef]
- Mathe, S.E.; Boppana, L. Bit-parallel systolic multiplier over GF(2m) for irreducible trinomials with ASIC and FPGA implementations. IET Circuits Desvices Syst. 2018, 12, 315–325. [Google Scholar] [CrossRef]
- Zhou, B.B. A New Bit Serial Systolic Multiplier over GF(2m). IEEE Trans. Comput. 1988, 37, 749–751. [Google Scholar] [CrossRef]
- Fenn, S.T.J.; Taylor, D.; Benaissa, M. A Dual Basis Bit Serial Systolic Multiplier for GF(2m). Integr. VLSI J 1995, 18, 139–149. [Google Scholar] [CrossRef]
- Gebali, F. Algorithms and Parallel Computers; John Wiley: New York, NY, USA, 2011. [Google Scholar]
- Ibrahim, A.; Gebali, F. Scalable and Unified Digit-Serial Processor Array Architecture for Multiplication and Inversion over GF(2m). IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 22, 2894–2906. [Google Scholar] [CrossRef]
- Ibrahim, A.; Alsomani, T.; Gebali, F. New Systolic Array Architecture for Finite Field Inversion. IEEE Can. J. Electr. Comput. Eng. 2017, 40, 23–30. [Google Scholar] [CrossRef]
- Chiou, C.W.; Lin, J.M.; Lee, C.Y.; Ma, C.T. Novel Mastrovito Multiplier over GF(2m) Using Trinomial. In Proceedings of the 2011 5th International Conference on Genetic and Evolutionary Computing (ICGEC), Kitakyushu, Japan, 29 August–1 September 2011; pp. 237–242. [Google Scholar]
- Ibrahim, A.; Gebali, F.; Bouteraa, Y.; Tariq, U.; Ahanger, T.; Alnowaiser, K. Compact Bit-Parallel Systolic Multiplier Over GF(2m). IEEE Can. J. Electron. Comput. Eng. 2021, 44, 199–205. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, C.H.; Hong, C.P. A linear systolic array for multiplication in GF (2m) for high speed cryptographic processors. In International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2004; pp. 106–116. [Google Scholar]
- Chen, Z.H.; Jing, M.H.; Chen, J.H.; Chang, Y. New viewpoint of bit-serial/parallel normal basis multipliers using irreducible all-one polynomial. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece, 21–24 May 2006; p. 4. [Google Scholar]
- Mathe, S.E.; Boppana, L. Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m). KSII Trans. Internet Inf. Syst. 2017, 11, 2680–2700. [Google Scholar]
Design | AND | XOR | MUX | Latch | Latency | CPD |
---|---|---|---|---|---|---|
Chiou [33] | n | |||||
Kim [4] | 0 | |||||
Sarmadi [26] | () | |||||
Mathe [27] | n | n | ||||
Mathe [37] | n | |||||
Ibrahim [34] | n | |||||
Know [35] | n | |||||
Chen [36] | ||||||
Proposed | n |
Multiplier | Type | n | Area [Kgates] | Delay [ns] | Power [mW] | ADP | PDP | Area Saving (%) | Power Saving (%) | ADP Saving (%) | PDP Saving (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Chen [36] | Systolic | 226 | 5.9 | 7.3 | 3.7 | 43.1 | 27.0 | 30.9 | 37.1 | 18.3 | 25.6 |
388 | 12.3 | 13.4 | 7.5 | 164.8 | 100.5 | 33.7 | 39.3 | 24.8 | 31.2 | ||
Proposed | Systolic | 226 | 4.1 | 8.6 | 2.3 | 35.2 | 20.8 | - | - | - | - |
388 | 8.2 | 15.2 | 4.6 | 123.8 | 69.1 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.; Gebali, F.; Bouteraa, Y.; Tariq, U.; Ahamad, T.; Nazih, W. Low-Space Bit-Parallel Systolic Structure for AOP-Based Multiplier Suitable for Resource-Constrained IoT Edge Devices. Mathematics 2022, 10, 815. https://doi.org/10.3390/math10050815
Ibrahim A, Gebali F, Bouteraa Y, Tariq U, Ahamad T, Nazih W. Low-Space Bit-Parallel Systolic Structure for AOP-Based Multiplier Suitable for Resource-Constrained IoT Edge Devices. Mathematics. 2022; 10(5):815. https://doi.org/10.3390/math10050815
Chicago/Turabian StyleIbrahim, Atef, Fayez Gebali, Yassine Bouteraa, Usman Tariq, Tariq Ahamad, and Waleed Nazih. 2022. "Low-Space Bit-Parallel Systolic Structure for AOP-Based Multiplier Suitable for Resource-Constrained IoT Edge Devices" Mathematics 10, no. 5: 815. https://doi.org/10.3390/math10050815
APA StyleIbrahim, A., Gebali, F., Bouteraa, Y., Tariq, U., Ahamad, T., & Nazih, W. (2022). Low-Space Bit-Parallel Systolic Structure for AOP-Based Multiplier Suitable for Resource-Constrained IoT Edge Devices. Mathematics, 10(5), 815. https://doi.org/10.3390/math10050815