Machining Parameters Optimization Based on Objective Function Linearization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Proposed Method
2.3. A Novel Expression of the Objective Function
2.4. AlphaBeta Software Module
2.5. Cutting Constraints
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Constants of the tool life equation | |
Feed rates in rough and finish turning, respectively (mm/rev) | |
Depths of cut in rough and finish turning, respectively (mm) | |
Machining cost per single-pass ($/pass) | |
UC | Unit production cost, excluding material cost ($/piece) |
Machining idle cost duet to loading and unloading operations and tool idle motion time ($/piece) | |
Weight for pass related to machine idle cost | |
The part of the machining cost per single pass that varies with the machining parameters ($/pass) | |
,, | Cutting cost by actual time, tool cost and tool exchange cost, respectively ($/pass) |
Actual cutting time per single-pass (min) | |
Direct labour cost and overheads ($/min) | |
Cutting edge cost ($/edge) | |
Tool exchange time (min) | |
Global using tool cost per single pass ($/pass) | |
Diameter and length of work surface, respectively (mm) | |
Depths of cut for each pass and total depth of cut to be removed, respectively (mm) | |
, | Cutting speed, cutting speed in rough and finish turning, respectively (m/min) |
Feed rate (mm/rev) | |
Tool life (min) | |
Coefficient and exponent calculated for making the mathematical model linear | |
Tool life of weighted combination of and (min) | |
Expected tool life for rough and finish turning, respectively (min) | |
Weight for , in accordance with the present paper | |
Weight for , in accordance with papers analysed in Section 2.1 | |
Regression | Regression subprogram |
Errors | Subprogram for errors calculation |
Lower and upper bounds for cutting speed, respectively (m/min) | |
Lower and upper bounds for feed rate, respectively (mm/rev) | |
Lower and upper bounds for depth of cut (mm) | |
Lower and upper bounds for tool-life, respectively (min) | |
n | Number of points for regression analysis |
Constants of the cutting force equation | |
Maximum allowable cutting force (N) | |
r | Nose radius of the cutting tool (mm) |
Power efficiency (%) | |
Maximum allowable cutting power (kW) | |
Maximum allowable chip-tool interface temperature (°C) | |
Constants for the equation of chip-tool interface temperature | |
SCR | Limit of stable cutting region |
SR | Maximum allowable surface roughness (mm) |
Constants related to formula of the stable cutting region | |
Preparation time (as loading and unloading time), idle tool motion time (as tool travel and tool approach/depart time), and total machine idle time, respectively (min) | |
Constants related to tool travel and approach/depart time, respectively (min) | |
Increment of tool life increasing with a view to the regression analysis | |
Constants for roughing and finishing parameter relations |
References
- Taylor, F.W. On the Art of Cutting Metals; The American Society of Mechanical Engineers: New York, NY, USA, 1907. [Google Scholar]
- Gilbert, W.W. Economics of Machining, Machining-Theory and Practice; American Society of Metals: Cleveland, OH, USA, 1950; pp. 465–485. [Google Scholar]
- Cottle, R.W.; Thapa, M.N. Linear and Nonlinear Optimization; Springer: New York, NY, USA, 2017; pp. 61–228. [Google Scholar] [CrossRef]
- Dantzig, G.B. Linear Programming and Extension; Princeton University Press: New York, NY, USA, 1963. [Google Scholar]
- Disser, Y.; Skutella, M. The Simplex Algorithm Is NP-Mighty. ACM Trans. Algorithms 2019, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.C.; Joo, Y.S. Optimization of machining conditions with practical constraints. Int. J. Prod. Res. 1992, 30, 2907–2919. [Google Scholar] [CrossRef]
- Wang, J. Multiple-objective optimization of machining operations based on neural networks. Int. J. Adv. Manuf. Technol. 1993, 8, 235–243. [Google Scholar] [CrossRef]
- Gupta, R.; Batra, J.L.; Lal, G.K. Determination of optimal subdivision of depth of cut in multipass turning with constraints. Int. J. Prod. Res. 1995, 33, 2555–2565. [Google Scholar] [CrossRef]
- Chen, M.C.; Tsai, D.M. A simulated annealing approach for optimization of multi-pass turning operations. Int. J. Prod. Res. 1996, 34, 2803–2825. [Google Scholar] [CrossRef]
- Onwubolu, G.C.; Kumalo, T. Optimization of multipass turning operations with genetic algorithms. Int. J. Prod. Res. 2001, 39, 3727–3745. [Google Scholar] [CrossRef]
- Chen, M.C. Optimizing machining economics models of turning operations using the scatter search approach. Int. J. Prod. Res. 2004, 42, 2611–2625. [Google Scholar] [CrossRef]
- Kumar, A.S.; Khan, M.A.; Thiraviam, R. Machining parameters optimization for alumina based ceramic cutting tools using genetic algorithm. Mach. Sci. Technol. 2006, 10, 471–489. [Google Scholar] [CrossRef]
- Sardinas, R.Q.; Santana, M.R.; Brindis, E.A. Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Eng. Appl. Art. Intell. 2006, 19, 127–133. [Google Scholar] [CrossRef]
- Satishkumar, S.; Asokan, P.; Kumanan, S. Optimization of depth of cut in multi-pass turning using nontraditional optimization techniques. Int. J. Adv. Manuf. Technol. 2006, 29, 230–238. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chen, T. Modelling and optimization of machining conditions for the multi-pass dry turning process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2008, 222, 1387–1394. [Google Scholar] [CrossRef]
- Srinivas, J.; Giri, R.; Yang, S.H. Optimization of multi-pass turning using particle swarm intelligence. Int. J. Adv. Manuf. Technol. 2009, 40, 56–66. [Google Scholar] [CrossRef]
- Bharathi Raja, S.; Baskar, N. Optimization techniques for machining operations: A retrospective research based on various mathematical models. Int. J. Adv. Manuf. Technol. 2010, 48, 1075–1090. [Google Scholar] [CrossRef]
- Costa, A.; Celano, G.; Fichera, S. Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique. Int. J. Adv. Manuf. Technol. 2011, 53, 421–433. [Google Scholar] [CrossRef]
- Xie, S.; Guo, Y. Optimisation of machining parameters in multi-pass turnings using ant colony optimisations. Int. J. Mach. Mach. Mater. 2012, 11, 204–220. [Google Scholar] [CrossRef]
- Belloufi, A.; Assas, M.; Rezgui, I. Optimization of Turning Operations by Using a Hybrid Genetic Algorithm with Sequential Quadratic Programming. J. Appl. Res. Technol. 2013, 11, 88–94. [Google Scholar] [CrossRef]
- Lu, K.; Jing, M.; Zhang, X.; Liu, H. Optimization of sequential subdivision of depth of cut in turning operations using dynamic programming. Int. J. Adv. Manuf. Technol. 2013, 68, 1733–1744. [Google Scholar] [CrossRef]
- Lu, K.; Jing, M.; Zhang, X.; Dong, G.; Liu, H. An effective optimization algorithm for multipass turning of flexible workpieces. J. Intell. Manuf. 2015, 26, 831–840. [Google Scholar] [CrossRef]
- Yildiz, A.R. Hybrid Taguchi-differential evolution algorithm for optimization of multipass turning operations. Appl. Soft Comput. 2013, 13, 1433–1439. [Google Scholar] [CrossRef]
- Mokhtari Homami, R.; Fadaei Tehrani, A.; Mirzadeh, H.; Movahedi, B.; Azimifar, F. Optimization of turning process using artificial intelligence technology. Int. J. Adv. Manuf. Technol. 2014, 70, 1205–1217. [Google Scholar] [CrossRef]
- Gayatri, R.; Baskar, N. Performance analysis of non-traditional algorithmic parameters in machining operation. Int. J. Adv. Manuf. Technol. 2015, 77, 443–460. [Google Scholar] [CrossRef]
- Mellal, M.A.; Williams, E.J. Cuckoo optimization algorithm for unit production cost in multi-pass turning operations. Int. J. Adv. Manuf. Technol. 2017, 76, 647–656, Erratum in Int. J. Adv. Manuf. Technol. 2017, 91, 4385. [Google Scholar] [CrossRef]
- Jabri, A.; Barcany, A.E.; Khalfi, A.E.I. Multipass Turning Operation Process Optimization Using Hybrid Genetic Simulated Annealing Algorithm. Model. Simul. Eng. 2017, 2017, 1940635. [Google Scholar] [CrossRef] [Green Version]
- Rana, P.B.; Lalwani, D.L. Optimization of turning process using Amended Differential Evolution Algorithm. Eng. Sci. Technol. Int. J. 2017, 20, 1285–1301. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Huang, F. Optimization of multi-pass turning parameters through an improved flower pollination algorithm. Int. J. Adv. Manuf. Technol. 2017, 89, 503–514. [Google Scholar] [CrossRef]
- Abbas, A.T.; Pimenov, D.Y.; Erdakov, I.N.; Taha, M.A.; Soliman, M.S.; Rayes, M.M.E. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs. Materials 2018, 11, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.T.; Benyahia, F.; Rayes, M.M.E.; Pruncu, C.; Taha, M.A.; Hegab, H. Towards Optimization of Machining Performance and Sustainability Aspects when Turning AISI 1045 Steel under Different Cooling and Lubrication Strategies. Materials 2019, 12, 3023. [Google Scholar] [CrossRef] [Green Version]
- Mia, M.; Krolczyk, G.; Maruda, R.; Wojciechowski, S. Intelligent Optimization of Hard-Turning Parameters Using Evolutionary Algorithms for Smart Manufacturing. Materials 2019, 12, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miodragovic, G.R.; Dordevic, V.; Bulatovic, R.R.; Petrovic, A. Optimization of multi-pass turning and multi-pass face milling using subpopulation firefly algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 1520–1540. [Google Scholar] [CrossRef]
- Rana, P.B.; Patel, J.L.; Lalwani, D.I. Parametric Optimization of Turning Process Using Evolutionary Optimization Techniques—A Review (2000–2016). In Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing; Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A., Eds.; Springer: Singapore, 2019; Volume 817. [Google Scholar] [CrossRef]
- Sofuoğlu, M.A.; Çakır, F.H.; Gürgen, S. An efficient approach by adjusting bounds for heuristic optimization algorithms. Soft Comput. 2019, 23, 5199–5212. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, M.; Jia, J.; Lee, Y.; Guo, D. Jerk-limited feedrate scheduling and optimization for five-axis machining using new piecewise linear programming approach. Sci. China Technol. Sci. 2019, 62, 1067–1081. [Google Scholar] [CrossRef]
- Da Silva, R.B.; Sales, W.F.; Costa, E.S.; Ezugwu, E.O.; Bonney, J.; Da Silva, M.B.; Machado, A.R. Surface integrity and tool life when turning of Ti-6Al-4V with coolant applied by different methods. Int. J. Adv. Manuf. Technol. 2017, 93, 1893–1902. [Google Scholar] [CrossRef]
- Bonfa, M.M.; Costa, E.S.; Sales, W.F.; Amorim, F.L.; Maia, L.H.A.; Machado, A.R. Evaluation of tool life and workpiece surface roughness in turning of AISI D6 hardened steel using PCBN tools and minimum quantity of lubricant (MQL) applied at different directions. Int. J. Adv. Manuf. Technol. 2019, 103, 971–984. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, A.K.; Mishra, P.C.; Das, R.K. Investigation on Tool Wear and Surface Characteristics in Hard Turning Under Air-Water Jet Spray Impingement Cooling Environment. Tribol. Ind. 2019, 41, 172–187. [Google Scholar] [CrossRef]
- Kronenberg, M. Replacing the Taylor Formula by a New Tool Life Equation. Int. J. Mach. Tool Des. Res. 1970, 10, 193–202. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Kundrak, J.; Horvath, M. Wear and Tool Life of CBN Cutting Tools. Int. J. Adv. Manuf. Technol. 2002, 20, 475–479. [Google Scholar] [CrossRef]
- Koning, W.; Depiereux, W.R. Wie lassen sich Vorschub und Schnittgeshwindigkeit optimieren? Ind. Anz. 1969, 91, 1481–1484. [Google Scholar]
- Johansson, D.; Hägglund, S.; Bushlya, V.; Stahl, J.E. Assessment of Commonly Used Tool Life Models in Metal Cutting. Procedia Manuf. 2017, 11, 602–609. [Google Scholar] [CrossRef]
- Johansson, D.; Akujärvi, V.; Hägglund, S.; Bushlya, V.; Stahl, J.E. Selecting Cutting Data Tests for Cutting Data Modeling Using the Colding Tool Life Model. Procedia CIRP 2018, 72, 197–201. [Google Scholar] [CrossRef]
- Ojolo, S.J.; Ogunkomaiya, O. A study of effects of machining parameters on tool life. Int. J. Mater. Sci. Appl. 2014, 3, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Draghici, G.; Chiriacescu, S.T. Calculul durabilității sculei și regimului de așchiere folosind programarea matematică (Calculus of tool life and cutting parameters using mathematical programming). Stud. Cercet. Mech. Appl. (Stud. Res. Appl. Mech.) 1971, 30, 975–999. [Google Scholar]
- Draghici, G.; Ivan, N.V. Programarea liniara mai buna ca programarea convexa in unele cazuri de determinare a parametrilor optimi de exploatare a sculelor (Linear programming-better than the convex one-in some cases of optimal determination of the parameters in tool exploitation). Constr. Mas. (Mach. Build.) 1977, XXIX, 598–601. [Google Scholar]
T | T1 | |||||||
---|---|---|---|---|---|---|---|---|
1 | ||||||||
n | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Inputted Data | Results | ||||||
---|---|---|---|---|---|---|---|
Paper notations | Software notations | Alpha = 3.711972 Beta = −0.279128 | |||||
kdlo = 0.5 | |||||||
kce = 2.5 | Table E[i, j] | ||||||
taute = 1.5 | T | E1(T) | … | ||||
teta1 = 0.5 | 25.00 | 1.52000 | 1.51147 | 0.00853 | 0.56096 | … | |
Tmin = 25 | 27.00 | 1.48148 | 1.47935 | 0.00213 | 0.14386 | … | |
Tmax = 45 | 29.00 | 1.44828 | 1.45014 | −0.00186 | −0.1283 | … | |
w = 2 | … | … | … | … | … | … |
Parameter | Value | Parameter | Value |
---|---|---|---|
0.5 ($/min) | 1 | ||
2.5 ($/edge) | 2.5 | ||
1.5 (min/edge) | 1 | ||
6 × 1011 | 200 (Kgf) | ||
5 | 5 (kW) | ||
1.75 | 0.85 | ||
0.75 | 6 (mm) | ||
50 (m/min) | 1.2 (mm) | ||
500 (m/min) | 132 | ||
50 (mm) | 0.4 | ||
300 (mm) | 0.2 | ||
0.1 (mm/rev) | 0.105 | ||
0.9 (mm/rev) | 1000 (°C) | ||
1 (mm) | 2 | ||
3 (mm) | −1 | ||
25 (min) | 140 | ||
45 (min) | |||
108 | 0.75 (min/piece) | ||
0.95 | 7 × 10−4 | ||
0.75 | 0.3 |
Method * | Results | ||||||
---|---|---|---|---|---|---|---|
Unit Cost ($/Piece) | |||||||
GA [10] | 114.22 | 164.369 | 0.7 | 0.2978 | 2.9745 | 2.9863 | 1.8450 |
PSO [16] | 106.69 | 155.89 | 0.897 | 0.28 | 2.0 | 2.0 | 2.272 |
HPSO [18] | 123.3424 109.663 | 169.9783 | 0.5655 | 0.2262 | 3.0 | 3.0 | 1.959 ** 2.035 *** |
ACO [19] | 109.66 | 169.97 | 0.565 | 0.226 | 3.0 | 3.0 | 2.07 |
HGASQP [20] | 94.4640 | 162.289 | 0.866 | 0.258 | 3.0 | 3.0 | 1.9308 |
COA [26] | 123.1462 117.9322 | 169.9876 123.1993 | 0.5655 | 0.2262 | 3.0 | 3.0 | 1.959 ** 2.239 *** |
HSAGA [27] | 111 | 171 | 0.565 | 0.225 | 3.0 | 3.0 | 2.06 *** |
ADEA [28] | 123.3431 109.66307 | 169.9784 | 0.5655 | 0.2262 | 3.0 | 3.0 | 1.959 ** 2.0351 *** |
FPA [29] | 123.3431 109.6631 | 169.9785 | 0.5655 | 0.2262 | 3.0 | 3.0 | 1.9591 ** 2.0351 *** |
SP-FA [33] | 123.3429 117.3369 | 169.9786 122.6023 | 0.5655 0.5773 | 0.2262 0.2309 | 3.0 2.9512 | 2.9999 2.9512 | 1.9591 ** 2.239 *** |
ObOFL (present paper) | 123.3430 109.6630 | 169.9816 151.1289 | 0.5655 | 0.2262 | 2.9999 3.0 | 3.0 | 1.9567 ** 2.2565 *** |
, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrus, C.; Ivan, N.-V.; Oancea, G. Machining Parameters Optimization Based on Objective Function Linearization. Mathematics 2022, 10, 803. https://doi.org/10.3390/math10050803
Gavrus C, Ivan N-V, Oancea G. Machining Parameters Optimization Based on Objective Function Linearization. Mathematics. 2022; 10(5):803. https://doi.org/10.3390/math10050803
Chicago/Turabian StyleGavrus, Cristina, Nicolae-Valentin Ivan, and Gheorghe Oancea. 2022. "Machining Parameters Optimization Based on Objective Function Linearization" Mathematics 10, no. 5: 803. https://doi.org/10.3390/math10050803
APA StyleGavrus, C., Ivan, N.-V., & Oancea, G. (2022). Machining Parameters Optimization Based on Objective Function Linearization. Mathematics, 10(5), 803. https://doi.org/10.3390/math10050803