On a Harry–Dym-Type Hierarchy: Trigonal Curve and Quasi-Periodic Solutions
Abstract
:1. Introduction
2. Harry–Dym-Type Hierarchy
- 1.
- 2.
3. The Trigonal Curve and Dubrovin-Type Equations
4. Quasi-Periodic Solutions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kruskal, M.D. Nonlinear Wave Equations, Dynomical Systems, Theory and Applications; Moser, J., Ed.; Lecture Notes in Physics; Springer: Berlin, Germany, 1975; Volume 38, pp. 310–354. [Google Scholar]
- Sabatier, P.C. On some spectral problems and isospectral evolutions connected with the classical string problem. Lett. Nuovo Cim. 1979, 26, 477–482. [Google Scholar] [CrossRef]
- Li, Y.S. Evolution equations associated with the eigenvalue problem based on the equation ϕxx = [u(x) − k2ϱ2(x)]ϕ. Lett. Nuovo Cim. 1982, 70, 1–12. [Google Scholar]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Wadati, M.; Ichikawa, Y.H.; Shimizu, T. Cusp soliton of a new integrable nonlinear evolution equation. Prog. Theor. Phys. 1980, 64, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons I; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Konopelchenko, B.G.; Lee, J.-H. Inverse spectral transform for the Harry Dym equation on the complex plane. Phys. D 1995, 81, 32–43. [Google Scholar] [CrossRef]
- Dmitrieva, L.A. Finite-gap solutions of the Harry Dym equation. Phys. Lett. A 1993, 182, 65–70. [Google Scholar] [CrossRef]
- Novikov, D.P. Algebraic-geometric solutions of the Harry Dym equation. Siberian Math. J. 1999, 40, 136–140. [Google Scholar] [CrossRef]
- Li, Z. Algebro-geometric solutions of the Harry Dym hierarchy. Int. J. Nonlinear Sci. Numer. Simul. 2017, 18, 129–136. [Google Scholar] [CrossRef]
- Qiao, Z.J. A completely integrable system assocaited with the Harry-Dym hierarchy. J. Nonlinear Math. Phys. 1994, 1, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Konopelchenko, B.G.; Dubrovsky, V.G. Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A 1984, 102, 15–17. [Google Scholar] [CrossRef]
- Antonowicz, M.; Fordy, A.P. Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Comm. Math. Phys. 1989, 124, 465–486. [Google Scholar] [CrossRef]
- Konopelchenko, B.G.; Oevel, W. An r-matrix approach to nonstandard classes of integrable equations. Publ. Rims Kyoto Univ. 1993, 29, 581–666. [Google Scholar] [CrossRef] [Green Version]
- Antonowicz, M.; Fordy, A.P. Coupled Harry Dym equations with multi-Hamiltonian structures. J. Phys. A Math. Gen. 1998, 21, L269–L275. [Google Scholar] [CrossRef]
- Popowicz, Z. The generalized Harry Dym equation. Phys. Lett. A 2003, 317, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Brunelli, J.C.; da Costa, G.A.T.F. On the nonlocal equations and nonlocal charges associated with the Harry Dym hierarchy. J. Math. Phys. 2002, 43, 6116–6128. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, K.; Błaszak, M. Construction of coupled Harry Dym hierarchy and its solutions from Stäckel systems. Nonlinear Anal. 2010, 73, 3004–3017. [Google Scholar] [CrossRef] [Green Version]
- Błaszak, M.; Marciniak, K. Invertible coupled KdV and coupled Harry Dym hierarchies. Stud. Appl. Math. 2012, 131, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Tian, K.; Popowicz, Z.; Liu, Q.P. A non-standard Lax formulation of the Harry Dym hierarchy and its supersymmetric extension. J. Phys. A Math. Theor. 2012, 45, 122001. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X. An extended Harry Dym hierarchy. J. Phys. A 2010, 43, 165202. [Google Scholar] [CrossRef]
- Geng, X.G. The Hamiltonian structure and new finite-dimensional integrable system associated with Harry-Dym type equations. Phys. Lett. A 1994, 194, 44–48. [Google Scholar] [CrossRef]
- Qiao, Z.J.; Li, S.T. A new integrable hierarchy, parametric solutions and traveling wave solutions. Math. Phys. Anal. Geom. 2004, 7, 289–308. [Google Scholar] [CrossRef]
- Das, A.; Popowicz, Z. A nonliearly dispersive fifth order integrable equation and its hierarchy. J. Nonlinear Math. Phys. 2005, 12, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Belokolos, E.D.; Bobenko, A.I.; Enol’skii, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Springer: Berlin, Germany, 1994. [Google Scholar]
- Cao, C.W.; Wu, Y.T.; Geng, X.G. Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system. J. Math. Phys. 1999, 40, 3948–3970. [Google Scholar] [CrossRef]
- Gesztesy, F.; Holden, H. Soliton Equations and Their Algebro-Geometric Solutions; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dickson, R.; Gesztesy, F.; Unterkofler, K. Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 1999, 11, 823–879. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.G.; Wu, L.H.; He, G.L. Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Phys. D 2011, 240, 1262–1288. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; Enolskii, V.Z.; Matsutani, S.; Ônishi, Y.; Previato, E. Abelian functions for trigonal curves of genus three. Int. Math. Res. Not. 2007, 2007, 38. [Google Scholar] [CrossRef] [Green Version]
- Ônishi, Y. Abelian functions for trigonal curves of degree four and determinantal formulae in purely trigonal case. Internat. J. Math. 2009, 20, 427–441. [Google Scholar] [CrossRef] [Green Version]
- Farkas, H.M.; Kra, I. Riemann Surfaces, 2nd ed.; Springer: New York, NY, USA, 1992. [Google Scholar]
- Griffiths, P.; Harris, J. Principles of Algebraic Geometry; Wiley: New York, NY, USA, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Wu, L. On a Harry–Dym-Type Hierarchy: Trigonal Curve and Quasi-Periodic Solutions. Mathematics 2022, 10, 314. https://doi.org/10.3390/math10030314
Feng Q, Wu L. On a Harry–Dym-Type Hierarchy: Trigonal Curve and Quasi-Periodic Solutions. Mathematics. 2022; 10(3):314. https://doi.org/10.3390/math10030314
Chicago/Turabian StyleFeng, Qi, and Lihua Wu. 2022. "On a Harry–Dym-Type Hierarchy: Trigonal Curve and Quasi-Periodic Solutions" Mathematics 10, no. 3: 314. https://doi.org/10.3390/math10030314
APA StyleFeng, Q., & Wu, L. (2022). On a Harry–Dym-Type Hierarchy: Trigonal Curve and Quasi-Periodic Solutions. Mathematics, 10(3), 314. https://doi.org/10.3390/math10030314