Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems
Abstract
:1. Introduction
2. Related Work
2.1. Canonical PSO
2.2. Advancement of Learning Strategies for PSO
3. Stochastic Cognitive Dominance Leading Particle Swarm Optimization
3.1. Stochastic Cognitive Dominance Leading Strategy
3.2. Difference between SCDL and Existing PSO Variants
- (1)
- SCDL lets each particle learn from the best two personal best positions in the associated random triad topology. That is to say, the topology affects the selection of the two guiding exemplars in the velocity update. However, most existing random topology-based learning strategies [47,48,59,73] let each particle learn from its own personal best position and the best among the random topologies. In other words, the random topologies only influence the selection of the second guiding exemplar in the velocity update.
- (2)
- In Case 3 in the proposed SCDL, some particles with promising historical experience are not updated and directly enter the next generation. With this retention mechanism, some promising historical experience is preserved from being attracted to local areas, which is beneficial for the swarm to escape from local areas. However, in most existing studies [47,48], all particles are updated, and thus there is no retention mechanism like Case 3 in SCDL.
3.3. Overall Procedure
Algorithm 1 The pseudocode of SCDLPSO | |
Input: swarm size NP, maximum number of fitness evaluations FEmax | |
1: | Initialize NP particles randomly and calculate their fitness, and set fes = NP; |
2: | While (fes ≤ FEmax) do |
3: | For i = 1:NP do |
4: | Select two different exemplars randomly from the personal best positions of all particles: pbestpr1, pbestpr2; |
5: | If (f(pbestpr2) < f(pbestpr1)) then |
6: | Swap pr2 and pr1; |
7: | End If |
8: | Compute the inertia weight w according to Equation (3); |
9: | If (f(pbestpr1) ≤ f(pbestpr2) ≤ f(pbesti)) then |
10: | Update the particle according to Equation (4) and Equation (2); |
11: | Else If (f(pbestpr1) ≤ f(pbesti) < f(pbestpr2)) then |
12: | Update the particle according to Equation (5) and Equation (2); |
13: | End If |
14: | Calculate the fitness of the updated particle: f(xi), update its pbesti and fes += 1; |
15: | End For |
16: | End While |
17: | Obtain the global best solution gbest and its fitness f(gbest); |
Output: f(gbest) and gbest |
4. Experiments
4.1. Experimental Setup
4.2. Parameter Sensitivity Analysis
4.3. Comparison with State-of-the-Art PSO Variants
- (1)
- As shown in the last row of Table 3, the proposed SCDLPSO achieves the lowest rank in terms of the Friedman test, and its rank is much smaller than those of the other algorithms. This demonstrates that SCDLPSO achieves the best overall performance on the 30-D CEC 2017 benchmark set and its overall performance is much superior to the compared algorithms.
- (2)
- The second to last row of Table 3 shows that SCDLPSO performs much better than the seven compared algorithms from the perspective of the Wilcoxon rank sum test. Specifically, compared with TCSPSO, DNSPSO, AWPSO, CLPSO_LS, GLPSO, and CLPSO, SCDLPSO achieves significantly superior performance to the other algorithms on at least 20 problems, and displays inferiority to them on at most six problems. Compared with XPSO, the proposed SCDLPSO shows significant superiority on 17 problems and is worse than XPSO on only four problems.
- (3)
- In terms of the comparison results on different types of optimization problems, on the two unimodal problems, SCDLPSO outperforms DNSPSO, AWPSO, and CLPSO, while it achieves competitive performance with XPSO, TCSPSO, CLPSO_LS, and GLPSO. On the seven simple multimodal problems, SCDLPSO presents significant superiority to the seven compared algorithms on at least five problems. As for the 10 hybrid problems, except for XPSO, SCDLPSO performs significantly better than the other compared PSO variants on at least seven problems. In comparison with XPSO, SCDLPSO shows great superiority on five problems and is defeated by XPSO on only one problem. In terms of the 10 composition problems, SCDLPSO is significantly better than AWPSO and TCSPSO on all of these problems. It achieves better performance than DNSPSO, CLPSO_LS, and GLPSO on eight, eight, and nine problems, respectively. In comparison with XPSO and CLPSO, SCDLPSO outperforms them on six and five problems respectively, and shows worse performance on only one and two problems, respectively.
- (1)
- According to the last row of Table 4, SCDLPSO still achieves the lowest rank among all algorithms. This demonstrates that SCDLPSO still obtains the best overall performance on the 50-D CEC 2017 problems.
- (2)
- From the perspective of the Wilcoxon rank sum test, as shown in the second to last row of Table 4, SCDLPSO achieves better performance than TCSPSO, DNSPSO, AWPSO, CLPSO_LS, and CLPSO on 20, 25, 28, 23 and 20 problems, respectively. In comparison with XPSO and GLPSO, SCDLPSO outperforms them on 17 and 19 problems, respectively.
- (3)
- As for the comparison results on different types of optimization problems, on the two unimodal problems, SCDLPSO is significantly superior to DNSPSO, AWPSO, and CLPSO on both problems, while it obtains very competitive performance with the other compared algorithms. As for the seven simple multimodal problems, SCDLPSO significantly outperforms the seven compared PSO variants on at least five problems. On the 10 hybrid problems, SCDLPSO achieves significantly better performance than DNSPSO and AWPSO on 9 and 10 problems, respectively. In competition with the other five compared PSO variants, SCDLPSO shows no inferiority to them on at least eight problems. Confronted with the 10 composition problems, SCDLPSO presents great superiority to the seven compared PSO variants on at least six problems, and displays inferiority to them on at most three problems.
- (1)
- According to the averaged rank obtained from the Friedman test, SCDLPSO still ranks first among all algorithms. This verifies that SCDLPSO consistently achieves the best overall performance on the 100-D CEC 2017 benchmark set.
- (2)
- From the results of the Wilcoxon rank sum test, SCDLPSO presents significant dominance to the seven compared algorithms on at least 20 problems. In particular, competed with AWPSO, CLPSO_LS, and GLPSO, SCDLPSO significantly outperforms them on 26 problems, and shows no inferiority on any of the 29 problems.
- (3)
- Regarding the comparison results for different types of optimization problems, on the two unimodal problems, SCDLPSO is significantly superior to AWPSO and GLPSO on both problems and achieves competitive performance with the other algorithms. On the seven simple multimodal problems, SCDLPSO outperforms all seven compared algorithms on at least six problems. When it comes to the 10 hybrid problems, SCDLPSO achieves significantly better performance than all compared PSO variants on at least six problems. Particularly, SCDLPSO significantly beats TCSPSO, DNSPSO, AWPSO, and CLPSO_LS on at least nine problems, and shows no worse performance than them on all 10 problems. As for the 10 composition problems, SCDLSPO outperforms AWPSO and GLPSO on all of these problems, and wins the competition with TCSPSO and CLPSO_LS on nine. When compared with XPSO, DNSPSO, and CLPSO, SCDLPSO is superior on at least six problems and shows inferiority on at most four problems.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, W.; Xu, X.; Huang, G.; Li, B.; Wu, Y.; Zhao, N.; Yu, F.R. Energy Efficiency Optimization in SWIPT Enabled WSNs for Smart Agriculture. IEEE Trans. Ind. Inform. 2021, 17, 4335–4344. [Google Scholar] [CrossRef]
- Zhou, J.; He, R.; Wang, Y.; Jiang, S.; Zhu, Z.; Hu, J.; Miao, J.; Luo, Q. Autonomous Driving Trajectory Optimization with Dual-Loop Iterative Anchoring Path Smoothing and Piecewise-Jerk Speed Optimization. IEEE Robot. Autom. Lett. 2021, 6, 439–446. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Li, Y. Mobile Robot Path Planning Based on Improved Localized Particle Swarm Optimization. IEEE Sensors J. 2021, 21, 6962–6972. [Google Scholar] [CrossRef]
- Huang, L.; Ding, Y.; Zhou, M.; Jin, Y.; Hao, K. Multiple-Solution Optimization Strategy for Multirobot Task Allocation. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 50, 4283–4294. [Google Scholar] [CrossRef]
- Ghorpade, S.; Zennaro, M.; Chaudhari, B. Survey of Localization for Internet of Things Nodes: Approaches, Challenges and Open Issues. Futur. Internet 2021, 13, 210. [Google Scholar] [CrossRef]
- Zhan, Z.-H.; Shi, L.; Tan, K.C.; Zhang, J. A survey on evolutionary computation for complex continuous optimization. Artif. Intell. Rev. 2021, 55, 59–110. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.-N.; Zhang, J. Probabilistic Multimodal Optimization. In Metaheuristics for Finding Multiple Solutions; Springer: Berlin/Heidelberg, Germany, 2021; pp. 191–228. [Google Scholar]
- Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Y.; Gao, X.-D.; Ma, Y.-Y.; Lu, Z.-Y.; Jeon, S.-W.; Zhang, J. An Adaptive Covariance Scaling Estimation of Distribution Algorithm. Mathematics 2021, 9, 3207. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Yang, Q.; Xie, H.-Y.; Chen, W.-N.; Zhang, J. Multiple parents guided differential evolution for large scale optimization. In Proceedings of the Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 3549–3556. [Google Scholar]
- Yu, W.-J.; Ji, J.-Y.; Gong, Y.-J.; Yang, Q.; Zhang, J. A tri-objective differential evolution approach for multimodal optimization. Inf. Sci. 2018, 423, 1–23. [Google Scholar] [CrossRef]
- Zhigljavsky, A.; Žilinskas, A. Bi-objective Decisions and Partition-Based Methods in Bayesian Global Optimization. In Bayesian and High-Dimensional Global Optimization; Springer International Publishing: Cham, Switzerland, 2021; pp. 41–88. [Google Scholar]
- Xue, Y.; Wang, Y.; Liang, J. A self-adaptive gradient descent search algorithm for fully-connected neural networks. Neurocomputing 2022, 478, 70–80. [Google Scholar] [CrossRef]
- Žilinskas, A.; Calvin, J. Bi-Objective Decision Making in Global Optimization Based on Statistical Models. J. Glob. Optim. 2019, 74, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Pepelyshev, A.; Zhigljavsky, A.; Žilinskas, A. Performance of global random search algorithms for large dimensions. J. Glob. Optim. 2018, 71, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, I. A Survey on Evolutionary Algorithms Dynamics and its Complexity–Mutual Relations, Past, Present and Future. Swarm and Evolutionary Computation. Swarm Evol. Comput. 2015, 25, 2–14. [Google Scholar] [CrossRef]
- Bonyadi, M.R. A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm. IEEE Trans. Evol. Comput. 2020, 24, 57–68. [Google Scholar] [CrossRef]
- Mor, B.; Shabtay, D.; Yedidsion, L. Heuristic algorithms for solving a set of NP-hard single-machine scheduling problems with resource-dependent processing times. Comput. Ind. Eng. 2021, 153, 107024. [Google Scholar] [CrossRef]
- Anbuudayasankar, S.P.; Ganesh, K.; Mohapatra, S. Survey of Methodologies for TSP and VRP. In Models for Practical Routing Problems in Logistics: Design and Practices; Springer: Berlin/Heidelberg, Germany, 2014; pp. 11–42. [Google Scholar]
- Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.-N.; Gu, T.; Jin, H.; Mao, W.; Zhang, J. An Adaptive Stochastic Dominant Learning Swarm Optimizer for High-Dimensional Optimization. IEEE Trans. Cybern. 2020, 1–17. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, Y.; Gong, D.; Sun, X. Dual-Surrogate-Assisted Cooperative Particle Swarm Optimization for Expensive Multimodal Problems. IEEE Trans. Evol. Comput. 2021, 25, 794–808. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.-N.; Da Deng, J.; Li, Y.; Gu, T.; Zhang, J. A Level-Based Learning Swarm Optimizer for Large-Scale Optimization. IEEE Trans. Evol. Comput. 2017, 22, 578–594. [Google Scholar] [CrossRef]
- Lan, R.; Zhu, Y.; Lu, H.; Liu, Z.; Luo, X. A Two-Phase Learning-Based Swarm Optimizer for Large-Scale Optimization. IEEE Trans. Cybern. 2020, 51, 6284–6293. [Google Scholar] [CrossRef]
- Qu, B.; Li, G.; Yan, L.; Liang, J.; Yue, C.; Yu, K.; Crisalle, O.D. A grid-guided particle swarm optimizer for multimodal multi-objective problems. Appl. Soft Comput. 2022, 117, 108381. [Google Scholar] [CrossRef]
- Wei, F.-F.; Chen, W.-N.; Yang, Q.; Deng, J.; Luo, X.-N.; Jin, H.; Zhang, J. A Classifier-Assisted Level-Based Learning Swarm Optimizer for Expensive Optimization. IEEE Trans. Evol. Comput. 2021, 25, 219–233. [Google Scholar] [CrossRef]
- Jang-Ho, S.; Chang-Hwan, I.; Chang-Geun, H.; Jae-Kwang, K.; Hyun-Kyo, J.; Cheol-Gyun, L. Multimodal Function Optimization Based on Particle Swarm Optimization. IEEE Trans. Magn. 2006, 42, 1095–1098. [Google Scholar] [CrossRef]
- Zou, J.; Deng, Q.; Zheng, J.; Yang, S. A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems. Inf. Sci. 2020, 519, 332–347. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.-N.; Yu, Z.; Gu, T.; Li, Y.; Zhang, H.; Zhang, J. Adaptive Multimodal Continuous Ant Colony Optimization. IEEE Trans. Evol. Comput. 2016, 21, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Chen, W.-N.; Li, Y.; Chen, C.L.P.; Xu, X.-M.; Zhang, J. Multimodal Estimation of Distribution Algorithms. IEEE Trans. Cybern. 2017, 47, 636–650. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, R.; Ishibuchi, H. A Review of Evolutionary Multimodal Multiobjective Optimization. IEEE Trans. Evol. Comput. 2020, 24, 193–200. [Google Scholar] [CrossRef]
- Molaei, S.; Moazen, H.; Najjar-Ghabel, S.; Farzinvash, L. Particle swarm optimization with an enhanced learning strategy and crossover operator. Knowl.-Based Syst. 2021, 215, 106768. [Google Scholar] [CrossRef]
- Lin, A.; Sun, W.; Yu, H.; Wu, G.; Tang, H. Adaptive comprehensive learning particle swarm optimization with cooperative archive. Appl. Soft Comput. 2019, 77, 533–546. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.-N.; Gu, T.; Zhang, H.; Deng, J.D.; Li, Y.; Zhang, J. Segment-Based Predominant Learning Swarm Optimizer for Large-Scale Optimization. IEEE Trans. Cybern. 2016, 47, 2896–2910. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Chen, W.-N.; Gu, T.; Zhang, H.; Yuan, H.; Kwong, S.; Zhang, J. A Distributed Swarm Optimizer with Adaptive Communication for Large-Scale Optimization. IEEE Trans. Cybern. 2020, 50, 3393–3408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Du, K.-J.; Zhan, Z.-H.; Kwong, S.; Gu, T.-L.; Zhang, J. Cooperative Coevolutionary Bare-Bones Particle Swarm Optimization with Function Independent Decomposition for Large-Scale Supply Chain Network Design with Uncertainties. IEEE Trans. Cybern. 2019, 50, 4454–4468. [Google Scholar] [CrossRef]
- Song, X.-F.; Zhang, Y.; Guo, Y.-N.; Sun, X.-Y.; Wang, Y.-L. Variable-Size Cooperative Coevolutionary Particle Swarm Optimization for Feature Selection on High-Dimensional Data. IEEE Trans. Evol. Comput. 2020, 24, 882–895. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Li, W.; Zhou, M.; Zhang, Y.; Chaovalitwongse, W.A. Comprehensive Learning Particle Swarm Optimization Algorithm with Local Search for Multimodal Functions. IEEE Trans. Evol. Comput. 2019, 23, 718–731. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Kang, Q.; Cheng, J. Differential mutation and novel social learning particle swarm optimization algorithm. Inf. Sci. 2019, 480, 109–129. [Google Scholar] [CrossRef]
- Liang, X.; Li, W.; Liu, P.; Zhang, Y.; Agbo, A.A. Social Network-based Swarm Optimization algorithm. In Proceedings of the International Conference on Networking, Sensing and Control, Taipei, Taiwan, 9–11 April 2015; pp. 360–365. [Google Scholar]
- Blackwell, T.; Kennedy, J. Impact of Communication Topology in Particle Swarm Optimization. IEEE Trans. Evol. Comput. 2019, 23, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Mendes, R. Population Structure and Particle Swarm Performance. In Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; pp. 1671–1676. [Google Scholar]
- Lin, A.; Sun, W.; Yu, H.; Wu, G.; Tang, H. Global genetic learning particle swarm optimization with diversity enhancement by ring topology. Swarm Evol. Comput. 2019, 44, 571–583. [Google Scholar] [CrossRef]
- Kennedy, J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, p. 1931. [Google Scholar]
- Elsayed, S.M.; Sarker, R.A.; Essam, D.L. Memetic multi-topology particle swarm optimizer for constrained optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar]
- Li, F.; Guo, J. Topology Optimization of Particle Swarm Optimization. In Proceedings of the Advances in Swarm Intelligence, Hefei, China, 17–20 October 2014; pp. 142–149. [Google Scholar]
- Bonyadi, M.R.; Li, X.; Michalewicz, Z. A hybrid particle swarm with a time-adaptive topology for constrained optimization. Swarm Evol. Comput. 2014, 18, 22–37. [Google Scholar] [CrossRef]
- Xia, X.; Gui, L.; Yu, F.; Wu, H.; Wei, B.; Zhang, Y.-L.; Zhan, Z.-H. Triple Archives Particle Swarm Optimization. IEEE Trans. Cybern. 2019, 50, 4862–4875. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhang, J.; Li, Y.; Shi, Y. Orthogonal Learning Particle Swarm Optimization. IEEE Trans. Evol. Comput. 2011, 15, 832–847. [Google Scholar] [CrossRef] [Green Version]
- Lynn, N.; Suganthan, P. Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 2015, 24, 11–24. [Google Scholar] [CrossRef]
- Gong, Y.-J.; Li, J.-J.; Zhou, Y.; Li, Y.; Chung, H.S.-H.; Shi, Y.-H.; Zhang, J. Genetic Learning Particle Swarm Optimization. IEEE Trans. Cybern. 2016, 46, 2277–2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osaba, E.; Yang, X.-S. Applied Optimization and Swarm Intelligence: A Systematic Review and Prospect Opportunities. In Applied Optimization and Swarm Intelligence; Osaba, E., Yang, X.-S., Eds.; Springer: Singapore, 2021; pp. 1–23. [Google Scholar] [CrossRef]
- Puurtinen, M.; Heap, S.; Mappes, T. The joint emergence of group competition and within-group cooperation. Ethol. Sociobiol. 2015, 36, 211–217. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Korea; Nanyang Technological University: Singapore, 2017; pp. 1–16. [Google Scholar]
- Liu, W.; Wang, Z.; Yuan, Y.; Zeng, N.; Hone, K.; Liu, X. A Novel Sigmoid-Function-Based Adaptive Weighted Particle Swarm Optimizer. IEEE Trans. Cybern. 2021, 51, 1085–1093. [Google Scholar] [CrossRef]
- Xie, H.-Y.; Yang, Q.; Hu, X.-M.; Chen, W.-N. Cross-generation Elites Guided Particle Swarm Optimization for large scale optimization. In Proceedings of the Symposium Series on Computational Intelligence, Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Gong, Y.-j.; Zhang, J. Small-world Particle Swarm Optimization with Topology Adaptation. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands, 6–10 July 2013; pp. 25–32. [Google Scholar]
- Xu, G.; Zhao, X.; Wu, T.; Li, R.; Li, X. An Elitist Learning Particle Swarm Optimization with Scaling Mutation and Ring Topology. IEEE Access 2018, 6, 78453–78470. [Google Scholar] [CrossRef]
- Zeng, N.; Wang, Z.; Liu, W.; Zhang, H.; Hone, K.; Liu, X. A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm. IEEE Trans. Cybern. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tanweer, M.; Suresh, S.; Sundararajan, N. Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf. Sci. 2016, 326, 1–24. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, H.; Gao, L.; Zhang, G. Cellular particle swarm optimization. Inf. Sci. 2011, 181, 4460–4493. [Google Scholar] [CrossRef]
- Tao, X.; Guo, W.; Li, X.; He, Q.; Liu, R.; Zou, J. Fitness peak clustering based dynamic multi-swarm particle swarm optimization with enhanced learning strategy. Expert Syst. Appl. 2020, 116301. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, L.; Zeng, C.; Chen, J. Particle Swarm Optimization with Double Learning Patterns. Comput. Intell. Neurosci. 2016, 2016, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Sun, W. Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems. Energies 2019, 12, 116. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-J.; Zhan, Z.-H.; Kwong, S.; Jin, H.; Zhang, J. Adaptive Granularity Learning Distributed Particle Swarm Optimization for Large-Scale Optimization. IEEE Trans. Cybern. 2021, 51, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Li, Q.; Wang, H.; Feng, Y.; Pan, Y. Two-Stage Adaptive Constrained Particle Swarm Optimization Based on Bi-Objective Method. IEEE Access 2020, 8, 150647–150664. [Google Scholar] [CrossRef]
- Wang, R.; Hao, K.; Chen, L.; Wang, T.; Jiang, C. A novel hybrid particle swarm optimization using adaptive strategy. Inf. Sci. 2021, 579, 231–250. [Google Scholar] [CrossRef]
- Song, G.-W.; Yang, Q.; Gao, X.-D.; Ma, Y.-Y.; Lu, Z.-Y.; Zhang, J. An Adaptive Level-Based Learning Swarm Optimizer for Large-Scale Optimization. In Proceedings of the International Conference on Systems, Man, and Cybernetics, Melbourne, Australia, 17–20 October 2021; pp. 152–159. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhang, J.; Li, Y.; Chung, H.S. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. 2009, 39, 1362–1381. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Li, X.; Chen, W.; Liang, T.; Li, Y.; Guo, J.; Qi, L. Self-Adaptive two roles hybrid learning strategies-based particle swarm optimization. Inf. Sci. 2021, 578, 457–481. [Google Scholar] [CrossRef]
- Sun, W.; Lin, A.; Yu, H.; Liang, Q.; Wu, G. All-dimension neighborhood based particle swarm optimization with randomly selected neighbors. Inf. Sci. 2017, 405, 141–156. [Google Scholar] [CrossRef]
- Xia, X.; Gui, L.; He, G.; Wei, B.; Zhang, Y.; Yu, F.; Wu, H.; Zhan, Z.-H. An expanded particle swarm optimization based on multi-exemplar and forgetting ability. Inf. Sci. 2020, 508, 105–120. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Zhang, T.; Wang, Q.; Wang, Y.; Tu, L. Terminal crossover and steering-based particle swarm optimization algorithm with disturbance. Appl. Soft Comput. 2019, 85, 105841. [Google Scholar] [CrossRef]
Algorithms | D | Parameter Settings | |
---|---|---|---|
SCDLPSO | 30 | NP = 100 | w = 0.9–0.4 β = 0.5 |
50 | NP = 100 | ||
100 | NP = 150 | ||
XPSO | 30 | NP = 100 | η = 0.2 p = 0.5 Stagemax = 5 |
50 | NP = 150 | ||
100 | NP = 150 | ||
TCSPSO | 30 | NP = 50 | w = 0.9–0.4 c1 = c2 = 2 |
50 | NP = 50 | ||
100 | NP = 50 | ||
DNSPSO | 30 | NP = 50 | w = 0.9–0.4 k = 5 F = 0.5 CR = 0.9 |
50 | NP = 50 | ||
100 | NP = 50 | ||
AWPSO | 30 | NP = 40 | w = 0.9–0.4 |
50 | NP = 60 | ||
100 | NP = 100 | ||
CLPSO_LS | 30 | NP = 40 | c = 1.4945 w = 0.9–0.4 β = 1/3 θ = 0.94 Pc = 0.05–0.5 |
50 | NP = 50 | ||
100 | NP = 50 | ||
GLPSO | 30 | NP = 40 | w = 0.7298 c1 = c2= 1.49618 pm = 0.01 sg = 7 |
50 | NP = 40 | ||
100 | NP = 50 | ||
CLSPO | 30 | NP = 40 | w = 0.9–0.2 c1 = c2 = 1.49445 Pc = 0.05–0.5 |
50 | NP = 60 | ||
100 | NP = 60 |
F | NP = 50 | NP = 100 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β = 0.1 | β = 0.2 | β = 0.3 | β = 0.4 | β = 0.5 | β = 0.6 | β = 0.7 | β = 0.8 | β = 0.9 | β = 1.0 | β = 0.1 | β = 0.2 | β = 0.3 | β = 0.4 | β = 0.5 | β = 0.6 | β = 0.7 | β = 0.8 | β = 0.9 | β = 1.0 | |
F1 | 8.01 × 104 | 2.21 × 103 | 1.89 × 103 | 5.02 × 103 | 5.38 × 103 | 8.37 × 103 | 1.16 × 104 | 1.36 × 104 | 2.17 × 104 | 2.24 × 104 | 2.39 × 103 | 7.77 × 102 | 1.45 × 103 | 2.32 × 103 | 2.32 × 103 | 6.33 × 103 | 9.69 × 103 | 1.40 × 104 | 1.76 × 104 | 2.69 × 104 |
F3 | 7.85 × 104 | 2.94 × 104 | 1.52 × 104 | 8.64 × 103 | 6.00 × 103 | 6.07 × 103 | 8.68 × 103 | 1.81 × 104 | 2.98 × 104 | 5.09 × 104 | 7.04 × 104 | 3.65 × 104 | 2.02 × 104 | 1.46 × 104 | 1.44 × 104 | 1.77 × 104 | 2.50 × 104 | 2.89 × 104 | 5.06 × 104 | 8.59 × 104 |
F4 | 1.82 × 102 | 1.19 × 102 | 9.51 × 101 | 1.23 × 102 | 1.29 × 102 | 1.55 × 102 | 1.42 × 102 | 1.59 × 102 | 1.67 × 102 | 1.83 × 102 | 1.83 × 102 | 1.38 × 102 | 9.50 × 101 | 1.02 × 102 | 1.23 × 102 | 1.34 × 102 | 1.57 × 102 | 1.73 × 102 | 1.81 × 102 | 1.97 × 102 |
F5 | 1.73 × 102 | 7.94 × 101 | 3.03 × 101 | 2.11 × 101 | 1.91 × 101 | 1.99 × 101 | 2.42 × 101 | 1.70 × 102 | 3.34 × 102 | 3.62 × 102 | 1.58 × 102 | 6.59 × 101 | 2.43 × 101 | 1.22 × 101 | 1.08 × 101 | 1.08 × 101 | 5.79 × 101 | 3.15 × 102 | 3.39 × 102 | 3.63 × 102 |
F6 | 3.02 × 101 | 4.17 × 100 | 2.68 × 10−1 | 7.74 × 10−2 | 5.20 × 10−2 | 4.88 × 10−2 | 7.08 × 10−2 | 4.29 × 10−2 | 3.97 × 10−2 | 1.55 × 10−1 | 2.45 × 101 | 2.80 × 100 | 9.15 × 10−2 | 1.44 × 10−2 | 6.38 × 10−4 | 5.96 × 10−3 | 2.48 × 10−3 | 4.51 × 10−3 | 2.74 × 10−3 | 4.73 × 10−3 |
F7 | 2.77 × 102 | 1.24 × 102 | 8.19 × 101 | 6.99 × 101 | 6.75 × 101 | 7.56 × 101 | 1.61 × 102 | 3.65 × 102 | 3.83 × 102 | 4.04 × 102 | 2.18 × 102 | 1.01 × 102 | 7.33 × 101 | 6.38 × 101 | 6.22 × 101 | 9.15 × 101 | 3.32 × 102 | 3.70 × 102 | 3.84 × 102 | 4.15 × 102 |
F8 | 1.81 × 102 | 7.74 × 101 | 2.97 × 101 | 1.98 × 101 | 1.80 × 101 | 2.01 × 101 | 2.31 × 101 | 1.22 × 102 | 3.36 × 102 | 3.60 × 102 | 1.53 × 102 | 6.98 × 101 | 2.36 × 101 | 1.41 × 101 | 1.01 × 101 | 1.14 × 101 | 4.48 × 101 | 3.03 × 102 | 3.34 × 102 | 3.65 × 102 |
F9 | 4.48 × 103 | 2.62 × 102 | 2.40 × 101 | 6.55 × 100 | 1.13 × 101 | 1.91 × 101 | 2.36 × 101 | 1.37 × 101 | 1.55 × 101 | 3.55 × 101 | 2.80 × 103 | 1.11 × 102 | 7.89 × 100 | 2.07 × 100 | 1.57 × 100 | 5.58 × 10−1 | 2.63 × 100 | 3.91 × 100 | 3.92 × 10−2 | 2.98 ×10−3 |
F10 | 5.78 × 103 | 4.47 × 103 | 4.25 × 103 | 4.62 × 103 | 7.65 × 103 | 1.20 × 104 | 1.26 × 104 | 1.23 × 104 | 1.20 × 104 | 1.09 × 104 | 5.88 × 103 | 4.20 × 103 | 4.04 × 103 | 4.90 × 103 | 9.87 × 103 | 1.26 × 104 | 1.29 × 104 | 1.29 × 104 | 1.22 × 104 | 1.15 × 104 |
F11 | 2.46 × 102 | 1.51 × 102 | 1.56 × 102 | 1.19 × 102 | 8.87 × 101 | 8.18 × 101 | 6.36 × 101 | 7.03 × 101 | 1.07 × 102 | 1.95 × 102 | 2.13 × 102 | 1.36 × 102 | 1.29 × 102 | 8.81 × 101 | 6.62 × 101 | 5.15 × 101 | 3.88 × 101 | 3.89 × 101 | 1.52 × 102 | 1.58 × 102 |
F12 | 2.26 × 106 | 3.49 × 105 | 2.15 × 105 | 3.63 × 105 | 2.35 × 105 | 6.58 × 107 | 4.53 × 105 | 1.44 × 106 | 6.68 × 106 | 3.43 × 106 | 1.76 × 106 | 2.84 × 105 | 1.99 × 105 | 2.64 × 105 | 2.77 × 105 | 5.29 × 105 | 8.67 × 105 | 1.43 × 106 | 2.55 × 106 | 4.82 × 106 |
F13 | 1.09 × 104 | 8.16 × 103 | 3.16 × 105 | 8.62 × 103 | 1.18 × 104 | 1.01 × 106 | 2.47 × 104 | 2.93 × 104 | 1.46 × 108 | 2.60 × 107 | 8.27 × 103 | 4.85 × 103 | 4.00 × 103 | 5.48 × 103 | 5.90 × 103 | 1.52 × 104 | 2.12 × 104 | 2.85 × 104 | 3.04 × 104 | 3.37 × 104 |
F14 | 4.15 × 104 | 3.05 × 104 | 2.00 × 104 | 1.64 × 104 | 3.75 × 104 | 5.37 × 104 | 7.84 × 104 | 1.25 × 105 | 1.57 × 105 | 1.77 × 105 | 3.73 × 104 | 2.16 × 104 | 1.74 × 104 | 2.07 × 104 | 3.49 × 104 | 8.85 × 104 | 9.64 × 104 | 1.45 × 105 | 2.44 × 105 | 2.54 × 105 |
F15 | 6.47 × 103 | 5.70 × 103 | 5.31 × 103 | 5.87 × 103 | 6.65 × 103 | 1.21 × 104 | 1.91 × 104 | 2.60 × 104 | 2.96 × 104 | 3.11 × 104 | 6.80 × 103 | 5.63 × 103 | 5.96 × 103 | 5.62 × 103 | 6.48 × 103 | 8.22 × 103 | 1.96 × 104 | 2.72 × 104 | 3.04 × 104 | 3.13 × 104 |
F16 | 1.44 × 103 | 8.35 × 102 | 5.62 × 102 | 4.44 × 102 | 4.76 × 102 | 7.09 × 102 | 7.08 × 102 | 1.19 × 103 | 2.04 × 103 | 2.43 × 103 | 1.23 × 103 | 6.63 × 102 | 4.99 × 102 | 4.85 × 102 | 4.29 × 102 | 5.56 × 102 | 8.06 × 102 | 1.86 × 103 | 2.37 × 103 | 2.84 × 103 |
F17 | 1.35 × 103 | 7.86 × 102 | 4.89 × 102 | 4.87 × 102 | 4.29 × 102 | 5.22 × 102 | 6.97 × 102 | 8.27 × 102 | 1.48 × 103 | 1.74 × 103 | 1.28 × 103 | 7.18 × 102 | 4.95 × 102 | 3.76 × 102 | 3.70 × 102 | 7.97 × 102 | 9.33 × 102 | 1.26 × 103 | 1.57 × 103 | 1.74 × 103 |
F18 | 2.51 × 105 | 1.20 × 105 | 7.21 × 104 | 7.75 × 104 | 1.16 × 105 | 1.99 × 105 | 3.47 × 105 | 1.10 × 106 | 2.01 × 106 | 2.21 × 106 | 1.45 × 105 | 9.03 × 104 | 6.69 × 104 | 8.02 × 104 | 1.30 × 105 | 2.74 × 105 | 8.92 × 105 | 1.66 × 106 | 3.43 × 106 | 4.41 × 106 |
F19 | 1.48 × 104 | 1.47 × 104 | 1.81 × 104 | 1.68 × 104 | 1.82 × 104 | 1.50 × 104 | 1.96 × 104 | 1.63 × 104 | 1.26 × 104 | 3.73 × 103 | 1.48 × 104 | 1.50 × 104 | 1.42 × 104 | 1.28 × 104 | 1.43 × 104 | 1.18 × 104 | 1.20 × 104 | 9.55 × 103 | 4.58 × 103 | 4.86 × 103 |
F20 | 7.22 × 102 | 3.57 × 102 | 2.50 × 102 | 3.93 × 102 | 4.80 × 102 | 1.10 × 103 | 1.35 × 103 | 1.42 × 103 | 1.45 × 103 | 1.53 × 103 | 6.39 × 102 | 3.54 × 102 | 2.37 × 102 | 2.78 × 102 | 7.04 × 102 | 1.22 × 103 | 1.35 × 103 | 1.45 × 103 | 1.49 × 103 | 1.57 × 103 |
F21 | 3.61 × 102 | 2.80 × 102 | 2.41 × 102 | 2.37 × 102 | 2.31 × 102 | 2.34 × 102 | 2.34 × 102 | 3.00 × 102 | 5.36 × 102 | 5.56 × 102 | 3.16 × 102 | 2.54 × 102 | 2.29 × 102 | 2.29 × 102 | 2.19 × 102 | 2.19 × 102 | 2.23 × 102 | 5.01 × 102 | 5.35 × 102 | 5.66 × 102 |
F22 | 4.74 × 103 | 3.47 × 103 | 3.57 × 103 | 3.96 × 103 | 5.50 × 103 | 1.05 × 104 | 1.24 × 104 | 1.28 × 104 | 1.31 × 104 | 1.31 × 104 | 4.94 × 103 | 2.19 × 103 | 3.46 × 103 | 3.67 × 103 | 6.52 × 103 | 1.20 × 104 | 1.27 × 104 | 1.27 × 104 | 1.30 × 104 | 1.31 × 104 |
F23 | 7.41 × 102 | 6.39 × 102 | 5.95 × 102 | 5.99 × 102 | 6.16 × 102 | 6.25 × 102 | 6.26 × 102 | 6.32 × 102 | 6.73 × 102 | 8.58 × 102 | 6.30 × 102 | 5.57 × 102 | 5.30 × 102 | 5.34 × 102 | 5.27 × 102 | 5.24 × 102 | 5.29 × 102 | 5.63 × 102 | 7.92 × 102 | 8.21 × 102 |
F24 | 7.55 × 102 | 6.83 × 102 | 6.76 × 102 | 6.80 × 102 | 6.93 × 102 | 6.92 × 102 | 7.11 × 102 | 8.44 × 102 | 9.41 × 102 | 9.67 × 102 | 6.68 × 102 | 6.11 × 102 | 5.97 × 102 | 5.99 × 102 | 5.98 × 102 | 6.09 × 102 | 6.26 × 102 | 8.70 × 102 | 8.82 × 102 | 8.93 × 102 |
F25 | 6.10 × 102 | 5.66 × 102 | 5.61 × 102 | 5.43 × 102 | 4.97 × 102 | 4.81 × 102 | 4.87 × 102 | 4.85 × 102 | 4.84 × 102 | 4.95 × 102 | 5.95 × 102 | 5.64 × 102 | 5.45 × 102 | 5.65 × 102 | 5.08 × 102 | 4.80 × 102 | 4.80 × 102 | 4.80 × 102 | 4.80 × 102 | 4.82 × 102 |
F26 | 4.77 × 103 | 1.66 × 103 | 1.35 × 103 | 1.91 × 103 | 2.26 × 103 | 2.55 × 103 | 2.90 × 103 | 3.05 × 103 | 3.62 × 103 | 4.93 × 103 | 3.70 × 103 | 2.01 × 103 | 1.15 × 103 | 1.91 × 103 | 1.89 × 103 | 1.93 × 103 | 2.21 × 103 | 2.50 × 103 | 4.53 × 103 | 5.38 × 103 |
F27 | 9.41 × 102 | 7.80 × 102 | 7.27 × 102 | 7.81 × 102 | 7.46 × 102 | 8.01 × 102 | 8.58 × 102 | 8.68 × 102 | 8.82 × 102 | 9.52 × 102 | 8.55 × 102 | 7.47 × 102 | 7.15 × 102 | 7.09 × 102 | 6.79 × 102 | 7.15 × 102 | 7.57 × 102 | 7.63 × 102 | 7.92 × 102 | 7.84 × 102 |
F28 | 5.73 × 102 | 5.11 × 102 | 5.01 × 102 | 4.92 × 102 | 4.89 × 102 | 4.79 × 102 | 7.88 × 102 | 1.58 × 103 | 4.26 × 103 | 5.37 × 103 | 5.52 × 102 | 5.04 × 102 | 5.06 × 102 | 4.92 × 102 | 4.74 × 102 | 4.77 × 102 | 4.73 × 102 | 1.96 × 103 | 3.46 × 103 | 5.44 × 103 |
F29 | 1.96 × 103 | 1.17 × 103 | 7.35 × 102 | 6.72 × 102 | 6.62 × 102 | 7.13 × 102 | 7.31 × 102 | 7.31 × 102 | 1.27 × 103 | 1.69 × 103 | 1.81 × 103 | 1.02 × 103 | 6.16 × 102 | 5.05 × 102 | 5.16 × 102 | 5.08 × 102 | 5.42 × 102 | 8.00 × 102 | 1.47 × 103 | 1.79 × 103 |
F30 | 1.31 × 106 | 8.35 × 105 | 9.29 × 105 | 9.97 × 105 | 9.75 × 105 | 1.04 × 106 | 1.21 × 106 | 1.56 × 106 | 1.90 × 106 | 2.04 × 106 | 1.18 × 106 | 8.33 × 105 | 8.12 × 105 | 8.26 × 105 | 8.25 × 105 | 9.98 × 105 | 1.28 × 106 | 1.63 × 106 | 1.56 × 106 | 1.67 × 106 |
Rank | 7.41 | 4.45 | 3.55 | 3.14 | 3.21 | 4.48 | 5.59 | 6.52 | 7.69 | 8.97 | 7.24 | 5.00 | 3.31 | 3.28 | 2.93 | 4.17 | 5.38 | 7.03 | 7.86 | 8.79 |
F | NP = 150 | NP = 200 | ||||||||||||||||||
β = 0.1 | β = 0.2 | β = 0.3 | β = 0.4 | β = 0.5 | β = 0.6 | β = 0.7 | β = 0.8 | β = 0.9 | β = 1.0 | β = 0.1 | β = 0.2 | β = 0.3 | β = 0.4 | β = 0.5 | β = 0.6 | β = 0.7 | β = 0.8 | β = 0.9 | β = 1.0 | |
F1 | 1.34 × 103 | 1.54 × 103 | 1.53 × 103 | 1.99 × 103 | 2.44 × 103 | 3.06 × 103 | 7.89 × 103 | 1.24 × 104 | 1.62 × 104 | 2.48 × 104 | 1.35 × 103 | 9.97 × 102 | 1.59 × 103 | 1.89 × 103 | 2.53 × 103 | 5.30 × 103 | 9.45 × 103 | 1.24 × 104 | 2.08 × 104 | 2.58 × 104 |
F3 | 7.10 × 104 | 3.90 × 104 | 3.12 × 104 | 2.62 × 104 | 2.76 × 104 | 3.32 × 104 | 3.65 × 104 | 5.18 × 104 | 8.11 × 104 | 1.14 × 103 | 7.03 × 104 | 4.69 × 104 | 3.78 × 104 | 3.60 × 104 | 4.20 × 104 | 4.30 × 104 | 5.03 × 104 | 6.90 × 104 | 9.84 × 104 | 1.38 × 103 |
F4 | 1.78 × 102 | 1.11 × 102 | 1.14 × 102 | 1.11 × 102 | 1.24 × 102 | 1.47 × 102 | 1.85 × 102 | 1.86 × 102 | 2.00 × 102 | 2.05 × 102 | 1.73 × 102 | 1.49 × 102 | 1.36 × 102 | 1.08 × 102 | 1.06 × 102 | 1.70 × 102 | 1.89 × 102 | 1.94 × 102 | 2.00 × 102 | 2.11 × 102 |
F5 | 1.44 × 102 | 6.00 × 101 | 2.26 × 101 | 1.08 × 101 | 7.73 × 100 | 7.36 × 100 | 9.43 × 101 | 3.15 × 102 | 3.41 × 102 | 3.66 × 102 | 1.44 × 102 | 6.01 × 101 | 2.27 × 101 | 9.19 × 100 | 5.94 × 100 | 5.31 × 100 | 1.26 × 102 | 3.22 × 102 | 3.42 × 102 | 3.72 × 102 |
F6 | 2.20 × 101 | 2.39 × 100 | 1.22 × 10−1 | 1.04 × 10−2 | 2.17 × 10−3 | 2.13 × 10−4 | 6.13 × 10−5 | 5.61 × 10−3 | 3.41 × 10−6 | 1.46 × 10−3 | 2.17 × 101 | 2.45 × 100 | 1.13 × 10−1 | 1.00 × 10−2 | 9.46 × 10−4 | 1.30 × 10−3 | 3.32 × 10−5 | 3.78 × 10−4 | 3.00 × 10−6 | 1.43 × 10−2 |
F7 | 2.05 × 102 | 9.68 × 101 | 7.03 × 101 | 6.22 × 101 | 6.86 × 101 | 1.72 × 102 | 3.56 × 102 | 3.66 × 102 | 3.88 × 102 | 4.13 × 102 | 2.07 × 102 | 9.52 × 101 | 7.01 × 101 | 6.20 × 101 | 7.91 × 101 | 2.30 × 102 | 3.50 × 102 | 3.70 × 102 | 3.87 × 102 | 4.23 × 102 |
F8 | 1.43 × 102 | 5.75 × 101 | 2.19 × 101 | 1.00 × 101 | 8.22 × 100 | 7.50 × 100 | 8.07 × 101 | 3.13 × 102 | 3.38 × 102 | 3.69 × 102 | 1.36 × 102 | 5.50 × 101 | 2.14 × 101 | 9.39 × 100 | 5.44 × 100 | 5.27 × 100 | 7.43 × 101 | 3.17 × 102 | 3.39 × 102 | 3.71 × 102 |
F9 | 2.32 × 103 | 9.69 × 101 | 7.67 × 100 | 1.53 × 100 | 1.58 × 100 | 3.28 × 10−1 | 1.18 × 10−1 | 1.03 × 10−1 | 5.97 × 10−3 | 1.81 × 10−2 | 1.96 × 103 | 1.24 × 102 | 6.87 × 100 | 2.01 × 100 | 7.63 × 10−1 | 3.05 × 10−1 | 1.02 × 10−1 | 7.23 × 10−2 | 1.73×10−10 | 3.85 × 10−3 |
F10 | 5.76 × 103 | 4.79 × 103 | 4.77 × 103 | 4.94 × 103 | 1.10 × 104 | 1.25 × 104 | 1.25 × 104 | 1.29 × 104 | 1.21 × 104 | 1.21 × 104 | 6.06 × 103 | 4.73 × 103 | 4.28 × 103 | 4.76 × 103 | 1.12 × 104 | 1.27 × 104 | 1.28 × 104 | 1.29 × 104 | 1.29 × 104 | 1.19 × 104 |
F11 | 1.86 × 102 | 1.25 × 102 | 1.23 × 102 | 1.00 × 102 | 6.69 × 101 | 5.12 × 101 | 4.23 × 101 | 4.64 × 101 | 1.43 × 102 | 1.79 × 102 | 1.74 × 102 | 1.20 × 102 | 1.15 × 102 | 9.74 × 101 | 7.41 × 101 | 5.93 × 101 | 4.14 × 101 | 5.23 × 101 | 1.52 × 102 | 1.78 × 102 |
F12 | 1.33 × 106 | 3.23 × 105 | 2.47 × 105 | 2.47 × 105 | 3.06 × 105 | 6.99 × 105 | 1.40 × 106 | 2.33 × 106 | 3.90 × 106 | 7.79 × 106 | 1.70 × 106 | 4.03 × 105 | 2.56 × 105 | 3.24 × 105 | 4.74 × 105 | 7.62 × 105 | 1.44 × 106 | 2.12 × 106 | 3.75 × 106 | 8.57 × 106 |
F13 | 7.45 × 103 | 4.81 × 103 | 3.51 × 103 | 3.87 × 103 | 7.54 × 103 | 1.12 × 104 | 1.63 × 104 | 2.94 × 104 | 3.22 × 104 | 3.16 × 104 | 7.92 × 103 | 4.21 × 103 | 3.44 × 103 | 2.10 × 103 | 3.24 × 103 | 1.14 × 104 | 1.59 × 104 | 2.77 × 104 | 3.06 × 104 | 3.30 × 104 |
F14 | 3.24 × 104 | 2.16 × 104 | 1.96 × 104 | 1.95 × 104 | 3.79 × 104 | 6.97 × 104 | 1.10 × 105 | 1.85 × 105 | 2.21 × 105 | 3.14 × 105 | 2.69 × 104 | 2.26 × 104 | 2.31 × 104 | 2.54 × 104 | 3.01 × 104 | 1.05 × 105 | 1.44 × 105 | 2.20 × 105 | 2.38 × 105 | 3.00 × 105 |
F15 | 6.25 × 103 | 5.30 × 103 | 4.91 × 103 | 5.64 × 103 | 4.94 × 103 | 7.13 × 103 | 1.32 × 104 | 2.59 × 104 | 3.10 × 104 | 3.13 × 104 | 6.34 × 103 | 5.72 × 103 | 5.92 × 103 | 4.96 × 103 | 5.17 × 103 | 5.59 × 103 | 1.42 × 104 | 2.56 × 104 | 3.10 × 104 | 3.12 × 104 |
F16 | 1.19 × 103 | 7.21 × 102 | 5.07 × 102 | 4.95 × 102 | 4.19 × 102 | 4.90 × 102 | 1.32 × 103 | 2.26 × 103 | 2.63 × 103 | 2.88 × 103 | 1.09 × 103 | 7.40 × 102 | 5.24 × 102 | 5.39 × 102 | 5.39 × 102 | 7.37 × 102 | 1.45 × 103 | 2.21 × 103 | 2.65 × 103 | 2.88 × 103 |
F17 | 1.19 × 103 | 7.65 × 102 | 5.64 × 102 | 4.37 × 102 | 3.94 × 102 | 6.73 × 102 | 1.13 × 103 | 1.42 × 103 | 1.52 × 103 | 1.71 × 103 | 1.27 × 103 | 7.66 × 102 | 4.54 × 102 | 3.86 × 102 | 3.22 × 102 | 8.72 × 102 | 1.12 × 103 | 1.43 × 103 | 1.56 × 103 | 1.76 × 103 |
F18 | 1.59 × 105 | 7.85 × 104 | 5.56 × 104 | 8.38 × 104 | 1.18 × 105 | 4.23 × 105 | 1.27 × 106 | 2.43 × 106 | 3.90 × 106 | 5.93 × 106 | 2.21 × 105 | 7.01 × 104 | 6.44 × 104 | 7.45 × 104 | 1.83 × 105 | 5.85 × 105 | 1.27 × 106 | 3.08 × 106 | 5.30 × 106 | 4.23 × 106 |
F19 | 1.51 × 104 | 1.51 × 104 | 1.42 × 104 | 1.50 × 104 | 1.54 × 104 | 1.34 × 104 | 7.49 × 103 | 7.54 × 103 | 4.91 × 103 | 2.46 × 103 | 1.50 × 104 | 1.48 × 104 | 1.42 × 104 | 1.45 × 104 | 1.29 × 104 | 1.18 × 104 | 1.03 × 104 | 7.09 × 103 | 5.41 × 103 | 3.74 × 103 |
F20 | 6.32 × 102 | 3.88 × 102 | 2.29 × 102 | 3.94 × 102 | 9.29 × 102 | 1.24 × 103 | 1.31 × 103 | 1.38 × 103 | 1.51 × 103 | 1.56 × 103 | 6.62 × 102 | 4.50 × 102 | 2.75 × 102 | 5.11 × 102 | 9.92 × 102 | 1.24 × 103 | 1.35 × 103 | 1.41 × 103 | 1.53 × 103 | 1.53 × 103 |
F21 | 2.95 × 102 | 2.44 × 102 | 2.23 × 102 | 2.17 × 102 | 2.13 × 102 | 2.14 × 102 | 2.36 × 102 | 5.14 × 102 | 5.38 × 102 | 5.68 × 102 | 2.94 × 102 | 2.41 × 102 | 2.20 × 102 | 2.14 × 102 | 2.14 × 102 | 2.12 × 102 | 2.98 × 102 | 5.10 × 102 | 5.43 × 102 | 5.73 × 102 |
F22 | 3.14 × 103 | 1.42 × 103 | 3.18 × 103 | 4.06 × 103 | 7.58 × 103 | 1.19 × 104 | 1.29 × 104 | 1.29 × 104 | 1.31 × 104 | 1.32 × 104 | 2.59 × 103 | 9.54 × 102 | 3.28 × 103 | 5.62 × 103 | 9.13 × 103 | 1.25 × 104 | 1.28 × 104 | 1.29 × 104 | 1.32 × 104 | 1.31 × 104 |
F23 | 6.06 × 102 | 5.29 × 102 | 5.11 × 102 | 5.06 × 102 | 5.00 × 102 | 5.06 × 102 | 5.01 × 102 | 6.23 × 102 | 7.89 × 102 | 8.17 × 102 | 5.77 × 102 | 5.19 × 102 | 5.05 × 102 | 5.05 × 102 | 4.96 × 102 | 4.92 × 102 | 5.16 × 102 | 7.62 × 102 | 7.85 × 102 | 8.13 × 102 |
F24 | 6.20 × 102 | 5.79 × 102 | 5.78 × 102 | 5.84 × 102 | 5.83 × 102 | 5.86 × 102 | 7.15 × 102 | 8.53 × 102 | 8.65 × 102 | 8.80 × 102 | 6.02 × 102 | 5.78 × 102 | 5.65 × 102 | 5.75 × 102 | 5.72 × 102 | 5.77 × 102 | 7.64 × 102 | 8.55 × 102 | 8.65 × 102 | 8.70 × 102 |
F25 | 5.97 × 102 | 5.71 × 102 | 5.66 × 102 | 5.48 × 102 | 4.96 × 102 | 4.80 × 102 | 4.80 × 102 | 4.80 × 102 | 4.80 × 102 | 5.05 × 102 | 5.93 × 102 | 5.73 × 102 | 5.66 × 102 | 5.40 × 102 | 5.12 × 102 | 4.80 × 102 | 4.80 × 102 | 4.80 × 102 | 4.81 × 102 | 5.20 × 102 |
F26 | 3.05 × 103 | 1.59 × 103 | 1.29 × 103 | 1.57 × 103 | 1.67 × 103 | 1.89 × 103 | 2.02 × 103 | 3.08 × 103 | 4.92 × 103 | 5.14 × 103 | 3.27 × 103 | 2.48 × 103 | 1.36 × 103 | 1.59 × 103 | 1.70 × 103 | 1.79 × 103 | 1.93 × 103 | 3.23 × 103 | 4.87 × 103 | 5.12 × 103 |
F27 | 8.33 × 102 | 7.36 × 102 | 6.80 × 102 | 6.63 × 102 | 6.76 × 102 | 7.16 × 102 | 7.22 × 102 | 7.26 × 102 | 7.36 × 102 | 7.69 × 102 | 8.45 × 102 | 7.15 × 102 | 6.68 × 102 | 6.64 × 102 | 6.61 × 102 | 7.07 × 102 | 7.17 × 102 | 7.24 × 102 | 7.61 × 102 | 7.14 × 102 |
F28 | 5.41 × 102 | 5.07 × 102 | 4.97 × 102 | 4.91 × 102 | 4.73 × 102 | 4.71 × 102 | 4.75 × 102 | 7.48 × 102 | 3.35 × 103 | 5.10 × 103 | 5.47 × 102 | 5.07 × 102 | 5.06 × 102 | 5.06 × 102 | 4.85 × 102 | 4.70 × 102 | 4.77 × 102 | 7.11 × 102 | 3.78 × 103 | 5.14 × 103 |
F29 | 1.77 × 103 | 1.09 × 103 | 6.71 × 102 | 5.90 × 102 | 4.36 × 102 | 4.51 × 102 | 4.74 × 102 | 1.06 × 103 | 1.44 × 103 | 1.88 × 103 | 1.74 × 103 | 1.10 × 103 | 6.93 × 102 | 5.79 × 102 | 4.37 × 102 | 4.61 × 102 | 4.93 × 102 | 1.06 × 103 | 1.68 × 103 | 1.99 × 103 |
F30 | 1.14 × 106 | 8.25 × 105 | 7.99 × 105 | 8.63 × 105 | 8.17 × 105 | 9.02 × 105 | 1.39 × 106 | 1.51 × 106 | 1.54 × 106 | 1.55 × 106 | 1.21 × 106 | 8.06 × 105 | 8.14 × 105 | 8.35 × 105 | 8.25 × 105 | 8.55 × 105 | 1.21 × 106 | 1.52 × 106 | 1.56 × 106 | 1.51 × 106 |
Rank | 6.52 | 4.72 | 3.38 | 3.38 | 3.45 | 4.21 | 5.48 | 7.14 | 7.86 | 8.86 | 6.66 | 4.72 | 3.41 | 3.34 | 3.28 | 4.07 | 5.66 | 7.03 | 8.10 | 8.72 |
F | Category | Quality | SCDLPSO | XPSO | TCSPSO | DNSPSO | AWPSO | CLPSO_LS | GLPSO | CLPSO |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Unimodal Functions | Median | 2.28 × 103 | 2.90 × 103 | 3.20 × 103 | 1.80 × 105 | 1.55 × 1010 | 1.42 × 104 | 1.32 × 103 | 1.79 × 104 |
Mean | 3.11 × 103 | 4.27 × 103 | 3.66 × 103 | 2.35 × 105 | 1.63 × 1010 | 1.67 × 104 | 1.90 × 103 | 1.82 × 104 | ||
Std | 3.15 × 103 | 4.47 × 103 | 4.08 × 103 | 2.18 × 105 | 5.52 × 109 | 7.78 × 103 | 2.23 × 103 | 5.65 × 103 | ||
p-value | - | 3.76 × 10−1 = | 5.65 × 10−1 = | 3.88 × 10−7 + | 7.28 × 23 + | 4.06 × 10−12 + | 9.86 × 10−2 = | 3.15 × 10−18 + | ||
F3 | Median | 2.66 × 102 | 5.86 × 10−2 | 9.94 × 103 | 1.55 × 105 | 5.25 × 104 | 6.80 × 10−11 | 1.14 × 10−13 | 6.68 × 103 | |
Mean | 4.82 × 102 | 5.45 × 10−1 | 1.15 × 104 | 1.56 × 105 | 5.20 × 104 | 4.28 × 103 | 2.58 × 10−13 | 6.20 × 103 | ||
Std | 5.86 × 102 | 1.57 × 100 | 3.68 × 103 | 2.67 × 104 | 3.62 × 104 | 1.61 × 104 | 6.22 × 10−13 | 2.42 × 103 | ||
p-value | - | 4.39 × 10−5 − | 9.52 × 10−23 + | 4.84 × 10−38 + | 2.29 × 10−10 + | 2.10 × 10−1 = | 4.28 × 10−5 − | 6.12 × 10−18 + | ||
F1,3 | w/t/l | - | 0/1/1 | 1/1/0 | 2/0/0 | 2/0/0 | 1/1/0 | 0/1/1 | 2/0/0 | |
F4 | Simple Multimodal Functions | Median | 8.33 × 101 | 1.22 × 102 | 1.30 × 102 | 2.56 × 101 | 1.40 × 103 | 8.90 × 101 | 1.52 × 102 | 6.17 × 104 |
Mean | 7.66 × 101 | 1.17 × 102 | 1.32 × 102 | 2.54 × 101 | 1.70 × 103 | 8.90 × 101 | 1.60 × 102 | 5.87 × 104 | ||
Std | 1.11 × 101 | 2.67 × 101 | 4.84 × 101 | 8.61 × 10−1 | 1.36 × 103 | 4.06 × 10−1 | 6.32 × 101 | 1.06 × 104 | ||
p-value | - | 8.13 × 10−11 + | 1.25 × 10−7 + | 1.71 × 10−32 − | 2.38 × 10−8 + | 1.18 × 10−7 + | 2.68 × 10−9 + | 9.78 × 10−37 + | ||
F5 | Median | 4.97 × 100 | 4.18 × 101 | 8.56 × 101 | 1.96 × 102 | 1.89 × 102 | 2.17 × 102 | 5.67 × 101 | 9.58 × 101 | |
Mean | 5.14 × 100 | 4.34 × 101 | 8.92 × 101 | 1.98 × 102 | 1.84 × 102 | 2.18 × 102 | 5.79 × 101 | 9.57 × 101 | ||
Std | 1.84 × 100 | 1.41 × 101 | 2.54 × 101 | 1.31 × 101 | 3.22 × 101 | 1.21 × 101 | 1.37 × 101 | 2.26 × 100 | ||
p-value | - | 6.05 × 10−19 + | 3.81 × 10−25 + | 1.29 × 10−60 + | 7.43 × 10−37 + | 6.04 × 10−65 + | 2.42 × 10−28 + | 1.33 × 10−79 + | ||
F6 | Median | 1.11 × 10−6 | 2.02 × 10−3 | 8.00 × 10−1 | 1.48 × 10−1 | 2.48 × 101 | 4.32 × 10−1 | 6.21 × 10−3 | 8.08 × 101 | |
Mean | 8.31 × 10−6 | 2.08 × 10−2 | 1.04 × 100 | 1.48 × 10−1 | 2.72 × 101 | 9.35 × 10−1 | 1.36 × 10−2 | 8.05 × 101 | ||
Std | 1.41 × 10−5 | 6.31 × 10−2 | 1.15 × 100 | 4.10 × 10−2 | 1.04 × 101 | 1.04 × 100 | 1.60 × 10−2 | 1.17 × 101 | ||
p-value | - | 3.84 × 10−2 + | 8.59 × 10−6 + | 3.75 × 10−27 + | 2.83 × 10−20 + | 1.07 × 10−5 + | 2.45 × 10−5 + | 3.68 × 10−42 + | ||
F7 | Median | 3.48 × 101 | 7.70 × 101 | 1.45 × 102 | 2.34 × 102 | 3.24 × 102 | 2.36 × 102 | 1.06 × 102 | 1.43 × 10−3 | |
Mean | 3.94 × 101 | 8.06 × 101 | 1.42 × 102 | 2.32 × 102 | 3.09 × 102 | 2.33 × 102 | 1.07 × 102 | 1.43 × 10−3 | ||
Std | 2.05 × 101 | 1.80 × 101 | 2.87 × 101 | 1.32 × 101 | 1.25 × 102 | 1.89 × 101 | 2.08 × 101 | 4.04 × 10−4 | ||
p-value | - | 1.82 × 10−11 + | 1.68 × 10−22 + | 2.15 × 10−45 + | 1.43 × 10−16 + | 2.80 × 10−42 + | 3.76 × 10−18 + | 8.33 × 10−15 − | ||
F8 | Median | 3.98 × 100 | 4.18 × 101 | 9.55 × 101 | 2.04 × 102 | 1.81 × 102 | 2.25 × 102 | 6.47 × 101 | 1.03 × 102 | |
Mean | 4.58 × 100 | 4.37 × 101 | 9.33 × 101 | 2.03 × 102 | 1.76 × 102 | 2.22 × 102 | 6.42 × 101 | 1.03 × 102 | ||
Std | 1.33 × 100 | 1.60 × 101 | 2.22 × 101 | 1.25 × 101 | 3.48 × 101 | 1.15 × 101 | 1.70 × 101 | 9.06 × 100 | ||
p-value | - | 6.64 × 10−20 + | 2.49 × 10−29 + | 1.18 × 10−62 + | 5.20 × 10−34 + | 5.47 × 10−67 + | 2.20 × 10−26 + | 5.39 × 10−53 + | ||
F9 | Median | 1.14 × 10−13 | 1.72 × 100 | 3.01 × 102 | 1.61 × 100 | 4.44 × 103 | 1.90 × 101 | 5.56 × 101 | 9.06 × 101 | |
Mean | 2.11 × 10−2 | 3.10 × 100 | 3.85 × 102 | 2.32 × 100 | 4.40 × 103 | 2.29 × 101 | 6.39 × 101 | 9.10 × 101 | ||
Std | 8.34 × 10−2 | 4.41 × 100 | 3.36 × 102 | 2.80 × 100 | 1.72 × 103 | 2.74 × 101 | 3.28 × 101 | 9.88 × 100 | ||
p-value | - | 8.30 × 10−5 + | 6.95 × 10−8 + | 4.20 × 10−5 + | 5.54 × 10−20 + | 3.35 × 10−5 + | 5.12 × 10−15 + | 3.52 × 10−49 + | ||
F10 | Median | 6.32 × 103 | 2.70 × 103 | 2.98 × 103 | 5.38 × 103 | 3.90 × 103 | 6.42 × 103 | 3.22 × 103 | 9.22 × 102 | |
Mean | 5.97 × 103 | 2.61 × 103 | 2.97 × 103 | 5.24 × 103 | 4.00 × 103 | 6.26 × 103 | 3.46 × 103 | 9.44 × 102 | ||
Std | 1.35 × 103 | 6.38 × 102 | 4.22 × 102 | 1.01 × 103 | 5.96 × 102 | 6.36 × 102 | 8.35 × 102 | 2.89 × 102 | ||
p-value | - | 1.25 × 10−17 − | 1.66 × 10−16 − | 2.28 × 10−2 − | 1.44 × 10−9 − | 2.96 × 10−1 = | 8.04 × 10−12 − | 2.56 × 10−27 − | ||
F4-10 | w/t/l | - | 6/0/1 | 6/0/1 | 5/0/2 | 6/0/1 | 6/1/0 | 6/0/1 | 5/0/2 | |
F11 | Hybrid Functions | Median | 1.28 × 101 | 8.06 × 101 | 1.16 × 102 | 8.95 × 101 | 1.34 × 103 | 1.82 × 102 | 1.01 × 102 | 3.15 × 103 |
Mean | 3.41 × 101 | 8.65 × 101 | 1.18 × 102 | 8.77 × 101 | 3.57 × 103 | 1.81 × 102 | 8.71 × 101 | 3.11 × 103 | ||
Std | 2.95 × 101 | 4.45 × 101 | 4.27 × 101 | 8.80 × 100 | 4.85 × 103 | 4.03 × 101 | 3.50 × 101 | 3.20 × 102 | ||
p-value | - | 3.37 × 10−6 + | 4.21 × 10−12 + | 3.33 × 10−13 + | 2.35 × 10−4 + | 9.97 × 10−23 + | 5.66 × 10−8 + | 3.96 × 10−50 + | ||
F12 | Median | 2.68 × 104 | 2.48 × 104 | 1.86 × 105 | 5.51 × 107 | 1.04 × 109 | 4.68 × 105 | 1.08 × 105 | 1.42 × 102 | |
Mean | 2.72 × 104 | 1.36 × 105 | 5.12 × 105 | 6.03 × 107 | 1.36 × 109 | 9.27 × 105 | 1.85 × 106 | 1.48 × 102 | ||
Std | 1.47 × 104 | 4.38 × 105 | 6.68 × 105 | 2.65 × 107 | 1.06 × 109 | 8.77 × 105 | 3.11 × 106 | 2.23 × 101 | ||
p-value | - | 1.15 × 10−1 = | 2.43 × 10−4 + | 1.08 × 10−17 + | 4.07 × 10−9 + | 8.19 × 10−7 + | 2.56 × 10−3 + | 4.27 × 10−14 − | ||
F13 | Median | 8.46 × 103 | 1.05 × 104 | 8.24 × 103 | 1.28 × 106 | 5.08 × 106 | 6.55 × 103 | 1.78 × 104 | 2.47 × 106 | |
Mean | 1.80 × 104 | 1.29 × 104 | 3.28 × 105 | 1.37 × 106 | 5.11 × 108 | 1.74 × 104 | 1.10 × 105 | 2.83 × 106 | ||
Std | 1.79 × 104 | 1.22 × 104 | 1.14 × 106 | 5.04 × 105 | 9.07 × 108 | 2.18 × 104 | 4.13 × 105 | 1.19 × 106 | ||
p-value | - | 3.66 × 10−2 − | 1.49 × 10−1 = | 7.39 × 10−21 + | 3.59 × 10−3 + | 9.11 × 10−1 = | 2.37 × 10−1 = | 2.38 × 10−18 + | ||
F14 | Median | 1.92 × 103 | 4.80 × 103 | 3.49 × 104 | 1.81 × 102 | 8.16 × 104 | 1.10 × 105 | 1.02 × 103 | 1.36 × 104 | |
Mean | 3.19 × 103 | 6.46 × 103 | 5.20 × 104 | 1.86 × 102 | 5.84 × 105 | 1.06 × 105 | 9.06 × 104 | 1.32 × 104 | ||
Std | 3.20 × 103 | 5.50 × 103 | 7.90 × 104 | 2.27 × 101 | 1.71 × 106 | 5.32 × 104 | 1.62 × 105 | 4.83 × 103 | ||
p-value | - | 3.55 × 10−2 + | 1.53 × 10−3 + | 4.49 × 10−6 − | 7.26 × 10−2 + | 6.23 × 10−15 + | 5.30 × 10−3 + | 4.12 × 10−13 + | ||
F15 | Median | 6.60 × 102 | 2.13 × 103 | 1.08 × 104 | 3.58 × 104 | 1.55 × 105 | 4.13 × 104 | 1.92 × 103 | 4.39 × 104 | |
Mean | 1.70 × 103 | 4.82 × 103 | 1.33 × 104 | 3.95 × 104 | 3.95 × 107 | 3.60 × 104 | 6.38 × 103 | 4.41 × 104 | ||
Std | 2.38 × 103 | 6.33 × 103 | 1.04 × 104 | 2.21 × 104 | 2.12 × 108 | 8.63 × 103 | 8.32 × 103 | 3.33 × 104 | ||
p-value | - | 6.02 × 10−2 = | 2.81 × 10−7 + | 7.51 × 10−13 + | 3.20 × 10−1 = | 2.29 × 10−28 + | 5.06 × 10−3 + | 5.60 × 10−9 + | ||
F16 | Median | 2.21 × 101 | 5.70 × 102 | 8.65 × 102 | 1.90 × 103 | 1.38 × 103 | 1.29 × 103 | 7.00 × 102 | 7.82 × 102 | |
Mean | 9.21 × 101 | 5.32 × 102 | 8.54 × 102 | 1.89 × 103 | 1.44 × 103 | 1.14 × 103 | 7.01 × 102 | 8.34 × 102 | ||
Std | 1.21 × 102 | 2.31 × 102 | 2.56 × 102 | 1.70 × 102 | 3.66 × 102 | 4.10 × 102 | 2.74 × 102 | 3.73 × 102 | ||
p-value | - | 1.04 × 10−14 + | 6.95 × 10−21 + | 1.43 × 10−47 + | 2.11 × 10−26 + | 3.91 × 10−19 + | 9.54 × 10−16 + | 1.62 × 10−14 + | ||
F17 | Median | 5.11 × 101 | 1.56 × 102 | 3.18 × 102 | 8.59 × 102 | 6.29 × 102 | 6.85 × 102 | 1.82 × 102 | 6.32 × 102 | |
Mean | 5.80 × 101 | 1.47 × 102 | 2.96 × 102 | 8.58 × 102 | 6.84 × 102 | 9.36 × 102 | 2.35 × 102 | 6.20 × 102 | ||
Std | 2.44 × 101 | 9.61 × 101 | 1.44 × 102 | 9.65 × 101 | 3.22 × 102 | 6.39 × 102 | 1.54 × 102 | 1.42 × 102 | ||
p-value | - | 6.92 × 10−7 + | 3.09 × 10−12 + | 7.78 × 10−46 + | 6.20 × 10−15 + | 6.52 × 10−10 + | 8.63 × 10−8 + | 8.03 × 10−29 + | ||
F18 | Median | 8.54 × 104 | 9.98 × 104 | 1.41 × 105 | 2.40 × 105 | 6.70 × 105 | 6.81 × 105 | 1.53 × 104 | 2.00 × 102 | |
Mean | 1.16 × 105 | 1.45 × 105 | 2.78 × 105 | 2.45 × 105 | 4.11 × 106 | 2.44 × 106 | 6.82 × 104 | 1.91 × 102 | ||
Std | 9.74 × 104 | 1.15 × 105 | 2.93 × 105 | 9.96 × 104 | 1.18 × 107 | 4.12 × 106 | 1.99 × 105 | 7.60 × 101 | ||
p-value | - | 3.26 × 10−1 = | 6.61 × 10−3 + | 5.90 × 10−6 + | 7.34 × 10−2 = | 3.64 × 10−3 + | 2.47 × 10−1 = | 2.69 × 10−8 − | ||
F | Category | Quality | SCDLPSO | XPSO | TCSPSO | DNSPSO | AWPSO | CLPSO_LS | GLPSO | CLPSO |
F19 | Hybrid Functions | Median | 1.72 × 103 | 2.28 × 103 | 7.66 × 103 | 1.75 × 103 | 1.80 × 107 | 3.51 × 104 | 6.16 × 103 | 2.00 × 105 |
Mean | 3.58 × 103 | 4.05 × 103 | 1.49 × 104 | 2.29 × 103 | 7.38 × 107 | 3.51 × 104 | 1.25 × 104 | 2.34 × 105 | ||
Std | 3.83 × 103 | 4.55 × 103 | 1.58 × 104 | 1.43 × 103 | 2.46 × 108 | 1.94 × 104 | 1.41 × 104 | 1.14 × 105 | ||
p-value | - | 3.98 × 10−1 = | 3.83 × 10−4 + | 9.22 × 10−2 = | 1.12 × 10−1 = | 6.65 × 10−12 + | 1.81 × 10−3 + | 1.32 × 10−15 + | ||
F20 | Median | 4.23 × 101 | 1.73 × 102 | 3.84 × 102 | 4.06 × 102 | 5.19 × 102 | 5.98 × 102 | 2.77 × 102 | 1.94 × 102 | |
Mean | 6.38 × 101 | 1.85 × 102 | 3.70 × 102 | 4.07 × 102 | 5.38 × 102 | 5.87 × 102 | 2.72 × 102 | 2.30 × 102 | ||
Std | 7.20 × 101 | 7.16 × 101 | 1.39 × 102 | 1.05 × 102 | 1.97 × 102 | 1.55 × 102 | 1.19 × 102 | 1.71 × 102 | ||
p-value | - | 1.55 × 10−8 + | 4.21 × 10−15 + | 5.22 × 10−21 + | 1.29 × 10−17 + | 1.39 × 10−23 + | 5.06 × 10−11 + | 9.95 × 10−6 + | ||
F11-20 | w/t/l | - | 5/4/1 | 9/1/0 | 8/1/1 | 7/3/0 | 9/1/0 | 8/2/0 | 8/0/2 | |
F21 | Composition Functions | Median | 2.09 × 102 | 2.38 × 102 | 2.80 × 102 | 3.98 × 102 | 3.74 × 102 | 4.00 × 102 | 2.62 × 102 | 2.02 × 102 |
Mean | 2.09 × 102 | 2.41 × 102 | 2.84 × 102 | 3.97 × 102 | 3.80 × 102 | 4.02 × 102 | 2.66 × 102 | 2.09 × 102 | ||
Std | 2.82 × 100 | 1.22 × 101 | 2.25 × 101 | 1.43 × 101 | 4.55 × 101 | 7.78 × 100 | 2.17 × 101 | 6.88 × 101 | ||
p-value | - | 1.06 × 10−20 + | 3.60 × 10−25 + | 1.70 × 10−57 + | 6.97 × 10−28 + | 2.69 × 10−72 + | 2.78 × 10−20 + | 9.99 × 10−1 = | ||
F22 | Median | 1.00 × 102 | 1.00 × 102 | 1.04 × 102 | 6.64 × 103 | 4.16 × 103 | 6.99 × 103 | 1.02 × 102 | 2.89 × 102 | |
Mean | 2.73 × 102 | 2.95 × 102 | 1.70 × 103 | 6.52 × 103 | 4.04 × 103 | 6.95 × 103 | 2.06 × 102 | 2.78 × 102 | ||
Std | 9.33 × 102 | 7.77 × 102 | 1.75 × 103 | 5.90 × 102 | 1.03 × 103 | 3.10 × 102 | 5.56 × 102 | 4.38 × 101 | ||
p-value | - | 5.37 × 10−1 = | 2.63 × 10−4 + | 2.23 × 10−37 + | 4.31 × 10−21 + | 9.29 × 10−42 + | 7.40 × 10−1 = | 9.80 × 10−1 = | ||
F23 | Median | 3.92 × 102 | 3.97 × 102 | 4.44 × 102 | 5.68 × 102 | 6.64 × 102 | 5.61 × 102 | 4.26 × 102 | 3.05 × 102 | |
Mean | 3.91 × 102 | 3.96 × 102 | 4.46 × 102 | 5.72 × 102 | 6.80 × 102 | 5.57 × 102 | 4.33 × 102 | 5.22 × 102 | ||
Std | 9.71 × 100 | 1.38 × 101 | 2.85 × 101 | 2.29 × 101 | 9.92 × 101 | 1.39 × 101 | 2.73 × 101 | 7.83 × 102 | ||
p-value | - | 1.68 × 10−2 + | 4.26 × 10−14 + | 2.28 × 10−43 + | 1.92 × 10−22 + | 9.96 × 10−51 + | 1.29 × 10−10 + | 3.70 × 10−1 = | ||
F24 | Median | 4.66 × 102 | 4.63 × 102 | 5.37 × 102 | 6.74 × 102 | 7.32 × 102 | 6.26 × 102 | 4.94 × 102 | 4.51 × 102 | |
Mean | 4.70 × 102 | 4.68 × 102 | 5.38 × 102 | 6.97 × 102 | 7.51 × 102 | 6.20 × 102 | 5.14 × 102 | 4.51 × 102 | ||
Std | 1.60 × 101 | 2.19 × 101 | 5.08 × 101 | 7.02 × 101 | 8.86 × 101 | 1.02 × 101 | 5.44 × 101 | 9.85 × 100 | ||
p-value | - | 5.75 × 10−1 = | 5.54 × 10−9 + | 3.73 × 10−24 + | 5.97 × 10−24 + | 2.12 × 10−45 + | 9.84 × 10−5 + | 7.08 × 10−7 − | ||
F25 | Median | 3.88 × 102 | 3.91 × 102 | 4.14 × 102 | 3.78 × 102 | 8.68 × 102 | 3.88 × 102 | 4.10 × 102 | 5.60 × 102 | |
Mean | 3.88 × 102 | 3.95 × 102 | 4.12 × 102 | 3.78 × 102 | 1.13 × 103 | 3.88 × 102 | 4.11 × 102 | 5.62 × 102 | ||
Std | 5.00 × 10−1 | 1.00 × 101 | 1.56 × 101 | 1.12 × 100 | 7.54 × 102 | 4.27 × 10−1 | 2.15 × 101 | 1.54 × 101 | ||
p-value | - | 7.63 × 10−6 + | 6.91 × 10−12 + | 1.20 × 10−44 − | 1.64 × 10−6 + | 3.94 × 10−3 = | 2.73 × 10−7 + | 2.56 × 10−54 + | ||
F26 | Median | 1.33 × 103 | 3.00 × 102 | 2.32 × 103 | 3.28 × 103 | 4.30 × 103 | 3.16 × 103 | 1.94 × 103 | 3.90 × 102 | |
Mean | 1.33 × 103 | 7.57 × 102 | 2.23 × 103 | 3.27 × 103 | 4.20 × 103 | 3.14 × 103 | 1.92 × 103 | 3.90 × 102 | ||
Std | 1.15 × 102 | 6.08 × 102 | 6.97 × 102 | 2.16 × 102 | 9.58 × 102 | 1.08 × 102 | 4.77 × 102 | 9.49 × 10−1 | ||
p-value | - | 7.35 × 10−7 − | 5.77 × 10−9 + | 1.68 × 10−45 + | 5.88 × 10−23 + | 1.31 × 10−54 + | 3.08 × 10−8 + | 2.65 × 10−46 − | ||
F27 | Median | 5.14 × 102 | 5.36 × 102 | 5.61 × 102 | 5.00 × 102 | 6.85 × 102 | 5.18 × 102 | 5.48 × 102 | 1.99 × 103 | |
Mean | 5.15 × 102 | 5.36 × 102 | 5.61 × 102 | 5.00 × 102 | 6.88 × 102 | 5.22 × 102 | 5.50 × 102 | 1.88 × 103 | ||
Std | 9.77 × 100 | 1.18 × 101 | 1.95 × 101 | 0.00 × 100 | 8.94 × 101 | 1.52 × 101 | 1.28 × 101 | 2.71 × 102 | ||
p-value | - | 7.65 × 10−10 + | 3.60 × 10−16 + | 1.08 × 10−11 − | 9.24 × 10−15 + | 6.01 × 10−2 = | 6.66 × 10−17 + | 1.09 × 10−34 + | ||
F28 | Median | 4.08 × 102 | 4.03 × 102 | 4.40 × 102 | 5.00 × 102 | 1.52 × 103 | 3.50 × 103 | 4.72 × 102 | 5.13 × 102 | |
Mean | 4.15 × 102 | 3.78 × 102 | 4.51 × 102 | 5.00 × 102 | 1.98 × 103 | 3.07 × 103 | 4.51 × 102 | 5.13 × 102 | ||
Std | 3.61 × 101 | 6.75 × 101 | 5.21 × 101 | 0.00 × 100 | 1.25 × 103 | 9.06 × 102 | 7.00 × 101 | 3.62 × 100 | ||
p-value | - | 5.03 × 10−2 = | 3.32 × 10−3 + | 2.27 × 10−18 + | 7.59 × 10−9 + | 1.24 × 10−22+ | 1.74 × 10−2 + | 6.55 × 10−21 + | ||
F29 | Median | 4.80 × 102 | 5.53 × 102 | 8.62 × 102 | 1.58 × 103 | 1.34 × 103 | 9.33 × 102 | 7.74 × 102 | 4.90 × 102 | |
Mean | 4.80 × 102 | 5.73 × 102 | 9.05 × 102 | 1.60 × 103 | 1.38 × 103 | 1.11 × 103 | 8.17 × 102 | 5.00 × 102 | ||
Std | 2.24 × 101 | 8.08 × 101 | 1.86 × 102 | 2.07 × 102 | 4.13 × 102 | 6.02 × 102 | 2.37 × 102 | 2.44 × 101 | ||
p-value | - | 5.04 × 10−8+ | 1.21 × 10−17 + | 3.97 × 10−36 + | 5.93 × 10−17 + | 4.95 × 10−7 + | 2.52 × 10−10 + | 2.04 × 10−3 + | ||
F30 | Median | 3.90 × 103 | 8.08 × 103 | 1.20 × 104 | 5.00 × 104 | 8.80 × 106 | 1.43 × 104 | 9.44 × 103 | 6.47 × 102 | |
Mean | 5.05 × 103 | 9.04 × 103 | 1.80 × 104 | 6.79 × 104 | 1.65 × 107 | 1.38 × 104 | 2.08 × 104 | 6.46 × 102 | ||
Std | 2.81 × 103 | 5.57 × 103 | 1.77 × 104 | 5.66 × 104 | 2.11 × 107 | 1.51 × 103 | 2.96 × 104 | 6.63 × 101 | ||
p-value | - | 9.15 × 10−4 + | 2.58 × 10−4 + | 1.51 × 10−7 + | 8.77 × 10−5 + | 2.13 × 10−21 + | 5.93 × 10−3 + | 1.07 × 10−11 − | ||
F21-30 | w/t/l | - | 6/3/1 | 10/0/0 | 8/0/2 | 10/0/0 | 8/2/0 | 9/1/0 | 5/3/2 | |
w/t/l | - | 17/8/4 | 26/2/1 | 23/1/5 | 25/3/1 | 24/5/0 | 23/4/2 | 20/3/6 | ||
rank | 1.93 | 2.66 | 4.83 | 5.38 | 7.28 | 5.86 | 3.69 | 4.38 |
F | Category | Quality | SCDLPSO | XPSO | TCSPSO | DNSPSO | AWPSO | CLPSO_LS | GLPSO | CLPSO |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Unimodal Functions | Median | 1.01 × 103 | 1.84 × 103 | 5.46 × 103 | 3.32 × 103 | 6.18 × 1010 | 4.59 × 107 | 1.64 × 103 | 2.15 × 104 |
Mean | 2.32 × 103 | 4.71 × 103 | 2.84 × 106 | 5.78 × 103 | 6.31 × 1010 | 1.29 × 108 | 1.25 × 104 | 2.45 × 104 | ||
Std | 2.71 × 103 | 6.06 × 103 | 1.52 × 107 | 7.38 × 103 | 1.08 × 1010 | 3.33 × 108 | 4.75 × 104 | 1.39 × 104 | ||
p-value | - | 2.20 × 10−1 = | 3.21 × 10−1 = | 2.10 × 10−2 + | 4.04 × 10−38 + | 4.08 × 10−2 + | 2.53 × 10−1 = | 1.23 × 10−11 + | ||
F3 | Median | 1.38 × 104 | 4.36 × 103 | 5.54 × 104 | 3.70 × 105 | 1.06 × 105 | 5.19 × 10−10 | 5.68 × 10−13 | 3.02 × 104 | |
Mean | 1.44 × 104 | 4.62 × 103 | 5.83 × 104 | 3.70 × 105 | 1.19 × 105 | 2.37 × 104 | 3.31 × 10−12 | 3.33 × 104 | ||
Std | 3.94 × 103 | 1.56 × 103 | 9.39 × 103 | 5.40 × 104 | 6.45 × 104 | 6.07 × 104 | 1.20 × 10−11 | 1.89 × 104 | ||
p-value | - | 1.26 × 10−17 − | 4.84 × 10−31 + | 5.92 × 10−41 + | 3.50 × 10−12 + | 4.11 × 10−1 = | 2.70 × 10−27 − | 2.07 × 10−6 + | ||
F1,3 | w/t/l | - | 0/1/1 | 1/1/0 | 2/0/0 | 2/0/0 | 1/1/0 | 1/0/1 | 2/0/0 | |
F4 | Simple Multimodal Functions | Median | 1.33 × 102 | 2.45 × 102 | 2.88 × 102 | 4.57 × 101 | 8.68 × 103 | 2.38 × 102 | 2.96 × 102 | 1.73 × 105 |
Mean | 1.23 × 102 | 2.34 × 102 | 2.93 × 102 | 5.50 × 101 | 8.83 × 103 | 2.40 × 102 | 3.03 × 102 | 1.75 × 105 | ||
Std | 5.20 × 101 | 5.08 × 101 | 9.09 × 101 | 2.53 × 101 | 3.63 × 103 | 3.13 × 101 | 6.31 × 101 | 1.50 × 104 | ||
p-value | - | 3.54 × 10−11 + | 3.48 × 10−12 + | 4.12 × 10−8 − | 1.08 × 10−18 + | 6.79 × 10−15 + | 4.07 × 10−17 + | 5.95 × 10−55 + | ||
F5 | Median | 1.04 × 101 | 8.16 × 101 | 1.87 × 102 | 4.10 × 102 | 4.26 × 102 | 4.40 × 102 | 1.46 × 102 | 2.03 × 102 | |
Mean | 1.08 × 101 | 8.53 × 101 | 1.91 × 102 | 4.13 × 102 | 4.35 × 102 | 4.40 × 102 | 1.49 × 102 | 2.01 × 102 | ||
Std | 3.61 × 100 | 2.02 × 101 | 3.82 × 101 | 1.82 × 101 | 6.20 × 101 | 2.10 × 101 | 2.97 × 101 | 1.52 × 101 | ||
p-value | - | 5.21 × 10−33 + | 4.60 × 10−33 + | 1.38 × 10−70 + | 6.58 × 10−42 + | 9.51 × 10−69 + | 1.09 × 10−32 + | 3.71 × 10−56 + | ||
F6 | Median | 5.14 × 10−4 | 5.67 × 10−2 | 3.00 × 100 | 9.77 × 10−2 | 4.25 × 101 | 5.71 × 100 | 1.75 × 10−2 | 2.17 × 102 | |
Mean | 6.37 × 10−4 | 1.53 × 10−1 | 3.93 × 100 | 1.03 × 10−1 | 4.29 × 101 | 6.01 × 100 | 2.06 × 10−2 | 2.16 × 102 | ||
Std | 5.24 × 10−4 | 2.87 × 10−1 | 3.68 × 100 | 2.85 × 10−2 | 1.07 × 101 | 1.22 × 100 | 1.48 × 10−2 | 2.07 × 101 | ||
p-value | - | 2.41 × 10−3 + | 3.51 × 10−7 + | 5.50 × 10−27 + | 2.56 × 10−29 + | 4.11 × 10−34 + | 9.84 × 10−10 + | 2.85 × 10−52 + | ||
F7 | Median | 6.18 × 101 | 1.60 × 102 | 3.18 × 102 | 4.72 × 102 | 1.04 × 103 | 5.15 × 102 | 2.38 × 102 | 9.44 × 10−5 | |
Mean | 6.22 × 101 | 1.64 × 102 | 3.35 × 102 | 4.71 × 102 | 1.02 × 103 | 5.15 × 102 | 2.34 × 102 | 1.04 × 10−4 | ||
Std | 2.31 × 100 | 3.63 × 101 | 6.19 × 101 | 1.80 × 101 | 3.13 × 102 | 3.49 × 101 | 3.79 × 101 | 3.41 × 10−5 | ||
p-value | - | 1.27 × 10−26 + | 1.44 × 10−31 + | 1.70 × 10−71 + | 1.85 × 10−23 + | 1.30 × 10−57 + | 4.20 × 10−32 + | 5.65 × 10−76 − | ||
F8 | Median | 9.45 × 100 | 8.66 × 101 | 1.96 × 102 | 4.13 × 102 | 4.35 × 102 | 4.44 × 102 | 1.40 × 102 | 2.39 × 102 | |
Mean | 1.01 × 101 | 8.93 × 101 | 2.09 × 102 | 4.07 × 102 | 4.34 × 102 | 4.45 × 102 | 1.41 × 102 | 2.36 × 102 | ||
Std | 3.34 × 100 | 2.30 × 101 | 6.12 × 101 | 2.12 × 101 | 6.72 × 101 | 1.33 × 101 | 3.04 × 101 | 1.74 × 101 | ||
p-value | - | 2.19 × 10−26 + | 8.08 × 10−25 + | 1.69 × 10−66 + | 5.43 × 10−40 + | 5.55 × 10−80 + | 6.67 × 10−31 + | 2.43 × 10−57 + | ||
F9 | Median | 5.89 × 10−1 | 1.50 × 101 | 2.84 × 103 | 1.21 × 101 | 1.24 × 104 | 1.10 × 103 | 4.76 × 102 | 2.25 × 102 | |
Mean | 1.57 × 100 | 4.69 × 101 | 3.34 × 103 | 2.24 × 101 | 1.44 × 104 | 1.13 × 103 | 7.01 × 102 | 2.23 × 102 | ||
Std | 3.67 × 100 | 7.80 × 101 | 1.87 × 103 | 2.85 × 101 | 5.97 × 103 | 3.00 × 102 | 5.49 × 102 | 1.79 × 101 | ||
p-value | - | 5.42 × 10−3 + | 1.30 × 10−13 + | 2.50 × 10−4 + | 7.15 × 10−19 + | 6.34 × 10−28 + | 4.97 × 10−9 + | 5.22 × 10−56 + | ||
F10 | Median | 1.20 × 104 | 5.22 × 103 | 5.56 × 103 | 1.20 × 104 | 7.82 × 103 | 1.31 × 104 | 5.26 × 103 | 5.04 × 103 | |
Mean | 9.87 × 103 | 5.11 × 103 | 5.56 × 103 | 1.16 × 104 | 7.96 × 103 | 1.31 × 104 | 5.73 × 103 | 5.14 × 103 | ||
Std | 3.77 × 103 | 8.60 × 102 | 6.71 × 102 | 1.44 × 103 | 7.97 × 102 | 4.34 × 102 | 1.53 × 103 | 1.10 × 103 | ||
p-value | 7.01 × 10−9 − | 1.05 × 10−7 − | 2.24 × 10−2 + | 9.81 × 10−3 − | 2.41 × 10−5 + | 9.39 × 10−7 − | 2.09 × 10−8 − | |||
F4-10 | w/t/l | - | 6/0/1 | 6/0/1 | 6/0/1 | 6/0/1 | 7/0/0 | 6/0/1 | 5/0/2 | |
F11 | Hybrid Functions | Median | 6.05 × 101 | 1.49 × 102 | 2.15 × 102 | 2.05 × 102 | 5.50 × 103 | 2.74 × 102 | 5.73 × 102 | 7.35 × 103 |
Mean | 6.61 × 101 | 1.54 × 102 | 2.36 × 102 | 2.06 × 102 | 8.68 × 103 | 1.24 × 103 | 9.01 × 102 | 7.29 × 103 | ||
Std | 1.85 × 101 | 3.28 × 101 | 9.86 × 101 | 2.07 × 101 | 7.82 × 103 | 5.21 × 103 | 9.97 × 102 | 3.63 × 102 | ||
p-value | - | 3.41 × 10−18 + | 8.47 × 10−13 + | 1.12 × 10−34 + | 1.76 × 10−7 + | 2.29 × 10−1 = | 3.26 × 10−5 + | 2.54 × 10−68 + | ||
F12 | Median | 2.22 × 105 | 3.96 × 105 | 1.83 × 106 | 2.87 × 107 | 1.58 × 1010 | 2.56 × 107 | 1.98 × 106 | 2.07 × 102 | |
Mean | 2.78 × 105 | 9.37 × 105 | 8.82 × 106 | 3.46 × 107 | 1.66 × 1010 | 2.70 × 107 | 8.69 × 106 | 2.15 × 102 | ||
Std | 1.61 × 105 | 1.32 × 106 | 2.40 × 107 | 2.24 × 107 | 8.14 × 109 | 1.13 × 107 | 1.46 × 107 | 3.49 × 101 | ||
p-value | - | 1.42 × 10−3 + | 6.01 × 10−2 = | 2.16 × 10−11 + | 9.48 × 10−16 + | 1.93 × 10−18 + | 3.05 × 10−3 + | 5.24 × 10−13 − | ||
F13 | Median | 3.29 × 103 | 2.14 × 103 | 3.80 × 103 | 2.26 × 106 | 7.08 × 109 | 3.78 × 104 | 3.56 × 103 | 2.79 × 107 | |
Mean | 5.90 × 103 | 4.53 × 103 | 7.76 × 103 | 2.84 × 106 | 7.30 × 109 | 1.03 × 106 | 1.82 × 105 | 3.05 × 107 | ||
Std | 6.31 × 103 | 4.68 × 103 | 9.15 × 103 | 1.77 × 106 | 5.13 × 109 | 5.34 × 106 | 9.49 × 105 | 1.21 × 107 | ||
p-value | - | 3.11 × 10−1 = | 3.71 × 10−1 = | 5.67 × 10−12 + | 2.35 × 10−10 + | 3.07 × 10−1 = | 3.23 × 10−1 = | 1.14 × 10−19 + | ||
F14 | Median | 2.21 × 104 | 2.99 × 104 | 4.09 × 104 | 7.80 × 103 | 1.33 × 106 | 3.32 × 105 | 1.94 × 104 | 3.01 × 104 | |
Mean | 3.49 × 104 | 3.58 × 104 | 2.30 × 105 | 8.34 × 103 | 3.25 × 106 | 3.92 × 105 | 2.16 × 105 | 3.26 × 104 | ||
Std | 2.94 × 104 | 2.68 × 104 | 5.29 × 105 | 2.55 × 103 | 6.94 × 106 | 3.44 × 105 | 5.80 × 105 | 1.10 × 104 | ||
p-value | - | 5.11 × 10−1 = | 5.25 × 10−2 = | 1.02 × 10−5 − | 1.57 × 10−2 + | 6.69 × 10−7 + | 9.80 × 10−2 = | 7.02 × 10−1 = | ||
F15 | Median | 7.16 × 103 | 2.71 × 103 | 7.12 × 103 | 4.18 × 105 | 7.14 × 107 | 3.16 × 104 | 3.08 × 103 | 4.58 × 105 | |
Mean | 6.48 × 103 | 4.02 × 103 | 1.46 × 104 | 4.47 × 105 | 4.23 × 108 | 2.35 × 1007 | 6.26 × 103 | 5.01 × 105 | ||
Std | 4.35 × 103 | 4.07 × 103 | 2.54 × 104 | 2.19 × 105 | 8.11 × 108 | 7.71 × 1007 | 1.22 × 104 | 2.50 × 105 | ||
p-value | - | 4.79 × 10−2 − | 9.31 × 10−2 = | 1.48 × 10−15 + | 6.78 × 10−3 + | 1.07 × 10−1 = | 9.29 × 10−1 = | 2.69 × 10−15 + | ||
F16 | Median | 4.14 × 102 | 9.22 × 102 | 1.62 × 103 | 3.74 × 103 | 2.62 × 103 | 3.20 × 103 | 1.54 × 103 | 1.72 × 103 | |
Mean | 4.29 × 102 | 9.45 × 102 | 1.70 × 103 | 3.78 × 103 | 2.68 × 103 | 3.21 × 103 | 1.59 × 103 | 1.81 × 103 | ||
Std | 2.14 × 102 | 3.49 × 102 | 4.35 × 102 | 2.22 × 102 | 6.31 × 102 | 1.96 × 102 | 4.61 × 102 | 7.35 × 102 | ||
p-value | - | 1.09 × 10−9 + | 1.80 × 10−20 + | 2.88 × 10−53 + | 1.15 × 10−25 + | 3.58 × 10−50 + | 9.35 × 10−18 + | 8.37 × 10−14 + | ||
F17 | Median | 2.48 × 102 | 8.63 × 102 | 1.15 × 103 | 2.34 × 103 | 2.61 × 103 | 2.06 × 103 | 9.67 × 102 | 1.34 × 103 | |
Mean | 3.70 × 102 | 8.40 × 102 | 1.17 × 103 | 2.34 × 103 | 2.58 × 103 | 2.20 × 103 | 1.00 × 103 | 1.33 × 103 | ||
Std | 2.98 × 102 | 2.46 × 102 | 2.97 × 102 | 1.76 × 102 | 4.68 × 102 | 7.09 × 102 | 2.66 × 102 | 2.29 × 102 | ||
p-value | - | 1.11 × 10−8 + | 1.59 × 10−14 + | 1.82 × 10−37 + | 2.93 × 10−29 + | 1.49 × 10−18 + | 8.43 × 10−12 + | 7.20 × 10−20 + | ||
F18 | Median | 9.30 × 104 | 1.67 × 105 | 3.12 × 106 | 3.39 × 106 | 4.48 × 106 | 5.68 × 106 | 1.36 × 106 | 1.05 × 103 | |
Mean | 1.30 × 105 | 3.41 × 105 | 5.58 × 106 | 3.69 × 106 | 9.85 × 106 | 8.35 × 106 | 2.45 × 106 | 1.03 × 103 | ||
Std | 8.55 × 104 | 4.26 × 105 | 5.71 × 106 | 1.28 × 106 | 1.88 × 107 | 6.36 × 106 | 2.70 × 106 | 1.59 × 102 | ||
p-value | - | 5.67 × 10−3 + | 3.38 × 10−6 + | 1.35 × 10−21 + | 7.13 × 10−3 + | 3.35 × 10−9 + | 2.08 × 10−5 + | 4.10 × 10−11 − | ||
F | Category | Quality | SCDLPSO | XPSO | TCSPSO | DNSPSO | AWPSO | CLPSO_LS | GLPSO | CLPSO |
F19 | Hybrid Functions | Median | 1.43 × 104 | 1.06 × 104 | 1.30 × 104 | 3.06 × 104 | 2.16 × 107 | 2.52 × 103 | 8.92 × 103 | 1.33 × 106 |
Mean | 1.43 × 104 | 1.19 × 104 | 1.51 × 104 | 3.56 × 104 | 2.27 × 108 | 2.51 × 103 | 1.18 × 104 | 1.37 × 106 | ||
Std | 7.16 × 103 | 8.67 × 103 | 1.38 × 104 | 1.83 × 104 | 4.59 × 108 | 1.72 × 101 | 9.93 × 103 | 6.37 × 105 | ||
p-value | - | 1.23 × 10−1 = | 7.70 × 10−1 = | 2.57 × 10−7 + | 9.88 × 10−3 + | 2.17 × 10−12 − | 2.81 × 10−1 = | 1.40 × 10−16 + | ||
F20 | Median | 8.70 × 102 | 4.75 × 102 | 9.58 × 102 | 1.56 × 103 | 1.36 × 103 | 1.72 × 103 | 7.44 × 102 | 3.53 × 102 | |
Mean | 7.04 × 102 | 4.82 × 102 | 9.01 × 102 | 1.56 × 103 | 1.32 × 103 | 1.70 × 103 | 7.43 × 102 | 5.48 × 102 | ||
Std | 5.18 × 102 | 2.07 × 102 | 2.96 × 102 | 3.18 × 102 | 3.37 × 102 | 1.35 × 102 | 2.66 × 102 | 4.61 × 102 | ||
p-value | - | 2.91 × 10−2 − | 7.94 × 10−2 = | 2.92 × 10−10 + | 1.66 × 10−6 + | 2.49 × 10−14 + | 7.17 × 10−1 = | 2.33 × 10−1 = | ||
F11-20 | w/t/l | - | 5/3/2 | 4/6/0 | 9/0/1 | 10/0/0 | 6/3/1 | 5/5/0 | 6/2/2 | |
F21 | Composition Functions | Median | 2.18 × 102 | 2.81 × 102 | 3.77 × 102 | 5.96 × 102 | 5.98 × 102 | 6.34 × 102 | 3.36 × 102 | 6.29 × 102 |
Mean | 2.19 × 102 | 2.82 × 102 | 4.02 × 102 | 5.98 × 102 | 6.13 × 102 | 6.36 × 102 | 3.46 × 102 | 6.08 × 102 | ||
Std | 4.32 × 100 | 1.93 × 101 | 6.26 × 101 | 1.81 × 101 | 6.90 × 101 | 1.65 × 101 | 4.16 × 101 | 1.50 × 102 | ||
p-value | - | 3.92 × 10−23 + | 1.48 × 10−22 + | 6.05 × 10−69 + | 1.63 × 10−37 + | 1.39 × 10−73 + | 2.85 × 10−23 + | 3.56 × 10−20 + | ||
F22 | Median | 3.76 × 103 | 5.54 × 103 | 6.39 × 103 | 1.30 × 104 | 8.15 × 103 | 1.33 × 104 | 6.48 × 103 | 4.48 × 102 | |
Mean | 6.52 × 103 | 4.61 × 103 | 6.14 × 103 | 1.29 × 104 | 8.12 × 103 | 1.32 × 104 | 5.88 × 103 | 4.46 × 102 | ||
Std | 4.14 × 103 | 2.32 × 103 | 1.52 × 103 | 7.68 × 102 | 1.12 × 103 | 3.66 × 102 | 3.61 × 103 | 1.99 × 101 | ||
p-value | - | 5.39 × 10−2 = | 6.51 × 10−1 = | 3.68 × 10−11 + | 4.85 × 10−2 + | 3.82 × 10−12 + | 5.33 × 10−1 = | 8.94 × 10−11 − | ||
F23 | Median | 5.21 × 102 | 5.21 × 102 | 6.42 × 102 | 8.94 × 102 | 1.22 × 103 | 8.58 × 102 | 6.65 × 102 | 7.71 × 103 | |
Mean | 5.27 × 102 | 5.19 × 102 | 6.50 × 102 | 9.04 × 102 | 1.25 × 103 | 8.56 × 102 | 6.80 × 102 | 7.19 × 103 | ||
Std | 3.04 × 101 | 2.93 × 101 | 5.85 × 101 | 5.59 × 101 | 1.82 × 102 | 1.38 × 101 | 8.50 × 101 | 1.70 × 103 | ||
p-value | - | 7.27 × 10−1 = | 3.26 × 10−14 + | 1.86 × 10−38 + | 9.39 × 10−29 + | 7.16 × 10−51 + | 7.53 × 10−13 + | 7.69 × 10−29 + | ||
F24 | Median | 5.91 × 101 | 6.03 × 102 | 7.06 × 102 | 1.14 × 103 | 1.30 × 103 | 9.06 × 102 | 7.38 × 102 | 6.69 × 102 | |
Mean | 5.98 × 102 | 6.28 × 102 | 7.09 × 102 | 1.15 × 103 | 1.32 × 103 | 9.06 × 102 | 7.49 × 102 | 6.66 × 102 | ||
Std | 3.21 × 101 | 8.09 × 101 | 7.38 × 101 | 1.38 × 102 | 1.26 × 102 | 1.22 × 101 | 9.38 × 101 | 1.51 × 101 | ||
p-value | - | 5.13 × 10−1 = | 4.81 × 10−10 + | 1.30 × 10−28 + | 6.07 × 10−37 + | 1.44 × 10−48 + | 2.54 × 10−11 + | 6.76 × 10−15 + | ||
F25 | Median | 4.80 × 102 | 5.95 × 102 | 6.74 × 102 | 4.31 × 102 | 4.84 × 103 | 5.58 × 102 | 6.61 × 102 | 8.25 × 102 | |
Mean | 5.08 × 102 | 5.93 × 102 | 6.76 × 102 | 4.33 × 102 | 5.22 × 103 | 5.59 × 102 | 6.66 × 102 | 8.20 × 102 | ||
Std | 3.86 × 101 | 2.38 × 101 | 6.58 × 101 | 8.36 × 100 | 2.83 × 103 | 9.38 × 1000 | 7.00 × 101 | 3.20 × 101 | ||
p-value | - | 4.38 × 10−15 + | 3.72 × 10−17 + | 1.39 × 10−14 − | 1.51 × 10−12 + | 4.36 × 10−9 + | 3.17 × 10−15 + | 1.24 × 10−39 + | ||
F26 | Median | 1.84 × 103 | 1.73 × 103 | 3.98 × 103 | 7.50 × 103 | 1.05 × 104 | 5.62 × 103 | 2.96 × 103 | 5.37 × 102 | |
Mean | 1.89 × 103 | 1.28 × 103 | 4.07 × 103 | 7.72 × 103 | 1.04 × 104 | 5.60 × 103 | 3.04 × 103 | 5.37 × 102 | ||
Std | 1.65 × 102 | 8.75 × 102 | 1.02 × 103 | 2.13 × 103 | 1.97 × 103 | 1.86 × 102 | 6.50 × 102 | 4.38 × 100 | ||
p-value | - | 3.58 × 10−5 − | 2.43 × 10−16 + | 3.29 × 10−21 + | 3.59 × 10−31 + | 3.21 × 10−61 + | 6.05 × 10−13 + | 2.20 × 10−46 − | ||
F27 | Median | 6.66 × 102 | 6.99 × 102 | 9.01 × 102 | 5.00 × 102 | 1.39 × 1003 | 7.18 × 102 | 5.48 × 102 | 3.65 × 103 | |
Mean | 6.79 × 102 | 7.17 × 102 | 9.06 × 102 | 5.00 × 102 | 1.44 × 1003 | 7.32 × 102 | 5.50 × 102 | 3.58 × 103 | ||
Std | 6.07 × 101 | 8.03 × 101 | 9.24 × 101 | 0.00 × 100 | 2.58 × 102 | 7.84 × 101 | 1.28 × 101 | 2.08 × 102 | ||
p-value | - | 7.25 × 10−3 + | 7.07 × 10−16 + | 8.02 × 10−23 − | 2.86 × 10−22 + | 6.22 × 10−3 + | 3.93 × 10−16 − | 1.94 × 10−58 + | ||
F28 | Median | 4.59 × 102 | 5.39 × 102 | 6.68 × 102 | 5.00 × 102 | 7.56 × 103 | 5.44 × 103 | 4.72 × 102 | 6.54 × 102 | |
Mean | 4.74 × 102 | 5.43 × 102 | 6.77 × 102 | 5.00 × 102 | 7.80 × 103 | 5.34 × 103 | 4.51 × 102 | 6.53 × 102 | ||
Std | 2.69 × 101 | 3.56 × 101 | 6.99 × 101 | 0.00 × 100 | 1.47 × 103 | 4.48 × 102 | 7.00 × 101 | 2.16 × 101 | ||
p-value | - | 3.50 × 10−11 + | 4.61 × 10−21 + | 2.37 × 10−6 + | 2.41 × 10−34 + | 3.07 × 10−53 + | 1.02 × 10−1 = | 2.69 × 10−35 + | ||
F29 | Median | 4.98 × 102 | 8.54 × 102 | 1.43 × 103 | 3.26 × 103 | 3.73 × 103 | 2.10 × 103 | 7.74 × 102 | 1.69 × 103 | |
Mean | 5.17 × 102 | 8.60 × 102 | 1.43 × 103 | 3.25 × 103 | 4.01 × 103 | 2.24 × 103 | 8.17 × 102 | 1.78 × 103 | ||
Std | 1.27 × 102 | 1.93 × 102 | 2.49 × 102 | 2.65 × 102 | 1.07 × 103 | 5.86 × 102 | 2.37 × 102 | 4.53 × 102 | ||
p-value | - | 1.67 × 10−11 + | 7.15 × 10−25 + | 2.16 × 10−49 + | 9.40 × 10−25 + | 2.91 × 10−22 + | 1.26 × 10−7 + | 6.43 × 10−21 + | ||
F30 | Median | 7.96 × 105 | 1.82 × 106 | 2.00 × 106 | 2.39 × 106 | 3.41 × 108 | 1.46 × 106 | 2.00 × 106 | 1.04 × 103 | |
Mean | 8.26 × 105 | 1.86 × 106 | 2.36 × 106 | 2.51 × 106 | 4.80 × 108 | 1.16 × 107 | 2.40 × 106 | 1.03 × 103 | ||
Std | 1.11 × 105 | 3.34 × 105 | 8.05 × 105 | 9.62 × 105 | 7.04 × 108 | 5.37 × 107 | 1.44 × 106 | 1.62 × 102 | ||
p-value | - | 4.17 × 10−24 + | 1.69 × 10−14 + | 3.12 × 10−13 + | 5.36 × 10−4 + | 2.87 × 10−1 = | 2.25 × 10−7 + | 6.00 × 10−44 − | ||
F21-30 | w/t/l | - | 6/3/1 | 9/1/0 | 8/0/2 | 10/0/0 | 9/1/0 | 7/2/1 | 7/0/3 | |
w/t/l | - | 17/7/5 | 20/8/1 | 25/0/4 | 28/0/1 | 23/5/1 | 19/7/3 | 20/2/7 | ||
rank | 2.14 | 2.45 | 4.72 | 5.07 | 7.41 | 6.17 | 3.52 | 4.52 |
F | Category | Quality | SCDLPSO | XPSO | TCSPSO | DNSPSO | AWPSO | CLPSO_LS | GLPSO | CLPSO |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Unimodal Functions | Median | 1.94 × 103 | 3.97 × 103 | 2.62 ×103 | 4.08 × 103 | 2.15 × 1011 | 7.93 × 109 | 1.46 × 104 | 2.71 × 104 |
Mean | 5.40 × 103 | 7.78 × 103 | 6.22 × 103 | 7.17 × 103 | 2.19 × 1011 | 8.00 × 109 | 3.49 × 104 | 3.69 × 108 | ||
Std | 4.91 × 103 | 8.48 × 103 | 7.24 × 103 | 8.26 × 103 | 3.66 × 1010 | 1.30 × 109 | 5.38 × 104 | 4.72 × 108 | ||
p-value | - | 4.65 × 10−2 + | 2.14 × 10−1 = | 9.87 × 10−2 = | 1.07 × 10−38 + | 1.98 × 10−39 + | 3.36 × 10−3 + | 8.88 × 10−5 + | ||
F3 | Median | 1.74 × 105 | 7.15 × 104 | 2.54 × 105 | 1.04 × 106 | 4.94 × 105 | 2.72 × 10−8 | 1.92 × 105 | 3.53 × 104 | |
Mean | 1.72 × 105 | 7.11 × 104 | 2.53 × 105 | 1.03 × 106 | 5.19 × 105 | 2.51 × 109 | 1.98 × 105 | 4.60 × 104 | ||
Std | 2.09 × 104 | 1.09 × 104 | 3.05 × 104 | 1.18 × 105 | 1.67 × 105 | 1.34 × 1010 | 2.70 × 104 | 2.70 × 104 | ||
p-value | - | 3.66 × 10−32 − | 1.15 × 10−16 + | 4.26 × 10−43 + | 7.31 × 10−16 + | 3.16 × 10−1 = | 3.34 × 10−4 + | 7.13 × 10−28 − | ||
F1,3 | w/t/l | - | 1/0/1 | 1/1/0 | 1/1/0 | 2/0/0 | 1/1/0 | 2/0/0 | 1/0/1 | |
F4 | Simple Multimodal Functions | Median | 2.18 × 102 | 4.89 × 102 | 6.28 × 102 | 2.02 × 102 | 5.03 × 104 | 7.20 × 102 | 1.62 × 103 | 5.67 × 105 |
Mean | 2.18 × 102 | 4.88 × 102 | 7.03 × 102 | 2.05 × 102 | 5.16 × 104 | 7.50 × 102 | 1.58 ×103 | 5.66 × 105 | ||
Std | 1.98 × 101 | 6.07 × 101 | 1.82 × 102 | 5.34 × 101 | 1.47 × 104 | 1.11 × 102 | 4.02 × 102 | 5.55 × 104 | ||
p-value | - | 1.65 × 10−30 + | 1.21 × 10−20 + | 2.21 × 10−1 = | 2.41 × 10−26 + | 4.60 × 10−33 + | 1.37 × 10−25 + | 1.09 × 10−51 + | ||
F5 | Median | 2.59 × 101 | 2.15 × 102 | 5.36 × 102 | 1.03 ×103 | 1.24 ×103 | 1.07 ×103 | 4.44 × 102 | 2.74 × 102 | |
Mean | 2.59 × 101 | 2.22 × 102 | 5.55 × 102 | 1.03 ×103 | 1.23 ×103 | 1.07 ×103 | 4.51 × 102 | 2.82 × 102 | ||
Std | 3.52 × 101 | 4.44 × 101 | 1.09 × 102 | 4.69 × 101 | 1.57 × 102 | 2.54 × 101 | 8.62 × 101 | 2.03 × 101 | ||
p-value | - | 2.07 × 10−30 + | 8.72 × 10−34 + | 5.07 × 10−70 + | 1.11 × 10−44 + | 2.54 × 10−86 + | 4.04 × 10−34 + | 1.48 × 10−56 + | ||
F6 | Median | 3.73 × 10−2 | 4.61 × 100 | 1.85 × 101 | 2.36 × 10−1 | 7.13 × 101 | 2.92 × 101 | 2.42 × 100 | 7.74 × 102 | |
Mean | 5.58 × 10−2 | 5.06 × 100 | 1.78 × 101 | 2.78 × 10−1 | 7.14 × 101 | 2.92 × 101 | 3.03 × 100 | 7.72 × 102 | ||
Std | 5.01 × 10−2 | 3.54 × 100 | 6.21 × 100 | 2.20 × 10−1 | 9.32 × 100 | 1.54 × 100 | 1.97 × 100 | 2.83 × 101 | ||
p-value | - | 1.43 × 10−9 + | 3.54 × 10−22 + | 1.86 × 10−06 + | 1.16 × 10−44 + | 3.41 × 10−67 + | 3.67 × 10−11 + | 2.52 × 10−76 + | ||
F7 | Median | 1.38 × 102 | 4.31 × 102 | 1.22 ×103 | 1.12 × 103 | 4.02 × 103 | 1.45 × 103 | 7.43 × 102 | 8.98× 10−7 | |
Mean | 1.39 × 102 | 4.49 × 102 | 1.23 ×103 | 1.13 × 103 | 4.13 × 103 | 1.52 × 103 | 7.62 × 102 | 7.95× 10−3 | ||
Std | 5.87 × 100 | 8.30 × 101 | 1.99 × 102 | 3.75 × 101 | 7.71 × 102 | 1.72 × 102 | 1.19 × 102 | 2.08× 10−2 | ||
p-value | - | 7.75 × 10−28 + | 1.26 × 10−36 + | 3.60 × 10−75 + | 2.91 × 10−35 + | 7.31 × 10−46 + | 1.79 × 10−35 + | 1.07× 10−72 − | ||
F8 | Median | 2.89 × 101 | 2.13 × 102 | 5.29 × 102 | 1.02 ×103 | 1.22 ×103 | 1.06 ×103 | 4.68 × 102 | 7.71 × 102 | |
Mean | 2.93 × 101 | 2.13 × 102 | 5.54 × 102 | 1.03 ×103 | 1.25 ×103 | 1.06 ×103 | 5.10 × 102 | 7.69 × 102 | ||
Std | 4.21 × 100 | 3.84 × 101 | 8.00 × 101 | 3.98 × 101 | 1.43 × 102 | 2.61 × 101 | 1.53 × 102 | 5.38 × 101 | ||
p-value | - | 1.95 × 10−32 + | 7.17 × 10−41 + | 5.08 × 10−74 + | 3.44 × 10−47 + | 2.73 × 10−85 + | 3.96 × 10−24 + | 5.03 × 10−59 + | ||
F9 | Median | 1.89 × 101 | 4.19 × 102 | 1.38 × 104 | 1.16 × 103 | 4.41 × 104 | 1.32 × 104 | 1.28 × 104 | 7.89 × 102 | |
Mean | 2.59 × 101 | 5.62 × 102 | 1.40 × 104 | 2.29 × 103 | 4.65 × 104 | 1.33 × 104 | 1.41 × 104 | 7.88 × 102 | ||
Std | 2.49 × 101 | 4.12 × 102 | 4.05 × 103 | 2.95 × 103 | 9.32 × 103 | 1.58 × 103 | 7.09 × 103 | 3.20 × 101 | ||
p-value | - | 4.91 × 10−11 + | 4.57 × 10−26 + | 1.13 × 10−4 + | 2.03 × 10−34 + | 5.89 × 10−47 + | 2.21 × 10−15 + | 5.66 × 10−67 + | ||
F10 | Median | 1.05 × 104 | 1.22 × 104 | 1.36 × 104 | 3.03 × 104 | 1.87 × 104 | 3.01 × 104 | 1.98 × 104 | 2.65 × 104 | |
Mean | 1.55 × 104 | 1.24 × 104 | 1.34 × 104 | 3.02 × 104 | 1.86 × 104 | 3.01 × 104 | 2.07 × 104 | 2.58 × 104 | ||
Std | 8.91 × 103 | 1.36 × 103 | 1.08 × 103 | 8.44 × 102 | 2.19 × 103 | 4.22 × 102 | 3.69 × 103 | 3.20 × 103 | ||
p-value | - | 4.95 × 10−2 − | 1.67 × 10−1 = | 4.46 × 10−12 + | 9.35 × 10−2 = | 4.84 × 10−12 + | 7.40 × 10−3 + | 3.53 × 10−7 + | ||
F4-10 | w/t/l | - | - | 6/0/1 | 6/0/1 | 6/1/0 | 6/1/0 | 7/0/0 | 7/0/0 | |
F11 | Hybrid Functions | Median | 8.01 × 102 | 1.15 ×103 | 2.74 ×103 | 2.24 × 104 | 1.42 × 105 | 1.44 ×103 | 2.51 × 104 | 2.26 × 104 |
Mean | 8.31 × 102 | 1.18 × 103 | 3.42 × 103 | 2.46 × 104 | 1.56 × 105 | 3.89 × 103 | 2.38 × 104 | 2.26 × 104 | ||
Std | 1.52 × 102 | 2.31 × 102 | 1.92 × 103 | 9.75 × 103 | 6.76 × 104 | 5.95 × 103 | 8.81 ×103 | 5.20 × 102 | ||
p-value | - | 5.03 × 10−9 + | 1.18 × 10−9 + | 4.85 × 10−19 + | 7.25 × 10−18 + | 7.63 × 10−3 + | 2.52 × 10−20 + | 5.26 × 10−86 + | ||
F12 | Median | 5.91 × 105 | 1.18 × 107 | 5.19 × 107 | 1.51 × 107 | 6.93 × 1010 | 6.02 × 108 | 2.31 × 108 | 2.94 × 103 | |
Mean | 6.04 × 105 | 1.81 × 107 | 8.56 × 107 | 1.65 × 107 | 7.75 × 1010 | 6.53 × 108 | 3.13 × 108 | 3.00 × 103 | ||
Std | 3.25 × 105 | 1.87 × 107 | 9.57 × 107 | 7.77 × 106 | 2.82 × 1010 | 4.55 × 108 | 2.64 × 108 | 7.24 × 102 | ||
p-value | - | 6.65 × 10−6 + | 1.22 × 10−5 + | 7.71 × 10−16 + | 2.51 × 10−21 + | 1.82 × 10−10 + | 3.40 × 10−8 + | 2.77 × 10−14 − | ||
F13 | Median | 2.46 × 103 | 3.11 × 103 | 4.13 × 103 | 6.18 × 103 | 1.06 × 109 | 1.24 × 104 | 1.18 × 104 | 1.02 × 108 | |
Mean | 4.14 × 103 | 4.42 × 103 | 6.81 × 103 | 1.11 × 104 | 9.85 × 109 | 1.28 × 108 | 2.56 × 107 | 1.01 × 108 | ||
Std | 4.23 × 103 | 3.81 × 103 | 5.71 × 103 | 1.41 × 104 | 4.78 × 109 | 2.63 × 108 | 1.36 × 108 | 2.98 × 107 | ||
p-value | - | 6.57 × 10−1 = | 4.76 × 10−2 + | 1.32 × 10−2 + | 5.55 × 10−16 + | 1.13 × 10−2 + | 3.15 × 10−1 = | 1.22 × 10−25 + | ||
F14 | Median | 7.92 × 104 | 2.26 × 105 | 9.20 × 105 | 2.10 × 106 | 2.37 × 107 | 3.82 × 106 | 5.15 × 105 | 5.23 × 104 | |
Mean | 8.59 × 104 | 3.69 × 105 | 1.48 × 106 | 2.38 × 106 | 3.30 × 107 | 5.14 × 106 | 2.70 × 106 | 5.43 × 104 | ||
Std | 3.53 × 104 | 4.94 × 105 | 1.37 × 106 | 8.62 × 105 | 2.89 × 107 | 6.48 × 106 | 3.96 × 106 | 2.17 × 104 | ||
p-value | - | 3.25 × 10−3 + | 9.95 × 10−7 + | 1.18 × 10−20 + | 8.20 × 10−8 + | 9.52 × 10−5 + | 7.51 × 10−4 + | 8.07 × 10−5 − | ||
F15 | Median | 1.06 × 103 | 1.54 × 103 | 2.32 × 103 | 5.08 × 104 | 4.72 × 109 | 7.66 × 103 | 2.72 × 103 | 5.12 × 106 | |
Mean | 2.64 × 103 | 2.78 × 103 | 4.88 × 103 | 7.18 × 104 | 5.09 × 109 | 2.96 × 107 | 1.18 × 104 | 5.21 × 106 | ||
Std | 4.67 × 103 | 3.21 × 103 | 5.47 × 103 | 6.60 × 104 | 2.66 × 109 | 1.11 × 108 | 5.98 × 105 | 1.52 × 106 | ||
p-value | - | 6.26 × 10−1 = | 9.89 × 10−2 = | 5.50 × 10−7 + | 9.75 × 10−15 + | 1.55 × 10−1 = | 3.06 × 10−1 = | 5.68 × 10−26 + | ||
F16 | Median | 1.26 × 103 | 2.90 × 103 | 3.71 × 103 | 8.82 × 103 | 8.86 × 103 | 8.44 × 103 | 4.64 × 103 | 6.39 × 103 | |
Mean | 1.19 × 103 | 2.88 × 103 | 3.82 × 103 | 8.79 × 103 | 8.79 × 103 | 8.43 × 103 | 4.96 × 103 | 6.36 × 103 | ||
Std | 4.58 × 102 | 4.97 × 103 | 6.74 × 102 | 3.41 × 102 | 1.19 × 103 | 3.33 × 102 | 1.66 × 103 | 1.85 × 103 | ||
p-value | - | 1.89 × 10−19 + | 1.09 × 10−24 + | 2.53 × 10−58 + | 1.46 × 10−38 + | 2.54 × 10−57 + | 5.24 × 10−17 + | 4.67 × 10−21 + | ||
F17 | Median | 1.31 × 103 | 2.45 × 103 | 3.22 × 103 | 5.94 × 103 | 2.20 × 104 | 5.62 × 103 | 3.42 × 103 | 4.13 × 103 | |
Mean | 1.34 × 103 | 2.43 × 103 | 3.07 × 103 | 5.97 × 103 | 1.41 × 105 | 6.07 × 103 | 3.35 × 103 | 4.09 × 103 | ||
Std | 5.07 × 102 | 4.69 × 102 | 5.17 × 102 | 2.44 × 102 | 3.96 × 105 | 1.62 × 103 | 1.01 × 103 | 3.01 × 102 | ||
p-value | - | 1.68 × 10−11 + | 1.30 × 10−18 + | 2.09 × 10−46 + | 6.30 × 10−02 = | 1.39 × 10−21 + | 1.74 × 10−13 + | 8.14 × 10−33 + | ||
F18 | Median | 2.80 × 105 | 3.87 × 105 | 2.76 × 106 | 2.92 × 107 | 4.18 × 107 | 1.88 × 107 | 6.31 × 105 | 3.37 × 103 | |
Mean | 2.91 × 105 | 4.72 × 105 | 3.38 × 106 | 3.20 × 107 | 4.62 × 107 | 2.62 × 107 | 1.32 × 106 | 3.32 × 103 | ||
Std | 1.25 × 105 | 3.09 × 105 | 2.09 × 106 | 1.06 × 107 | 3.72 × 107 | 2.16 × 107 | 1.70 × 106 | 3.55 × 102 | ||
p-value | - | 7.87 × 10−3 + | 7.90 × 10−11 + | 4.09 × 10−23 + | 1.21 × 10−8 + | 2.32 × 10−8 + | 1.93 × 10−3 + | 2.68 × 10−18 − | ||
F | Category | Quality | SCDLPSO | XPSO | TCSPSO | DNSPSO | AWPSO | CLPSO_LS | GLPSO | CLPSO |
F19 | Hybrid Functions | Median | 8.30 × 102 | 3.33 × 103 | 2.30 × 103 | 5.82 × 103 | 3.08 × 109 | 2.60 × 104 | 1.37 × 103 | 8.17 × 106 |
Mean | 2.07 × 103 | 4.55 × 103 | 4.86 × 103 | 8.89 × 103 | 3.87 × 109 | 8.66 × 107 | 9.63 × 105 | 8.39 × 106 | ||
Std | 2.56 × 103 | 5.32 × 103 | 6.41 × 103 | 8.15 × 103 | 3.13 × 109 | 2.13 × 108 | 5.08 × 106 | 2.39 × 106 | ||
p-value | 5.23 × 10−2 = | 3.35 × 10−2 + | 6.55 × 10−5 + | 1.04 × 10−8 + | 3.30 × 10−2 + | 3.12 × 10−1 = | 1.78 × 10−26 + | |||
F20 | Median | 1.18 × 103 | 2.16 × 103 | 2.88 × 103 | 5.70 × 103 | 3.86 × 103 | 4.78 × 103 | 3.46 × 103 | 3.42 × 103 | |
Mean | 1.87 × 103 | 2.19 × 103 | 2.83 × 103 | 5.58 × 103 | 3.75 × 103 | 4.74 × 103 | 3.59 × 103 | 4.15 × 103 | ||
Std | 1.32 × 103 | 4.39 × 102 | 4.93 × 102 | 5.74 × 102 | 6.26 × 102 | 2.62 × 102 | 9.00 × 102 | 2.05 × 103 | ||
p-value | 4.84 × 10−1 = | 1.96 × 10−3 + | 1.72 × 10−19 + | 2.00 × 10−8 + | 7.71 × 10−16 + | 1.26 × 10−6 + | 1.24 × 10−5 + | |||
F11-20 | w/t/l | - | 6/4/0 | 9/1/0 | 10/0/0 | 9/1/0 | 9/1/0 | 7/3/0 | 7/0/3 | |
F21 | Composition Functions | Median | 2.88 × 102 | 4.54 × 102 | 7.91 × 102 | 1.22 × 103 | 1.62 × 103 | 1.30 × 103 | 7.46 × 102 | 2.21 × 103 |
Mean | 2.94 × 102 | 4.59 × 102 | 7.87 × 102 | 1.23 × 103 | 1.62 × 103 | 1.29 × 103 | 7.89 × 102 | 2.20 × 103 | ||
Std | 1.83 × 101 | 5.25 × 101 | 8.43 × 101 | 3.66 × 101 | 1.70 × 102 | 3.07 × 101 | 1.81 × 102 | 2.25 × 102 | ||
p-value | - | 6.13 × 10−24 + | 1.27 × 10−37 + | 9.30 × 10−72 + | 5.17 × 10−45 + | 7.16 × 10−77 + | 3.28 × 10−21 + | 4.79 × 10−47 + | ||
F22 | Median | 9.97 × 103 | 1.38 × 104 | 1.46 × 104 | 3.09 × 104 | 1.98 × 104 | 3.08 × 104 | 2.30 × 104 | 1.02 × 103 | |
Mean | 1.27 × 104 | 1.27 × 104 | 1.46 × 104 | 3.07 × 104 | 1.99 × 104 | 3.07 × 104 | 2.35 × 104 | 1.02 × 103 | ||
Std | 6.78 × 103 | 4.40 × 103 | 1.35 × 103 | 8.81 × 102 | 2.37 × 103 | 3.97 × 102 | 4.24 × 103 | 2.84 × 101 | ||
p-value | - | 7.26 × 10−1 = | 1.44 × 10−1 = | 1.53 × 10−20 + | 1.44 × 10−6 + | 1.28 × 10−20 + | 1.02 × 10−9 + | 4.54 × 10−13 − | ||
F23 | Median | 7.60 × 102 | 8.16 × 102 | 1.04 × 103 | 1.70 × 103 | 2.58 × 103 | 1.51 × 103 | 1.39 × 103 | 2.33 × 104 | |
Mean | 7.62 × 102 | 8.19 × 102 | 1.07 × 103 | 1.83 × 103 | 2.53 × 103 | 1.51 × 103 | 1.39 × 103 | 2.34 × 104 | ||
Std | 4.79 × 101 | 5.65 × 101 | 1.09 × 102 | 3.60 × 102 | 2.47 × 102 | 2.84 × 101 | 1.92 × 102 | 5.35 × 102 | ||
p-value | - | 6.24 × 10−4 + | 2.35 × 10−20 + | 8.10 × 10−23 + | 1.46 × 10−42 + | 1.22 × 10−58 + | 2.38 × 10−24 + | 3.44 × 10−87 + | ||
F24 | Median | 1.24 × 103 | 1.20 × 103 | 1.52 × 103 | 3.08 × 103 | 4.08 × 103 | 1.87 × 103 | 2.05 × 103 | 9.38 × 102 | |
Mean | 1.24 × 103 | 1.24 × 103 | 1.55 × 103 | 3.14 × 103 | 4.12 × 103 | 1.88 × 103 | 2.03 × 103 | 9.36 × 102 | ||
Std | 7.89 × 101 | 1.18 × 102 | 1.46 × 102 | 6.53 × 102 | 4.76 × 102 | 7.17 × 101 | 1.32 × 102 | 2.01 × 101 | ||
p-value | - | 9.47 × 10−1 = | 4.48 × 10−14 + | 2.23 × 10−22 + | 1.11 × 10−38 + | 1.37 × 10−38 + | 5.80 × 10−35 + | 4.00 × 10−28 − | ||
F25 | Median | 8.22 × 102 | 1.08 × 103 | 1.29 × 103 | 7.34 × 102 | 2.32 × 104 | 2.82 × 103 | 1.79 × 103 | 1.51 × 103 | |
Mean | 8.00 × 102 | 1.09 × 103 | 1.35 × 103 | 7.54 × 102 | 2.31 × 104 | 2.80 × 103 | 1.77 × 103 | 1.51 × 103 | ||
Std | 5.76 × 101 | 7.59 × 101 | 2.93 × 102 | 5.64 × 101 | 6.09 × 103 | 2.29 × 102 | 2.76 × 102 | 2.84 × 101 | ||
p-value | - | 1.71 × 10−24 + | 3.47 × 10−14 + | 3.03 × 10−3 − | 2.13 × 10−27 + | 3.78 × 10−47 + | 4.16 × 10−26 + | 8.76 × 10−54 + | ||
F26 | Median | 6.20 × 103 | 5.36 × 103 | 1.06 × 104 | 2.54 × 104 | 3.86 × 104 | 1.43 × 104 | 1.04 × 104 | 9.32 × 102 | |
Mean | 6.16 × 103 | 4.18 × 103 | 1.14 × 104 | 2.62 × 104 | 3.74 × 104 | 1.45 × 104 | 1.10 × 104 | 9.37 × 102 | ||
Std | 4.81 × 102 | 2.45 × 103 | 2.40 × 103 | 7.04 × 103 | 4.48 × 103 | 6.46 × 1002 | 2.29 × 103 | 3.87 × 101 | ||
p-value | - | 2.09 × 10−5 − | 1.28 × 10−16 + | 4.66 × 10−22 + | 3.15 × 10−42 + | 5.88 × 10−52 + | 3.45 × 10−16 + | 3.19 × 10−53 − | ||
F27 | Median | 7.49 × 102 | 8.71 × 102 | 1.12 × 103 | 5.00 × 102 | 3.20 × 103 | 7.61 × 102 | 1.23 × 103 | 1.12 × 104 | |
Mean | 7.66 × 102 | 8.83 × 102 | 1.12 × 103 | 5.00 × 102 | 3.32 × 103 | 7.61 × 102 | 1.26 × 103 | 1.12 × 104 | ||
Std | 6.46 × 101 | 7.08 × 101 | 1.75 × 102 | 0.00 × 100 | 8.62 × 102 | 4.86 × 101 | 9.86 × 101 | 3.26 × 102 | ||
p-value | - | 2.15 × 10−7 + | 1.23 × 10−14 + | 5.36 × 10−30 − | 7.09 × 10−23 + | 7.67 × 10−1 = | 3.18 × 10−30 + | 6.83 × 10−80 + | ||
F28 | Median | 5.64 × 102 | 8.31 × 102 | 1.33 × 103 | 5.00 × 102 | 2.88 × 104 | 1.34 × 104 | 2.20 × 103 | 7.68 × 102 | |
Mean | 5.72 × 102 | 8.32 × 102 | 1.37 × 103 | 5.00 × 102 | 2.81 × 104 | 1.34 × 104 | 2.29 × 103 | 7.68 × 102 | ||
Std | 3.12 × 101 | 4.26 × 101 | 3.31 × 102 | 0.00 × 100 | 4.47 × 103 | 2.57 × 102 | 5.64 × 102 | 2.39 × 101 | ||
p-value | - | 1.11 × 10−31 + | 1.18 × 10−18 + | 6.71 × 10−18 − | 2.05 × 10−39 + | 3.12 × 10−91 + | 1.72 × 10−23 + | 2.04 × 10−34 + | ||
F29 | Median | 1.77 × 103 | 3.02 × 103 | 3.90 × 103 | 6.93 × 103 | 1.08 × 104 | 6.16 × 103 | 4.38 × 103 | 1.28 × 104 | |
Mean | 1.82 × 103 | 3.03 × 103 | 3.91 × 103 | 6.87 × 103 | 1.71 × 104 | 6.13 × 103 | 4.43 × 103 | 1.28 × 104 | ||
Std | 3.99 × 102 | 4.92 × 102 | 5.41 × 102 | 3.37 × 102 | 1.70 × 104 | 8.58 × 102 | 6.82 × 102 | 3.67 × 101 | ||
p-value | - | 2.42 × 10−15 + | 6.71 × 10−24 + | 2.20 × 10−50 + | 1.00 × 10−5 + | 2.60 × 10−32 + | 3.49 × 10−25 + | 2.66 × 10−76 + | ||
F30 | Median | 5.68 × 103 | 2.87 × 104 | 1.04 × 105 | 7.89 × 102 | 7.81 × 109 | 1.26 × 104 | 1.84 × 106 | 3.45 × 103 | |
Mean | 7.04 × 103 | 3.55 × 104 | 1.46 × 105 | 7.99 × 102 | 8.40 × 109 | 1.57 × 108 | 3.54 × 106 | 3.39 × 103 | ||
Std | 3.52 × 103 | 2.37 × 104 | 1.34 × 105 | 2.13 × 102 | 4.21 × 109 | 3.12 × 108 | 3.84 × 106 | 2.84 × 102 | ||
p-value | - | 2.97 × 10−7 + | 6.76 × 10−7 + | 1.83 × 10−13 − | 2.04 × 10−15 + | 8.68 × 10−3 + | 6.47 × 10−6 + | 6.99 × 10−7 − | ||
F21-30 | w/t/l | - | 7/2/1 | 9/1/0 | 6/0/4 | 10/0/0 | 9/1/0 | 10/0/0 | 6/0/4 | |
w/t/l | - | 20/6/3 | 25/3/1 | 23/2/4 | 26/3/0 | 26/3/0 | 26/3/0 | 20/0/9 | ||
rank | 1.69 | 2.66 | 3.97 | 4.86 | 7.45 | 5.93 | 4.97 | 4.48 |
Category | D | XPSO | TCSPSO | DNSPSO | AWPSO | CLPSO_LS | GLPSO | CLPSO |
---|---|---|---|---|---|---|---|---|
Unimodal Functions | 30 | 0/1/1 | 1/1/0 | 2/0/0 | 2/0/0 | 1/1/0 | 0/1/1 | 2/0/0 |
50 | 0/1/1 | 1/1/0 | 2/0/0 | 2/0/0 | 1/1/0 | 1/0/1 | 2/0/0 | |
100 | 1/0/1 | 1/1/0 | 1/1/0 | 2/0/0 | 1/1/0 | 2/0/0 | 1/0/1 | |
Simple Multimodal Functions | 30 | 6/0/1 | 6/0/1 | 5/0/2 | 6/0/1 | 6/1/0 | 6/0/1 | 5/0/2 |
50 | 6/0/1 | 6/0/1 | 6/0/1 | 6/0/1 | 7/0/0 | 6/0/1 | 5/0/2 | |
100 | 6/0/1 | 6/0/1 | 6/1/0 | 6/1/0 | 7/0/0 | 7/0/0 | 6/0/1 | |
Hybrid Functions | 30 | 5/4/1 | 9/1/0 | 8/1/1 | 7/3/0 | 9/1/0 | 8/2/0 | 8/0/2 |
50 | 5/3/2 | 4/6/0 | 9/0/1 | 10/0/0 | 6/3/1 | 5/5/0 | 6/2/2 | |
100 | 6/4/0 | 9/1/0 | 10/0/0 | 9/1/0 | 9/1/0 | 7/3/0 | 7/0/3 | |
Composition Functions | 30 | 6/3/1 | 10/0/0 | 8/0/2 | 10/0/0 | 8/2/0 | 9/1/0 | 5/3/2 |
50 | 6/3/1 | 9/1/0 | 8/0/2 | 10/0/0 | 9/1/0 | 7/2/1 | 7/0/3 | |
100 | 7/2/1 | 9/1/0 | 6/0/4 | 10/0/0 | 9/1/0 | 10/0/0 | 6/0/4 | |
Whole Set | 30 | 17/8/4 | 26/2/1 | 23/1/5 | 25/3/1 | 24/5/0 | 23/4/2 | 20/3/6 |
50 | 17/7/5 | 20/8/1 | 25/0/4 | 28/0/1 | 23/5/1 | 19/7/3 | 20/2/7 | |
100 | 20/6/3 | 25/3/1 | 23/2/4 | 26/3/0 | 26/3/0 | 26/3/0 | 20/0/9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Hua, L.; Gao, X.; Xu, D.; Lu, Z.; Jeon, S.-W.; Zhang, J. Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems. Mathematics 2022, 10, 761. https://doi.org/10.3390/math10050761
Yang Q, Hua L, Gao X, Xu D, Lu Z, Jeon S-W, Zhang J. Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems. Mathematics. 2022; 10(5):761. https://doi.org/10.3390/math10050761
Chicago/Turabian StyleYang, Qiang, Litao Hua, Xudong Gao, Dongdong Xu, Zhenyu Lu, Sang-Woon Jeon, and Jun Zhang. 2022. "Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems" Mathematics 10, no. 5: 761. https://doi.org/10.3390/math10050761