Bayes and Maximum Likelihood Estimation of Uncertainty Measure of the Inverse Weibull Distribution under Generalized Adaptive Progressive Hybrid Censoring
Abstract
1. Introduction
- CasesI:
- , if .
- CasesII:
- , if .
- CasesIII:
- , if .
2. Maximum Likelihood Estimation
2.1. Maximum Likelihood Estimator
2.2. Approximate Confidence Interval
3. Maximum Product Spacings Estimation
4. Bayes Estimation
4.1. Tierney and Kadane Approximation
4.2. Importance Sampling
- Step 1. Generate from .
- Step 2. Given generated in Step 1, generate from
- Step 3. Repeat Steps 1 and 2 to generate (,), (,), ⋯, (,).
- Step 4. The BEs of entropy under SELF, GELF and LLF can be obtained as followwhere .
5. Example and Simulation Results
5.1. Example—Aircraft Windshields
5.2. Simulation Results
5.3. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannn, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Cho, Y.; Sun, H.; Lee, K. An estimation of the entropy for a Rayleigh distribution based on doubly-generalized Type-II hybrid censored samples. Entropy 2014, 16, 3655–3669. [Google Scholar] [CrossRef]
- Cho, Y.; Sun, H.; Lee, K. Estimating the entropy of a Weibull distribution under generalized progressive hybrid censoring. Entropy 2015, 17, 101–122. [Google Scholar] [CrossRef]
- Attoui, F.Z.; Zeghdoudi, H.; Saadoun, A. Bayesian premium estimators for mixture of two gamma distributions under squared error, entropy, and Linex loss functions: With informative and non-informative priors. J. Stat. Theory Appl. 2018, 17, 661–673. [Google Scholar] [CrossRef]
- Xu, R.; Gui, W. Entropy estimation of inverse Weibull distribution under adaptive type-II progressive hybrid censoring schemes. Symmetry 2019, 11, 1463. [Google Scholar] [CrossRef]
- Yu, J.; Gui, W.; Shan, Y. Statistical inference on the Shannon entropy of inverse Weibull distribution under the progressive first-failure censoring. Entropy 2019, 21, 1209. [Google Scholar] [CrossRef]
- Shi, X.; Shi, Y.; Zhou, K. Estimation for entropy and parameters of generalized Bilal distribution under adaptive type II progressive hybrid censoring scheme. Entropy 2021, 23, 206. [Google Scholar] [CrossRef]
- Shrahili, M.; El-Saeed, A.R.; Hassan, A.S.; Elbatal, I.; Elgarhy, M. Estimation of entropy for log-logistic distribution under progressive type II censoring. J. Nanomater. 2022, 2022, 2739606. [Google Scholar] [CrossRef]
- Basheer, A.M. Alpha power inverse Weibull distribution with reliability application. J. Taibah Univ. Sci. 2019, 13, 423–432. [Google Scholar] [CrossRef]
- Hassan, A.S.; Zaky, A.N. Estimation of entropy for inverse Weibull distribution under multiple censored data. J. Taibah Univ. Sci. 2019, 13, 331–337. [Google Scholar] [CrossRef]
- Muhammed, H.Z.; Almetwally, E.M. Bayesian and non-Bayesian estimation for the bivariate inverse weibull distribution under progressive type-II censoring. Ann. Data Sci. 2020, 1–32. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Atangana, A. Reliability analysis incorporating exponentiated inverse Weibull distribution and inverse power law. Qual. Reliab. Eng. Int. 2021, 37, 2399–2422. [Google Scholar] [CrossRef]
- Afify, A.Z.; Ahmed, S.; Nassar, M. A new inverse Weibull distribution: Properties, classical and Bayesian estimation with applications. Kuwait J. Sci. 2021, 48, 1–10. [Google Scholar] [CrossRef]
- Lee, K. Estimation of entropy of the inverse Weibull distribution under generalized progressive hybrid censored data. J. Korean Data Inf. Sci. Soc. 2017, 28, 659–668. [Google Scholar]
- Lee, K. Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type I progressive hybrid censoring. Commun. Stat. Appl. Methods 2020, 27, 469–486. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
- Ng, H.K.T.; Kundu, D.; Chan, P.S. Statistical analysis of exponential lifetimes under an adaptive type-II progressively censoring scheme. Nav. Res. Logist. 2010, 56, 687–698. [Google Scholar] [CrossRef]
- Lee, H.; Lee, K. Exact likelihood inference for an exponential parameter under generalized adaptive progressive hybrid censoring. Symmetry 2020, 12, 1149. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Tierney, L.; Kadane, J.B. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 1986, 81, 82–86. [Google Scholar] [CrossRef]
- Lee, K.; Cho, Y. Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring. J. Appl. Stat. 2017, 44, 811–832. [Google Scholar] [CrossRef]
- Blischke, W.R.; Murthy, D.N.P. Reliability: Modeling, Prediction, and Optimization; Wiley: New York, NY, USA, 2000. [Google Scholar]

| Sch. | |||||||
|---|---|---|---|---|---|---|---|
| a | 2.369661 | 2.362360 | 2.365983 | 2.370594 | 2.363953 | 2.368730 | 2.368096 |
| 2.369481 | 2.374308 | 2.365666 | 2.370388 | 2.346619 | |||
| b | 2.401055 | 2.393866 | 2.397353 | 2.402497 | 2.395123 | 2.400103 | 2.399451 |
| 2.401296 | 2.402141 | 2.377641 | 2.406237 | 2.397509 | |||
| c | 2.574591 | 2.568136 | 2.571705 | 2.585728 | 2.566123 | 2.575513 | 2.574599 |
| 2.578135 | 2.582959 | 2.546323 | 2.582959 | 2.572144 | |||
| n | m | Sch. | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 20 | 18 | a | 0.1484 (−0.0513) | 0.1689 (0.1536) | 0.1435 (0.0416) | 0.1511 (0.0738) | 0.1424 (0.0580) | 0.1426 (0.0381) | 0.1411 (0.0312) |
| 0.1207 (0.0944) | 0.1256 (0.1052) | 0.0881 (0.0193) | 0.1204 (0.1029) | 0.0795 (0.2193) | |||||
| b | 0.1528 (−0.0602) | 0.1733 (0.1509) | 0.1451 (0.0354) | 0.1527 (0.0693) | 0.1438 (0.0527) | 0.1443 (0.0318) | 0.1429 (0.0246) | ||
| 0.1226 (0.0910) | 0.1274 (0.1020) | 0.0897 (0.0134) | 0.1225 (0.1009) | 0.0801 (0.0378) | |||||
| c | 0.1515 (−0.0346) | 0.1769 (0.1770) | 0.1476 (0.0608) | 0.1559 (0.0944) | 0.1466 (0.0778) | 0.1467 (0.0573) | 0.1450 (0.0501) | ||
| 0.1255 (0.1128) | 0.1309 (0.1239) | 0.0883 (0.0339) | 0.1226 (0.1217) | 0.0860 (0.0691) | |||||
| d | 0.1627 (−0.0622) | 0.1878 (0.1574) | 0.1618 (0.0395) | 0.1716 (0.0757) | 0.1595 (0.0576) | 0.1608 (0.0357) | 0.1588 (0.0280) | ||
| 0.1321 (0.0938) | 0.1369 (0.1052) | 0.0896 (0.0090) | 0.1385 (0.1049) | 0.0891 (0.0455) | |||||
| 16 | a | 0.1538 (−0.0462) | 0.1717 (0.1597) | 0.1528 (0.0432) | 0.1603 (0.0753) | 0.1517 (0.0595) | 0.1519 (0.0397) | 0.1504 (0.0329) | |
| 0.1220 (0.0863) | 0.1271 (0.0984) | 0.0900 (0.0097) | 0.1224 (0.0888) | 0.0894 (0.0308) | |||||
| b | 0.1623 (−0.0445) | 0.2005 (0.1778) | 0.1614 (0.0510) | 0.1717 (0.0872) | 0.1600 (0.0689) | 0.1603 (0.0471) | 0.1583 (0.0395) | ||
| 0.1383 (0.0973) | 0.1449 (0.1107) | 0.1128 (0.0155) | 0.1382 (0.1000) | 0.1100 (0.0441) | |||||
| c | 0.1583 (−0.0143) | 0.1973 (0.2119) | 0.1595 (0.0834) | 0.1688 (0.1195) | 0.1586 (0.1016) | 0.1584 (0.0796) | 0.1566 (0.0720) | ||
| 0.1385 (0.1244) | 0.1446 (0.1375) | 0.0955 (0.0370) | 0.1324 (0.1280) | 0.0949 (0.0690) | |||||
| d | 0.1759 (−0.0538) | 0.2267 (0.1891) | 0.1722 (0.0491) | 0.1840 (0.0901) | 0.1702 (0.0692) | 0.1710 (0.0448) | 0.1687 (0.0362) | ||
| 0.1486 (0.0973) | 0.1559 (0.1120) | 0.1000 (0.0020) | 0.1507 (0.1004) | 0.0959 (0.1891) | |||||
| 14 | a | 0.1621 (−0.0744) | 0.1758 (0.1324) | 0.1614 (0.0242) | 0.1767 (0.0567) | 0.1595 (0.0412) | 0.1609 (0.0207) | 0.1589 (0.0138) | |
| 0.1386 (0.0603) | 0.1398 (0.0709) | 0.1141 (−0.0157) | 0.1319 (0.0670) | 0.1115 (0.0117) | |||||
| b | 0.1712 (−0.0714) | 0.2051 (0.1601) | 0.1706 (0.0359) | 0.1796 (0.0741) | 0.1686 (0.0551) | 0.1697 (0.0319) | 0.1660 (0.0239) | ||
| 0.1500 (0.1004) | 0.1486 (0.1101) | 0.1211 (0.0178) | 0.1456 (0.1271) | 0.1208 (0.0981) | |||||
| c | 0.2091 (−0.0394) | 0.2397 (0.2085) | 0.1985 (0.0769) | 0.2071 (0.1175) | 0.1958 (0.0977) | 0.1975 (0.0727) | 0.1939 (0.0643) | ||
| 0.1728 (0.1318) | 0.1762 (0.1421) | 0.1230 (0.0420) | 0.1697 (0.1592) | 0.1219 (0.1549) | |||||
| d | 0.2164 (−0.0783) | 0.2676 (0.1848) | 0.2034 (0.0428) | 0.2182 (0.0900) | 0.1995 (0.0653) | 0.2018 (0.0378) | 0.1960 (0.0280) | ||
| 0.2057 (0.1123) | 0.1950 (0.1226) | 0.1382 (0.0070) | 0.2002 (0.1784) | 0.1358 (0.0738) | |||||
| 30 | 28 | a | 0.0876 (−0.0374) | 0.0948 (0.1097) | 0.0847 (0.0175) | 0.0871 (0.0388) | 0.0852 (0.0322) | 0.0846 (0.0160) | 0.0842 (0.0131) |
| 0.0766 (0.0429) | 0.0785 (0.0520) | 0.0637 (−0.0101) | 0.0765 (0.0417) | 0.0622 (−0.0005) | |||||
| b | 0.0897 (−0.0411) | 0.0968 (0.1090) | 0.0864 (0.0149) | 0.0887 (0.0369) | 0.0868 (0.0301) | 0.0862 (0.0134) | 0.0859 (0.0104) | ||
| 0.0778 (0.0406) | 0.0797 (0.0500) | 0.0646 (−0.0138) | 0.0777 (0.0392) | 0.0635 (−0.0043) | |||||
| c | 0.0866 (−0.0196) | 0.0982 (0.1308) | 0.0852 (0.0363) | 0.0882 (0.0581) | 0.0861 (0.0513) | 0.0850 (0.0348) | 0.0846 (0.0317) | ||
| 0.0781 (0.0609) | 0.0804 (0.0702) | 0.0636 (0.0059) | 0.0781 (0.0594) | 0.0626 (0.0161) | |||||
| d | 0.0913 (−0.0438) | 0.0985 (0.1094) | 0.0874 (0.0134) | 0.0898 (0.0362) | 0.0877 (0.0291) | 0.0873 (0.0118) | 0.0869 (0.0087) | ||
| 0.0787 (0.0395) | 0.0807 (0.0491) | 0.0653 (−0.0165) | 0.0786 (0.0377) | 0.0645 (−0.0071) | |||||
| 24 | a | 0.0926 (−0.0392) | 0.0988 (0.1072) | 0.0894 (0.0158) | 0.0916 (0.0370) | 0.0897 (0.0304) | 0.0892 (0.0143) | 0.0889 (0.0114) | |
| 0.0807 (0.0409) | 0.0827 (0.0499) | 0.0674 (−0.0119) | 0.0806 (0.0398) | 0.0662 (−0.0019) | |||||
| b | 0.1000 (−0.0380) | 0.1098 (0.1192) | 0.0968 (0.0207) | 0.0997 (0.0444) | 0.0973 (0.0369) | 0.0966 (0.0191) | 0.0962 (0.0158) | ||
| 0.0868 (0.0466) | 0.0892 (0.0565) | 0.0708 (−0.0117) | 0.0864 (0.0448) | 0.0691 (−0.0010) | |||||
| c | 0.1167 (0.0111) | 0.1353 (0.1747) | 0.1103 (0.0717) | 0.1218 (0.0960) | 0.1087 (0.0882) | 0.1070 (0.0701) | 0.1063 (0.0668) | ||
| 0.1084 (0.0933) | 0.1116 (0.1034) | 0.0865 (0.0320) | 0.1083 (0.0906) | 0.0861 (0.0443) | |||||
| d | 0.1114 (−0.0378) | 0.1227 (0.1304) | 0.1090 (0.0255) | 0.1132 (0.0524) | 0.0997 (0.0437) | 0.1087 (0.0237) | 0.0982 (0.0200) | ||
| 0.0976 (0.0506) | 0.1006 (0.0618) | 0.0775 (−0.0150) | 0.0969 (0.0475) | 0.0763 (−0.0040) | |||||
| 20 | a | 0.1048 (−0.0344) | 0.1111 (0.1152) | 0.1005 (0.0211) | 0.1026 (0.0429) | 0.0905 (0.0362) | 0.1004 (0.0196) | 0.0953 (0.0180) | |
| 0.0979 (0.0371) | 0.0997 (0.0466) | 0.0844 (−0.0179) | 0.0992 (0.0347) | 0.0834 (−0.0091) | |||||
| b | 0.1165 (−0.0293) | 0.1325 (0.1376) | 0.1140 (0.0314) | 0.1181 (0.0572) | 0.1047 (0.0489) | 0.1137 (0.0296) | 0.1033 (0.0260) | ||
| 0.1036 (0.0565) | 0.1067 (0.0673) | 0.0828 (−0.0074) | 0.1035 (0.0535) | 0.0809 (0.0033) | |||||
| c | 0.1606 (−0.0007) | 0.1796 (0.1888) | 0.1581 (0.0694) | 0.1629 (0.0985) | 0.1486 (0.0892) | 0.1578 (0.0674) | 0.1473 (0.0635) | ||
| 0.1429 (0.0886) | 0.1468 (0.1002) | 0.1148 (0.0188) | 0.1431 (0.0825) | 0.1097 (0.2591) | |||||
| d | 0.1426 (−0.0354) | 0.1687 (0.1581) | 0.1382 (0.0337) | 0.1447 (0.0663) | 0.1390 (0.0552) | 0.1378 (0.0315) | 0.1370 (0.0270) | ||
| 0.1243 (0.0562) | 0.1288 (0.0696) | 0.0960 (−0.0217) | 0.1231 (0.0508) | 0.0917 (−0.0072) | |||||
| 40 | 38 | a | 0.0687 (−0.0317) | 0.0700 (0.0842) | 0.0666 (0.0075) | 0.0677 (0.0234) | 0.0570 (0.0198) | 0.0665 (0.0066) | 0.0564 (0.0050) |
| 0.0619 (0.0249) | 0.0629 (0.0320) | 0.0551 (−0.0146) | 0.0620 (0.0236) | 0.0500 (−0.0078) | |||||
| b | 0.0710 (−0.0314) | 0.0728 (0.0865) | 0.0688 (0.0084) | 0.0701 (0.0248) | 0.0593 (0.0210) | 0.0688 (0.0076) | 0.0587 (0.0059) | ||
| 0.0640 (0.0260) | 0.0651 (0.0332) | 0.0567 (−0.0145) | 0.0640 (0.0245) | 0.0519 (−0.0076) | |||||
| c | 0.0671 (−0.0156) | 0.0717 (0.1023) | 0.0661 (0.0241) | 0.0676 (0.0403) | 0.0568 (0.0366) | 0.0660 (0.0233) | 0.0558 (0.0216) | ||
| 0.0621 (0.0411) | 0.0633 (0.0483) | 0.0542 (0.0004) | 0.0621 (0.0396) | 0.0493 (0.0076) | |||||
| d | 0.0726 (−0.0307) | 0.0750 (0.0894) | 0.0705 (0.0098) | 0.0719 (0.0266) | 0.0610 (0.0227) | 0.0704 (0.0089) | 0.0603 (0.0072) | ||
| 0.0654 (0.0274) | 0.0666 (0.0348) | 0.0576 (−0.0142) | 0.0654 (0.0257) | 0.0531 (−0.0072) | |||||
| 34 | a | 0.0720 (−0.0426) | 0.0729 (0.0724) | 0.0708 (−0.0028) | 0.0714 (0.0130) | 0.0609 (0.0095) | 0.0698 (−0.0036) | 0.0607 (−0.0053) | |
| 0.0658 (0.0157) | 0.0665 (0.0226) | 0.0605 (−0.0229) | 0.0659 (0.0145) | 0.0552 (−0.0162) | |||||
| b | 0.0736 (−0.0437) | 0.0733 (0.0775) | 0.0704 (−0.0019) | 0.0713 (0.0153) | 0.0625 (0.0114) | 0.0703 (−0.0027) | 0.0612 (−0.0045) | ||
| 0.0644 (0.0169) | 0.0653 (0.0243) | 0.0577 (−0.0247) | 0.0645 (0.0153) | 0.0552 (−0.0170) | |||||
| c | 0.0787 (−0.0003) | 0.0852 (0.1239) | 0.0781 (0.0421) | 0.0801 (0.0594) | 0.0691 (0.0554) | 0.0780 (0.0412) | 0.0648 (0.0395) | ||
| 0.0739 (0.0584) | 0.0754 (0.0659) | 0.0640 (0.0151) | 0.0742 (0.0563) | 0.0610 (0.0229) | |||||
| d | 0.0822 (−0.0449) | 0.0828 (0.0832) | 0.0787 (−0.0009) | 0.0799 (0.0179) | 0.0689 (0.0135) | 0.0786 (−0.0018) | 0.0655 (−0.0037) | ||
| 0.0722 (0.0178) | 0.0734 (0.0259) | 0.0641 (−0.0273) | 0.0723 (0.0156) | 0.0611 (−0.0202) | |||||
| 30 | a | 0.0748 (−0.0224) | 0.0783 (0.0941) | 0.0734 (0.0159) | 0.0746 (0.0317) | 0.0639 (0.0281) | 0.0733 (0.0150) | 0.0632 (0.0134) | |
| 0.0699 (0.0322) | 0.0689 (0.0393) | 0.0630 (−0.0077) | 0.0700 (0.0307) | 0.0579 (−0.0010) | |||||
| b | 0.0756 (−0.0252) | 0.0803 (0.1014) | 0.0737 (0.0162) | 0.0754 (0.0343) | 0.0644 (0.0301) | 0.0737 (0.0152) | 0.0635 (0.0134) | ||
| 0.0690 (0.0332) | 0.0703 (0.0412) | 0.0601 (−0.0119) | 0.0690 (0.0309) | 0.0594 (−0.0049) | |||||
| c | 0.1048 (0.0248) | 0.1167 (0.1615) | 0.1009 (0.0694) | 0.1090 (0.0887) | 0.0974 (0.0841) | 0.0957 (0.0684) | 0.0953 (0.0665) | ||
| 0.1010 (0.0819) | 0.1031 (0.0903) | 0.0861 (0.0331) | 0.1013 (0.0782) | 0.0811 (0.0407) | |||||
| d | 0.0886 (−0.0250) | 0.0966 (0.1151) | 0.0868 (0.0204) | 0.0892 (0.0417) | 0.0777 (0.0365) | 0.0866 (0.0193) | 0.0764 (0.0171) | ||
| 0.0811 (0.0363) | 0.0829 (0.0457) | 0.0695 (−0.0161) | 0.0811 (0.0327) | 0.0709 (−0.0088) | |||||
| 50 | 40 | a | 0.0521 (−0.0189) | 0.0640 (0.0784) | 0.0510 (0.0109) | 0.0518 (0.0235) | 0.0514 (0.0213) | 0.0510 (0.0103) | 0.0509 (0.0093) |
| 0.0484 (0.0239) | 0.0491 (0.0298) | 0.0440 (−0.0077) | 0.0485 (0.0226) | 0.0472 (−0.0025) | |||||
| b | 0.0574 (−0.0205) | 0.0711 (0.0836) | 0.0561 (0.0112) | 0.0570 (0.0253) | 0.0566 (0.0227) | 0.0561 (0.0107) | 0.0560 (0.0095) | ||
| 0.0532 (0.0245) | 0.0539 (0.0309) | 0.0480 (−0.0104) | 0.0532 (0.0227) | 0.0518 (−0.0049) | |||||
| c | 0.0776 (0.0352) | 0.1036 (0.1449) | 0.0793 (0.0684) | 0.0817 (0.0831) | 0.0808 (0.0803) | 0.0792 (0.0678) | 0.0790 (0.0666) | ||
| 0.0771 (0.0787) | 0.0785 (0.0853) | 0.0672 (0.0413) | 0.0772 (0.0762) | 0.0732 (0.0477) | |||||
| d | 0.0662 (−0.0219) | 0.0828 (0.0903) | 0.0646 (0.0121) | 0.0658 (0.0279) | 0.0652 (0.0250) | 0.0646 (0.0115) | 0.0645 (0.0102) | ||
| 0.0612 (0.0250) | 0.0621 (0.0322) | 0.0548 (−0.0140) | 0.0612 (0.0226) | 0.0596 (−0.0083) | |||||
| 60 | 20 | a | 0.0988 (−0.0746) | 0.1046 (0.0766) | 0.0872 (−0.0237) | 0.0851 (0.0001) | 0.0848 (−0.0035) | 0.0873 (−0.0244) | 0.0869 (−0.0275) |
| 0.0848 (−0.0243) | 0.0849 (−0.0151) | 0.0846 (−0.0729) | 0.0832 (−0.0321) | 0.0944 (−0.0772) | |||||
| b | 0.0888 (−0.0523) | 0.0969 (0.0766) | 0.0812 (−0.0127) | 0.0802 (0.0074) | 0.0798 (0.0042) | 0.0813 (−0.0133) | 0.0815 (−0.0146) | ||
| 0.0798 (−0.0156) | 0.0799 (−0.0071) | 0.0780 (−0.0602) | 0.0819 (−0.0222) | 0.0862 (−0.0592) | |||||
| c | 0.1185 (−0.0733) | 0.1458 (0.1298) | 0.1072 (−0.0125) | 0.1071 (0.0200) | 0.1058 (0.0144) | 0.1073 (−0.0136) | 0.1060 (−0.0214) | ||
| 0.1019 (−0.0131) | 0.1032 (−0.0005) | 0.0972 (−0.0793) | 0.1039 (−0.0304) | 0.1115 (−0.0864) | |||||
| d | 0.1327 (−0.0207) | 0.1830 (0.1494) | 0.1275 (0.0235) | 0.1327 (0.0551) | 0.1296 (0.0487) | 0.1273 (0.0224) | 0.1270 (0.0203) | ||
| 0.1228 (−0.0050) | 0.1251 (0.0092) | 0.1086 (−0.0775) | 0.1231 (−0.0155) | 0.1242 (−0.0716) | |||||
| 100 | 50 | a | 0.0298 (−0.0287) | 0.0311 (0.0393) | 0.0283 (−0.0109) | 0.0280 (−0.0028) | 0.0280 (−0.0035) | 0.0283 (−0.0110) | 0.0283 (−0.0114) |
| 0.0280 (−0.0112) | 0.0280 (−0.0076) | 0.0281 (−0.0298) | 0.0283 (−0.0134) | 0.0292 (−0.0285) | |||||
| b | 0.0325 (−0.0126) | 0.0377 (0.0561) | 0.0320 (0.0042) | 0.0322 (0.0126) | 0.0321 (0.0118) | 0.0320 (0.0040) | 0.0320 (0.0037) | ||
| 0.0316 (0.0096) | 0.0318 (0.0135) | 0.0302 (−0.0108) | 0.0317 (0.0082) | 0.0315 (−0.0079) | |||||
| c | 0.0446 (−0.0267) | 0.0517 (0.0689) | 0.0430 (−0.0025) | 0.0431 (0.0097) | 0.0430 (0.0086) | 0.0430 (−0.0027) | 0.0430 (−0.0032) | ||
| 0.0418 (0.0004) | 0.0421 (0.0056) | 0.0405 (−0.0263) | 0.0420 (−0.0047) | 0.0426 (−0.0262) | |||||
| d | 0.0475 (−0.0133) | 0.0574 (0.0745) | 0.0466 (0.0075) | 0.0472 (0.0198) | 0.0470 (0.0185) | 0.0466 (0.0073) | 0.0466 (0.0068) | ||
| 0.0455 (0.0100) | 0.0459 (0.0157) | 0.0428 (−0.0195) | 0.0456 (0.0073) | 0.0453 (−0.0159) | |||||
| 200 | 100 | a | 0.0147 (−0.0170) | 0.0151 (0.0227) | 0.0142 (−0.0084) | 0.0142 (−0.0043) | 0.0142 (−0.0045) | 0.0142 (−0.0084) | 0.0142 (−0.0085) |
| 0.0142 (−0.0085) | 0.0142 (−0.0067) | 0.0143 (−0.0178) | 0.0143 (−0.0096) | 0.0145 (−0.0171) | |||||
| b | 0.0153 (−0.0104) | 0.0169 (0.0301) | 0.0152 (−0.0021) | 0.0152 (0.0020) | 0.0152 (0.0019) | 0.0152 (−0.0021) | 0.0152 (−0.0022) | ||
| 0.0150 (0.0010) | 0.0150 (0.0029) | 0.0148 (−0.0090) | 0.0150 (0.0004) | 0.0150 (−0.0076) | |||||
| c | 0.0210 (−0.0217) | 0.0226 (0.0340) | 0.0204 (−0.0100) | 0.0203 (−0.0039) | 0.0203 (−0.0041) | 0.0204 (−0.0100) | 0.0204 (−0.0101) | ||
| 0.0201 (−0.0086) | 0.0201 (−0.0060) | 0.0201 (−0.0218) | 0.0202 (−0.0111) | 0.0205 (−0.0218) | |||||
| d | 0.0236 (−0.0127) | 0.0264 (0.0399) | 0.0232 (−0.0022) | 0.0233 (0.0039) | 0.0233 (0.0036) | 0.0232 (−0.0022) | 0.0232 (−0.0023) | ||
| 0.0229 (0.0004) | 0.0230 (0.0030) | 0.0224 (−0.0143) | 0.0230 (−0.0009) | 0.0230 (−0.0124) | |||||
| n | m | Sch. | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 20 | 18 | a | 0.1201 (−0.0476) | 0.1260 (0.1258) | 0.1127 (0.0236) | 0.1153 (0.0485) | 0.1115 (0.0367) | 0.1124 (0.0209) | 0.1119 (0.0153) |
| 0.1144 (0.1367) | 0.1140 (0.1414) | 0.0843 (0.0895) | 0.1183 (0.1627) | 0.0789 (0.1335) | |||||
| b | 0.1237 (−0.0551) | 0.1288 (0.1240) | 0.1151 (0.0186) | 0.1176 (0.0448) | 0.1137 (0.0325) | 0.1149 (0.0157) | 0.1143 (0.0099) | ||
| 0.1138 (0.1388) | 0.1127 (0.1429) | 0.0876 (0.0928) | 0.1150 (0.1713) | 0.0792 (0.1582) | |||||
| c | 0.1310 (0.0081) | 0.1543 (0.1926) | 0.1303 (0.0821) | 0.1357 (0.1086) | 0.1300 (0.0956) | 0.1296 (0.0791) | 0.1284 (0.0732) | ||
| 0.1182 (0.2022) | 0.1176 (0.2063) | 0.0816 (0.1499) | 0.1110 (0.2435) | 0.0827 (0.1965) | |||||
| d | 0.1343 (−0.0572) | 0.1382 (0.1275) | 0.1252 (0.0195) | 0.1284 (0.0474) | 0.1234 (0.0341) | 0.1249 (0.0164) | 0.1242 (0.0102) | ||
| 0.1231 (0.1446) | 0.1208 (0.1484) | 0.0899 (0.0948) | 0.1269 (0.1900) | 0.0888 (0.1740) | |||||
| 16 | a | 0.1267 (−0.0481) | 0.1328 (0.1269) | 0.1200 (0.0218) | 0.1223 (0.0470) | 0.1182 (0.0352) | 0.1197 (0.0190) | 0.1162 (0.0134) | |
| 0.1189 (0.0964) | 0.1203 (0.1046) | 0.0872 (0.0431) | 0.1193 (0.1059) | 0.0846 (0.0735) | |||||
| b | 0.1371 (−0.0493) | 0.1423 (0.1354) | 0.1306 (0.0247) | 0.1343 (0.0527) | 0.1287 (0.0393) | 0.1302 (0.0216) | 0.1264 (0.0154) | ||
| 0.1254 (0.1266) | 0.1280 (0.1339) | 0.1032 (0.0730) | 0.1296 (0.1438) | 0.0993 (0.1189) | |||||
| c | 0.1413 (0.0558) | 0.1618 (0.2593) | 0.1368 (0.1328) | 0.1454 (0.1626) | 0.1323 (0.1475) | 0.1258 (0.1295) | 0.1298 (0.1230) | ||
| 0.1296 (0.2312) | 0.1333 (0.2388) | 0.0920 (0.1644) | 0.1245 (0.2576) | 0.0895 (0.2870) | |||||
| d | 0.1501 (−0.0521) | 0.1538 (0.1442) | 0.1434 (0.0281) | 0.1485 (0.0603) | 0.1411 (0.0447) | 0.1429 (0.0247) | 0.1388 (0.0177) | ||
| 0.1353 (0.1391) | 0.1361 (0.1464) | 0.0906 (0.0848) | 0.1278 (0.1694) | 0.0893 (0.1336) | |||||
| 14 | a | 0.1392 (−0.0858) | 0.1494 (0.0954) | 0.1306 (−0.0041) | 0.1403 (0.0227) | 0.1223 (0.0106) | 0.1206 (−0.0071) | 0.1207 (−0.0130) | |
| 0.1316 (0.0233) | 0.1302 (0.0328) | 0.1097 (−0.0449) | 0.1305 (0.0278) | 0.1038 (−0.0256) | |||||
| b | 0.1436 (−0.0708) | 0.1453 (0.1228) | 0.1405 (0.0133) | 0.1530 (0.0434) | 0.1340 (0.0292) | 0.1303 (0.0101) | 0.1298 (0.0035) | ||
| 0.1448 (0.1092) | 0.1411 (0.1152) | 0.1135 (0.0489) | 0.1431 (0.1308) | 0.1096 (0.0924) | |||||
| c | 0.1709 (0.0487) | 0.1920 (0.2771) | 0.1618 (0.1428) | 0.1718 (0.1776) | 0.1594 (0.1599) | 0.1605 (0.1391) | 0.1482 (0.1316) | ||
| 0.1611 (0.2776) | 0.1642 (0.2770) | 0.1153 (0.2125) | 0.1597 (0.4182) | 0.1132 (0.3023) | |||||
| d | 0.1755 (−0.0769) | 0.1878 (0.1449) | 0.1748 (0.0183) | 0.1750 (0.0553) | 0.1564 (0.0374) | 0.1593 (0.0143) | 0.1554 (0.0063) | ||
| 0.1864 (0.1649) | 0.1677 (0.1650) | 0.1270 (0.0951) | 0.1876 (0.2551) | 0.1251 (0.3153) | |||||
| 30 | 28 | a | 0.0706 (−0.0385) | 0.0698 (0.0858) | 0.0671 (0.0039) | 0.0677 (0.0204) | 0.0668 (0.0154) | 0.0670 (0.0027) | 0.0669 (0.0003) |
| 0.0603 (0.0631) | 0.0617 (0.0696) | 0.0496 (0.0236) | 0.0611 (0.0674) | 0.0463 (0.0367) | |||||
| b | 0.0750 (−0.0374) | 0.0748 (0.0900) | 0.0716 (0.0060) | 0.0724 (0.0233) | 0.0714 (0.0180) | 0.0715 (0.0048) | 0.0714 (0.0023) | ||
| 0.0648 (0.0656) | 0.0663 (0.0723) | 0.0531 (0.0245) | 0.0656 (0.0697) | 0.0505 (0.0379) | |||||
| c | 0.0773 (0.0116) | 0.0872 (0.1416) | 0.0769 (0.0551) | 0.0803 (0.0725) | 0.0787 (0.0670) | 0.0777 (0.0538) | 0.0773 (0.0513) | ||
| 0.0765 (0.1134) | 0.0786 (0.1203) | 0.0602 (0.0696) | 0.0777 (0.1174) | 0.0597 (0.0847) | |||||
| d | 0.0764 (−0.0402) | 0.0758 (0.0902) | 0.0725 (0.0043) | 0.0733 (0.0221) | 0.0722 (0.0167) | 0.0725 (0.0030) | 0.0723 (0.0004) | ||
| 0.0654 (0.0640) | 0.0668 (0.0710) | 0.0536 (0.0218) | 0.0661 (0.0681) | 0.0515 (0.0353) | |||||
| 24 | a | 0.0791 (−0.0417) | 0.0765 (0.0829) | 0.0744 (0.0013) | 0.0748 (0.0180) | 0.0739 (0.0130) | 0.0744 (0.0001) | 0.0713 (−0.0023) | |
| 0.0741 (0.0492) | 0.0751 (0.0560) | 0.0645 (0.0084) | 0.0755 (0.0526) | 0.0534 (0.0206) | |||||
| b | 0.0862 (−0.0380) | 0.0863 (0.0957) | 0.0820 (0.0077) | 0.0830 (0.0263) | 0.0817 (0.0206) | 0.0819 (0.0063) | 0.0788 (0.0037) | ||
| 0.0744 (0.0670) | 0.0760 (0.0741) | 0.0632 (0.0247) | 0.0754 (0.0713) | 0.0584 (0.0473) | |||||
| c | 0.0927 (0.0770) | 0.1338 (0.2238) | 0.0910 (0.1253) | 0.0922 (0.1455) | 0.0888 (0.1388) | 0.0866 (0.1239) | 0.0838 (0.1210) | ||
| 0.0948 (0.1802) | 0.1086 (0.1878) | 0.0835 (0.1282) | 0.0969 (0.1840) | 0.0778 (0.1558) | |||||
| d | 0.0948 (−0.0407) | 0.0964 (0.1039) | 0.0931 (0.0087) | 0.0914 (0.0298) | 0.0898 (0.0232) | 0.0900 (0.0072) | 0.0868 (0.0042) | ||
| 0.0795 (0.0691) | 0.0815 (0.0770) | 0.0671 (0.0229) | 0.0802 (0.0734) | 0.0666 (0.0423) | |||||
| 20 | a | 0.0945 (−0.0522) | 0.0868 (0.0817) | 0.0856 (−0.0042) | 0.0849 (0.0146) | 0.0840 (0.0091) | 0.0856 (−0.0055) | 0.0809 (−0.0068) | |
| 0.0889 (0.0047) | 0.0891 (0.0130) | 0.0835 (−0.0430) | 0.0916 (0.0038) | 0.0789 (−0.0354) | |||||
| b | 0.0995 (−0.0351) | 0.1007 (0.1071) | 0.0942 (0.0128) | 0.0953 (0.0334) | 0.0937 (0.0270) | 0.0941 (0.0114) | 0.0911 (0.0084) | ||
| 0.0930 (0.0595) | 0.0946 (0.0678) | 0.0790 (0.0092) | 0.0949 (0.0614) | 0.0729 (0.0220) | |||||
| c | 0.1425 (0.0534) | 0.1695 (0.2274) | 0.1329 (0.1116) | 0.1382 (0.1367) | 0.1136 (0.1285) | 0.1325 (0.1099) | 0.1019 (0.1063) | ||
| 0.1389 (0.1643) | 0.1332 (0.1730) | 0.0974 (0.1087) | 0.1342 (0.1671) | 0.0896 (0.1352) | |||||
| d | 0.1218 (−0.0335) | 0.1299 (0.1322) | 0.1163 (0.0213) | 0.1190 (0.0474) | 0.1060 (0.0390) | 0.1161 (0.0195) | 0.1028 (0.0158) | ||
| 0.1032 (0.0789) | 0.1061 (0.0886) | 0.0883 (0.0227) | 0.1056 (0.0831) | 0.0844 (0.0611) | |||||
| 40 | 38 | a | 0.0582 (−0.0290) | 0.0558 (0.0698) | 0.0560 (0.0014) | 0.0564 (0.0139) | 0.0460 (0.0111) | 0.0560 (0.0008) | 0.0420 (−0.0006) |
| 0.0512 (0.0420) | 0.0520 (0.0474) | 0.0451 (0.0107) | 0.0516 (0.0440) | 0.0401 (0.0195) | |||||
| b | 0.0603 (−0.0303) | 0.0576 (0.0701) | 0.0579 (0.0007) | 0.0583 (0.0135) | 0.0478 (0.0106) | 0.0579 (0.0000) | 0.0449 (−0.0014) | ||
| 0.0530 (0.0412) | 0.0538 (0.0467) | 0.0466 (0.0091) | 0.0534 (0.0432) | 0.0428 (0.0179) | |||||
| c | 0.0613 (0.0079) | 0.0648 (0.1096) | 0.0612 (0.0388) | 0.0625 (0.0517) | 0.0519 (0.0487) | 0.0612 (0.0381) | 0.0510 (0.0367) | ||
| 0.0592 (0.0787) | 0.0605 (0.0843) | 0.0502 (0.0452) | 0.0598 (0.0806) | 0.0454 (0.0551) | |||||
| d | 0.0620 (−0.0317) | 0.0593 (0.0705) | 0.0596 (−0.0002) | 0.0599 (0.0129) | 0.0494 (0.0100) | 0.0595 (−0.0010) | 0.0485 (−0.0024) | ||
| 0.0545 (0.0402) | 0.0553 (0.0459) | 0.0480 (0.0075) | 0.0549 (0.0421) | 0.0435 (0.0163) | |||||
| 34 | a | 0.0615 (−0.0421) | 0.0672 (0.0560) | 0.0585 (−0.0112) | 0.0584 (0.0012) | 0.0482 (−0.0015) | 0.0575 (−0.0119) | 0.0455 (−0.0133) | |
| 0.0544 (0.0298) | 0.0549 (0.0351) | 0.0500 (−0.0006) | 0.0549 (0.0319) | 0.0436 (0.0076) | |||||
| b | 0.0666 (−0.0449) | 0.0720 (0.0583) | 0.0633 (−0.0125) | 0.0632 (0.0010) | 0.0529 (−0.0020) | 0.0623 (−0.0132) | 0.0503 (−0.0146) | ||
| 0.0575 (0.0303) | 0.0581 (0.0360) | 0.0525 (−0.0021) | 0.0580 (0.0323) | 0.0467 (0.0065) | |||||
| c | 0.0685 (0.0551) | 0.0849 (0.1651) | 0.0680 (0.0885) | 0.0706 (0.1028) | 0.0594 (0.0994) | 0.0678 (0.0878) | 0.0555 (0.0863) | ||
| 0.0686 (0.1278) | 0.0704 (0.1338) | 0.0541 (0.0899) | 0.0696 (0.1292) | 0.0525 (0.1013) | |||||
| d | 0.0695 (−0.0444) | 0.0783 (0.0650) | 0.0681 (−0.0100) | 0.0690 (0.0049) | 0.0586 (0.0015) | 0.0660 (−0.0108) | 0.0540 (−0.0123) | ||
| 0.0626 (0.0334) | 0.0633 (0.0395) | 0.0573 (−0.0014) | 0.0632 (0.0353) | 0.0531 (0.0079) | |||||
| 30 | a | 0.0696 (−0.0268) | 0.0769 (0.0738) | 0.0601 (0.0038) | 0.0673 (0.0166) | 0.0569 (0.0137) | 0.0591 (0.0031) | 0.0540 (0.0017) | |
| 0.0592 (0.0294) | 0.0597 (0.0352) | 0.0543 (−0.0037) | 0.0601 (0.0303) | 0.0491 (0.0038) | |||||
| b | 0.0724 (−0.0255) | 0.0818 (0.0829) | 0.0672 (0.0069) | 0.0707 (0.0213) | 0.0602 (0.0180) | 0.0652 (0.0061) | 0.0571 (0.0046) | ||
| 0.0592 (0.0453) | 0.0591 (0.0516) | 0.0589 (0.0093) | 0.0586 (0.0467) | 0.0539 (0.0180) | |||||
| c | 0.0995 (0.0887) | 0.1025 (0.2129) | 0.0934 (0.1250) | 0.0974 (0.1414) | 0.0855 (0.1374) | 0.0932 (0.1242) | 0.0827 (0.1224) | ||
| 0.0916 (0.1585) | 0.0943 (0.1655) | 0.0785 (0.1141) | 0.0927 (0.1584) | 0.0727 (0.1267) | |||||
| d | 0.0720 (−0.0316) | 0.0814 (0.0881) | 0.0690 (0.0041) | 0.0696 (0.0210) | 0.0619 (0.0171) | 0.0679 (0.0032) | 0.0589 (0.0014) | ||
| 0.0627 (0.0427) | 0.0638 (0.0499) | 0.0590 (0.0013) | 0.0630 (0.0434) | 0.0571 (0.0105) | |||||
| 50 | 40 | a | 0.0424 (−0.0218) | 0.0484 (0.0613) | 0.0410 (0.0014) | 0.0411 (0.0114) | 0.0409 (0.0097) | 0.0410 (0.0010) | 0.0409 (0.0001) |
| 0.0399 (0.0288) | 0.0403 (0.0334) | 0.0366 (0.0031) | 0.0402 (0.0298) | 0.0391 (0.0093) | |||||
| b | 0.0456 (−0.0217) | 0.0529 (0.0671) | 0.0441 (0.0030) | 0.0443 (0.0142) | 0.0441 (0.0122) | 0.0441 (0.0025) | 0.0440 (0.0016) | ||
| 0.0409 (0.0333) | 0.0414 (0.0384) | 0.0368 (0.0052) | 0.0411 (0.0343) | 0.0396 (0.0118) | |||||
| c | 0.0966 (0.0888) | 0.1268 (0.1867) | 0.1000 (0.1154) | 0.1027 (0.1276) | 0.1018 (0.1252) | 0.0998 (0.1149) | 0.0996 (0.1138) | ||
| 0.1008 (0.1417) | 0.1026 (0.1472) | 0.0870 (0.1082) | 0.1016 (0.1418) | 0.0950 (0.1175) | |||||
| d | 0.0540 (−0.0221) | 0.0633 (0.0742) | 0.0522 (0.0046) | 0.0526 (0.0172) | 0.0523 (0.0149) | 0.0522 (0.0041) | 0.0522 (0.0030) | ||
| 0.0483 (0.0348) | 0.0490 (0.0404) | 0.0432 (0.0031) | 0.0486 (0.0353) | 0.0467 (0.0101) | |||||
| 60 | 20 | a | 0.0988 (−0.0746) | 0.1046 (0.0766) | 0.0872 (−0.0237) | 0.0851 (0.0001) | 0.0848 (−0.0035) | 0.0873 (−0.0244) | 0.0870 (−0.0274) |
| 0.0848 (−0.0243) | 0.0849 (−0.0151) | 0.0846 (−0.0729) | 0.0856 (−0.0281) | 0.0944 (−0.0772) | |||||
| b | 0.0855 (−0.0552) | 0.0912 (0.0727) | 0.0775 (−0.0158) | 0.0761 (0.0041) | 0.0758 (0.0010) | 0.0775 (−0.0164) | 0.0778 (−0.0177) | ||
| 0.0758 (−0.0191) | 0.0757 (−0.0106) | 0.0752 (−0.0631) | 0.0780 (−0.0255) | 0.0829 (−0.0623) | |||||
| c | 0.1145 (−0.0650) | 0.1394 (0.1289) | 0.1044 (−0.0102) | 0.1042 (0.0194) | 0.1031 (0.0145) | 0.1045 (−0.0111) | 0.1034 (−0.0175) | ||
| 0.0939 (0.0038) | 0.0956 (0.0150) | 0.0866 (−0.0561) | 0.0946 (−0.0103) | 0.0995 (−0.0594) | |||||
| d | 0.1151 (−0.0234) | 0.1450 (0.1261) | 0.1097 (0.0129) | 0.1120 (0.0391) | 0.1103 (0.0342) | 0.1096 (0.0120) | 0.1095 (0.0102) | ||
| 0.1034 (−0.0008) | 0.1046 (0.0110) | 0.0937 (−0.0618) | 0.1043 (−0.0069) | 0.1056 (−0.0549) | |||||
| 100 | 50 | a | 0.0298 (−0.0287) | 0.0311 (0.0392) | 0.0282 (−0.0110) | 0.0280 (−0.0028) | 0.0280 (−0.0035) | 0.0283 (−0.0111) | 0.0283 (−0.0114) |
| 0.0280 (−0.0113) | 0.0279 (−0.0077) | 0.0281 (−0.0299) | 0.0283 (−0.0135) | 0.0291 (−0.0286) | |||||
| b | 0.0287 (−0.0236) | 0.0302 (0.0395) | 0.0275 (−0.0088) | 0.0273 (−0.0014) | 0.0273 (−0.0021) | 0.0275 (−0.0090) | 0.0275 (−0.0093) | ||
| 0.0275 (−0.0050) | 0.0275 (−0.0014) | 0.0273 (−0.0231) | 0.0278 (−0.0056) | 0.0283 (−0.0203) | |||||
| c | 0.0385 (−0.0270) | 0.0434 (0.0623) | 0.0369 (−0.0057) | 0.0369 (0.0051) | 0.0368 (0.0041) | 0.0369 (−0.0059) | 0.0368 (−0.0063) | ||
| 0.0352 (0.0037) | 0.0354 (0.0083) | 0.0341 (−0.0202) | 0.0354 (−0.0003) | 0.0357 (−0.0196) | |||||
| d | 0.0410 (−0.0136) | 0.0472 (0.0632) | 0.0401 (0.0031) | 0.0403 (0.0131) | 0.0402 (0.0121) | 0.0401 (0.0029) | 0.0401 (0.0025) | ||
| 0.0385 (0.0132) | 0.0388 (0.0180) | 0.0364 (−0.0117) | 0.0387 (0.0123) | 0.0384 (−0.0075) | |||||
| 200 | 100 | a | 0.0147 (−0.0171) | 0.0151 (0.0227) | 0.0142 (−0.0084) | 0.0141 (−0.0044) | 0.0141 (−0.0045) | 0.0142 (−0.0085) | 0.0142 (−0.0085) |
| 0.0142 (−0.0086) | 0.0141 (−0.0067) | 0.0142 (−0.0179) | 0.0143 (−0.0096) | 0.0145 (−0.0171) | |||||
| b | 0.0143 (−0.0139) | 0.0148 (0.0234) | 0.0140 (−0.0066) | 0.0139 (−0.0029) | 0.0139 (−0.0030) | 0.0140 (−0.0066) | 0.0140 (−0.0067) | ||
| 0.0140 (−0.0048) | 0.0140 (−0.0030) | 0.0140 (−0.0138) | 0.0141 (−0.0050) | 0.0142 (−0.0123) | |||||
| c | 0.0186 (−0.0203) | 0.0198 (0.0316) | 0.0181 (−0.0099) | 0.0180 (−0.0045) | 0.0180 (−0.0048) | 0.0181 (−0.0100) | 0.0181 (−0.0101) | ||
| 0.0176 (−0.0056) | 0.0176 (−0.0033) | 0.0176 (−0.0175) | 0.0177 (−0.0076) | 0.0179 (−0.0172) | |||||
| d | 0.0188 (−0.0136) | 0.0204 (0.0321) | 0.0185 (−0.0052) | 0.0185 (−0.0003) | 0.0185 (−0.0005) | 0.0185 (−0.0053) | 0.0185 (−0.0054) | ||
| 0.0180 (0.0012) | 0.0181 (0.0036) | 0.0177 (−0.0110) | 0.0181 (0.0010) | 0.0181 (−0.0088) | |||||
| n | m | Sch. | , | , | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 20 | 18 | a | 1.4083 (92.3) | 1.4688 (96.5) | 1.4794 (96.8) | 1.4422 (96.0) | 1.2816 (92.5) | 1.3244 (95.6) | 1.3321 (95.4) | 1.3024 (95.3) |
| b | 1.4455 (91.2) | 1.5081 (95.9) | 1.5192 (96.2) | 1.4807 (95.8) | 1.3076 (92.2) | 1.3537 (96.1) | 1.3620 (95.8) | 1.3308 (95.8) | ||
| c | 1.4487 (92.0) | 1.5104 (96.2) | 1.5213 (96.7) | 1.4832 (95.3) | 1.3425 (93.6) | 1.3890 (96.0) | 1.3973 (95.8) | 1.3657 (95.4) | ||
| d | 1.4837 (91.3) | 1.5521 (96.0) | 1.5640 (96.4) | 1.5232 (95.3) | 1.3432 (92.0) | 1.3937 (96.1) | 1.4027 (96.3) | 1.3696 (95.9) | ||
| 16 | a | 1.4171 (93.1) | 1.4746 (96.9) | 1.4848 (96.7) | 1.4483 (96.7) | 1.2865 (92.9) | 1.3303 (95.9) | 1.3381 (95.5) | 1.3081 (95.9) | |
| b | 1.4958 (92.1) | 1.5636 (96.3) | 1.5755 (96.7) | 1.5347 (96.1) | 1.3481 (92.9) | 1.3984 (96.0) | 1.4074 (95.8) | 1.3743 (95.9) | ||
| c | 1.5006 (93.2) | 1.5684 (97.8) | 1.5802 (97.6) | 1.5395 (97.1) | 1.4255 (92.0) | 1.4792 (94.4) | 1.4887 (94.0) | 1.4537 (94.1) | ||
| d | 1.5764 (91.7) | 1.6577 (97.0) | 1.6716 (97.6) | 1.6255 (96.7) | 1.4286 (93.1) | 1.4892 (97.1) | 1.4998 (96.9) | 1.4623 (96.7) | ||
| 14 | a | 1.4185 (90.8) | 1.4767 (96.7) | 1.4870 (97.1) | 1.4503 (96.3) | 1.2961 (90.3) | 1.3457 (96.5) | 1.3544 (96.8) | 1.3225 (96.3) | |
| b | 1.5173 (92.5) | 1.5922 (97.4) | 1.6050 (97.2) | 1.5618 (96.6) | 1.3771 (90.8) | 1.4339 (97.1) | 1.4439 (97.5) | 1.4084 (96.2) | ||
| c | 1.5615 (93.5) | 1.6459 (97.4) | 1.6599 (97.2) | 1.6138 (96.5) | 1.5104 (89.6) | 1.5793 (90.9) | 1.5910 (90.4) | 1.5504 (91.1) | ||
| d | 1.6679 (92.9) | 1.7705 (97.4) | 1.7873 (97.6) | 1.7339 (96.8) | 1.5089 (90.8) | 1.5852 (97.1) | 1.5982 (97.3) | 1.5548 (96.7) | ||
| 30 | 28 | a | 1.1364 (92.3) | 1.1651 (95.1) | 1.1704 (95.0) | 1.1475 (94.9) | 1.0334 (94.5) | 1.0550 (96.1) | 1.0588 (95.9) | 1.0400 (95.5) |
| b | 1.1550 (93.4) | 1.1852 (97.0) | 1.1907 (97.0) | 1.1671 (96.1) | 1.0520 (94.0) | 1.0748 (96.1) | 1.0789 (95.9) | 1.0594 (95.3) | ||
| c | 1.1586 (92.0) | 1.1883 (96.7) | 1.1937 (96.8) | 1.1703 (96.5) | 1.0731 (94.2) | 1.0958 (95.7) | 1.0998 (95.9) | 1.0802 (95.8) | ||
| d | 1.1720 (92.3) | 1.2038 (96.7) | 1.2096 (96.6) | 1.1851 (96.4) | 1.0680 (93.9) | 1.0919 (96.2) | 1.0962 (95.8) | 1.0761 (95.8) | ||
| 24 | a | 1.1394 (93.1) | 1.1683 (95.3) | 1.1735 (95.4) | 1.1506 (95.0) | 1.0342 (92.6) | 1.0562 (96.0) | 1.0601 (96.2) | 1.0411 (95.7) | |
| b | 1.1955 (93.5) | 1.2290 (95.5) | 1.2352 (95.3) | 1.2098 (95.5) | 1.0874 (92.6) | 1.1127 (95.4) | 1.1173 (95.3) | 1.0964 (95.2) | ||
| c | 1.2206 (92.3) | 1.2547 (94.6) | 1.2609 (94.5) | 1.2351 (94.8) | 1.1616 (91.6) | 1.1888 (94.1) | 1.1937 (94.0) | 1.1714 (94.4) | ||
| d | 1.2663 (93.0) | 1.3063 (95.9) | 1.3136 (95.8) | 1.2850 (95.2) | 1.1498 (92.6) | 1.1800 (95.4) | 1.1855 (95.1) | 1.1620 (95.7) | ||
| 30 | 20 | a | 1.1495 (94.3) | 1.1955 (96.1) | 1.2030 (96.3) | 1.1750 (96.1) | 1.0721 (91.8) | 1.1136 (94.8) | 1.1201 (95.2) | 1.0948 (94.5) |
| b | 1.2471 (93.5) | 1.2875 (95.1) | 1.2947 (95.1) | 1.2666 (94.9) | 1.1352 (92.2) | 1.1669 (95.5) | 1.1724 (95.2) | 1.1489 (95.3) | ||
| c | 1.3096 (94.6) | 1.3631 (94.3) | 1.3720 (94.4) | 1.3392 (94.6) | 1.2545 (92.2) | 1.3006 (94.0) | 1.3082 (94.7) | 1.2788 (94.3) | ||
| d | 1.3843 (93.7) | 1.4380 (95.6) | 1.4475 (95.0) | 1.4129 (95.4) | 1.2641 (92.5) | 1.3053 (94.8) | 1.3127 (94.7) | 1.2839 (94.4) | ||
| 40 | 38 | a | 0.9743 (93.2) | 0.9923 (94.8) | 0.9955 (95.0) | 0.9788 (94.6) | 0.8880 (92.9) | 0.9016 (95.2) | 0.9039 (95.4) | 0.8900 (95.1) |
| b | 0.9920 (92.9) | 1.0107 (95.0) | 1.0140 (95.1) | 0.9968 (94.7) | 0.9042 (92.3) | 0.9184 (95.1) | 0.9208 (95.0) | 0.9065 (94.3) | ||
| c | 0.9934 (93.4) | 1.0118 (95.9) | 1.0150 (96.0) | 0.9980 (95.4) | 0.9180 (93.7) | 0.9322 (94.4) | 0.9345 (94.2) | 0.9202 (94.4) | ||
| d | 1.0048 (93.2) | 1.0243 (95.4) | 1.0277 (95.7) | 1.0101 (94.7) | 0.9147 (92.3) | 0.9294 (94.7) | 0.9319 (94.6) | 0.9173 (94.2) | ||
| 34 | a | 0.9798 (93.4) | 0.9979 (95.3) | 1.0010 (95.5) | 0.9843 (94.7) | 0.8940 (92.4) | 0.9077 (95.6) | 0.9099 (95.6) | 0.8960 (95.4) | |
| b | 1.0107 (92.8) | 1.0309 (95.0) | 1.0345 (94.9) | 1.0165 (94.3) | 0.9199 (93.5) | 0.9351 (94.6) | 0.9377 (94.6) | 0.9228 (94.6) | ||
| c | 1.0256 (93.2) | 1.0458 (94.5) | 1.0493 (94.2) | 1.0312 (94.3) | 0.9690 (91.8) | 0.9849 (91.7) | 0.9876 (91.2) | 0.9720 (91.6) | ||
| d | 1.0513 (92.4) | 1.0742 (94.3) | 1.0783 (94.4) | 1.0587 (94.0) | 0.9588 (93.6) | 0.9762 (95.2) | 0.9791 (95.0) | 0.9629 (94.8) | ||
| 30 | a | 0.9827 (93.6) | 1.0007 (95.3) | 1.0038 (95.8) | 0.9871 (95.1) | 0.9020 (92.4) | 0.9162 (94.5) | 0.9185 (94.8) | 0.9043 (93.7) | |
| b | 1.0439 (93.1) | 1.0656 (95.3) | 1.0695 (95.5) | 1.0505 (95.1) | 0.9529 (93.5) | 0.9694 (95.4) | 0.9723 (95.3) | 0.9565 (95.1) | ||
| c | 1.0813 (91.7) | 1.1044 (92.8) | 1.1085 (92.6) | 1.0887 (92.8) | 1.0363 (93.3) | 1.0552 (94.7) | 1.0585 (94.7) | 1.0409 (94.3) | ||
| d | 1.1237 (93.4) | 1.1510 (95.5) | 1.1559 (95.7) | 1.1338 (95.1) | 1.0220 (92.8) | 1.0427 (95.4) | 1.0464 (95.5) | 1.0281 (95.3) | ||
| 50 | 40 | a | 0.8757 (93.6) | 0.8883 (95.1) | 0.8902 (95.7) | 0.8770 (94.8) | 0.7987 (94.1) | 0.8083 (95.6) | 0.8096 (95.6) | 0.7986 (95.0) |
| b | 0.9186 (93.6) | 0.9332 (95.4) | 0.9357 (95.5) | 0.9211 (94.8) | 0.8383 (93.8) | 0.8495 (95.1) | 0.8511 (95.6) | 0.8390 (95.3) | ||
| c | 0.9462 (93.7) | 0.9613 (92.9) | 0.9637 (92.6) | 0.9488 (92.8) | 0.8970 (86.6) | 0.9090 (86.2) | 0.9108 (84.7) | 0.8978 (85.9) | ||
| d | 0.9700 (93.5) | 0.9873 (95.2) | 0.9903 (94.8) | 0.9740 (94.8) | 0.8871 (93.4) | 0.9004 (94.7) | 0.9025 (94.7) | 0.8888 (94.7) | ||
| 60 | 20 | a | 1.0932 (91.2) | 1.0579 (95.2) | 1.0440 (95.3) | 1.0485 (94.2) | 1.0932 (91.2) | 1.0579 (95.2) | 1.0440 (95.3) | 1.0485 (94.2) |
| b | 1.0435 (92.0) | 1.0697 (94.8) | 1.0741 (94.9) | 1.0539 (94.4) | 1.0380 (92.0) | 1.0640 (95.0) | 1.0684 (95.0) | 1.0483 (94.8) | ||
| c | 1.2757 (91.8) | 1.9607 (96.0) | 2.1076 (96.2) | 1.7751 (95.8) | 1.2259 (91.6) | 1.9053 (95.5) | 2.0512 (95.8) | 1.7213 (95.3) | ||
| d | 1.3373 (92.8) | 1.3839 (94.9) | 1.3923 (94.8) | 1.3606 (95.2) | 1.2321 (92.9) | 1.2690 (94.4) | 1.2757 (94.5) | 1.2487 (94.2) | ||
| 100 | 50 | a | 0.6751 (94.0) | 0.6809 (96.5) | 0.6814 (96.1) | 0.6735 (95.9) | 0.6749 (94.0) | 0.6808 (96.6) | 0.6812 (96.2) | 0.6733 (96.0) |
| b | 0.7031 (94.4) | 0.7095 (95.6) | 0.7100 (95.4) | 0.7016 (95.5) | 0.6662 (94.3) | 0.6718 (96.1) | 0.6721 (95.9) | 0.6645 (96.0) | ||
| c | 0.8068 (93.5) | 0.8168 (95.0) | 0.8182 (95.3) | 0.8069 (94.7) | 0.7655 (94.2) | 0.7741 (95.5) | 0.7751 (95.5) | 0.7650 (95.3) | ||
| d | 0.8446 (94.3) | 0.8558 (95.1) | 0.8575 (95.0) | 0.8452 (95.2) | 0.7789 (94.3) | 0.7877 (95.1) | 0.7880 (95.2) | 0.7784 (95.1) | ||
| 200 | 100 | a | 0.4778 (94.6) | 0.4799 (95.4) | 0.4793 (95.3) | 0.4755 (95.0) | 0.4778 (94.6) | 0.4799 (95.4) | 0.4793 (95.3) | 0.4754 (95.0) |
| b | 0.4945 (95.2) | 0.4967 (95.5) | 0.4962 (95.3) | 0.4921 (95.2) | 0.4713 (95.2) | 0.4732 (95.9) | 0.4727 (95.5) | 0.4689 (95.3) | ||
| c | 0.5692 (94.4) | 0.5726 (95.4) | 0.5724 (95.4) | 0.5669 (94.9) | 0.5409 (94.3) | 0.5438 (95.2) | 0.5435 (95.3) | 0.5385 (95.3) | ||
| d | 0.5933 (95.3) | 0.5972 (94.7) | 0.5971 (95.0) | 0.5911 (94.8) | 0.5473 (95.1) | 0.5504 (95.5) | 0.5501 (95.9) | 0.5450 (95.3) | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K. Bayes and Maximum Likelihood Estimation of Uncertainty Measure of the Inverse Weibull Distribution under Generalized Adaptive Progressive Hybrid Censoring. Mathematics 2022, 10, 4782. https://doi.org/10.3390/math10244782
Lee K. Bayes and Maximum Likelihood Estimation of Uncertainty Measure of the Inverse Weibull Distribution under Generalized Adaptive Progressive Hybrid Censoring. Mathematics. 2022; 10(24):4782. https://doi.org/10.3390/math10244782
Chicago/Turabian StyleLee, Kyeongjun. 2022. "Bayes and Maximum Likelihood Estimation of Uncertainty Measure of the Inverse Weibull Distribution under Generalized Adaptive Progressive Hybrid Censoring" Mathematics 10, no. 24: 4782. https://doi.org/10.3390/math10244782
APA StyleLee, K. (2022). Bayes and Maximum Likelihood Estimation of Uncertainty Measure of the Inverse Weibull Distribution under Generalized Adaptive Progressive Hybrid Censoring. Mathematics, 10(24), 4782. https://doi.org/10.3390/math10244782

