Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization
Abstract
:1. Introduction
2. Related Works
3. Gazelle Optimization Algorithm: Procedure and Presentation
3.1. Initialization
3.2. The Brownian Motion
3.3. The Lévy Flight
3.4. Modeling the Basic GOA
3.4.1. Exploitation
3.4.2. Exploration
4. The Proposed Method
4.1. Orthogonal Learning (OL)
4.2. Rosenbrock’s Direct Rotational (RDR)
4.3. Procedure of the Proposed IGOA
4.4. Computational Complexity of the Proposed IGOA
5. Experiments and Results
5.1. Experiments Series 1: Classical Benchmark Problems
5.2. Experiments Series 2: Advanced CEC2017 Benchmark Problems
5.3. Experiments Series 3: Data Clustering Problems
5.3.1. Description of the Data Clustering Problem
5.3.2. Results of the Data Clustering Problems
6. Discussions
7. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, R.A.; Abd Elaziz, M.; Lu, S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [Google Scholar] [CrossRef]
- Wang, S.; Hussien, A.G.; Jia, H.; Abualigah, L.; Zheng, R. Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics 2022, 10, 1696. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Abualigah, L.; Yousri, D.; Oliva, D.; Al-Qaness, M.A.; Nadimi-Shahraki, M.H.; Ewees, A.A.; Lu, S.; Ali Ibrahim, R. Boosting atomic orbit search using dynamic-based learning for feature selection. Mathematics 2021, 9, 2786. [Google Scholar] [CrossRef]
- Koziel, S.; Leifsson, L.; Yang, X.S. Solving Computationally Expensive Engineering Problems: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 97. [Google Scholar]
- Baykasoglu, A. Design optimization with chaos embedded great deluge algorithm. Appl. Soft Comput. 2012, 12, 1055–1067. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Zhao, X. A multi-strategy enhanced Sine Cosine Algorithm for global optimization and constrained practical engineering problems. Appl. Math. Comput. 2020, 369, 124872. [Google Scholar] [CrossRef]
- Simpson, A.R.; Dandy, G.C.; Murphy, L.J. Genetic algorithms compared to other techniques for pipe optimization. J. Water Resour. Plan. Manag. 1994, 120, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Liu, Q.; Li, N.; Jia, H.; Qi, Q.; Abualigah, L.; Liu, Y. A Hybrid Arithmetic Optimization and Golden Sine Algorithm for Solving Industrial Engineering Design Problems. Mathematics 2022, 10, 1567. [Google Scholar] [CrossRef]
- Droste, S.; Jansen, T.; Wegener, I. Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput. Syst. 2006, 39, 525–544. [Google Scholar] [CrossRef] [Green Version]
- El Shinawi, A.; Ibrahim, R.A.; Abualigah, L.; Zelenakova, M.; Abd Elaziz, M. Enhanced adaptive neuro-fuzzy inference system using reptile search algorithm for relating swelling potentiality using index geotechnical properties: A case study at El Sherouk City, Egypt. Mathematics 2021, 9, 3295. [Google Scholar] [CrossRef]
- Attiya, I.; Abualigah, L.; Alshathri, S.; Elsadek, D.; Abd Elaziz, M. Dynamic Jellyfish Search Algorithm Based on Simulated Annealing and Disruption Operators for Global Optimization with Applications to Cloud Task Scheduling. Mathematics 2022, 10, 1894. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Abualigah, L. Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study. Mathematics 2022, 10, 1929. [Google Scholar] [CrossRef]
- Attiya, I.; Abualigah, L.; Elsadek, D.; Chelloug, S.A.; Abd Elaziz, M. An Intelligent Chimp Optimizer for Scheduling of IoT Application Tasks in Fog Computing. Mathematics 2022, 10, 1100. [Google Scholar] [CrossRef]
- Wen, C.; Jia, H.; Wu, D.; Rao, H.; Li, S.; Liu, Q.; Abualigah, L. Modified Remora Optimization Algorithm with Multistrategies for Global Optimization Problem. Mathematics 2022, 10, 3604. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf. Sci. 2019, 492, 181–203. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Wang, M.; Zhao, X. A balanced Whale Optimization Algorithm for constrained engineering design problems. Appl. Math. Model. 2019, 71, 45–59. [Google Scholar] [CrossRef]
- Miller, J.; Trümper, L.; Terboven, C.; Müller, M.S. A theoretical model for global optimization of parallel algorithms. Mathematics 2021, 9, 1685. [Google Scholar] [CrossRef]
- Sayed, G.I.; Khoriba, G.; Haggag, M.H. A novel chaotic Salp Swarm Algorithm for global optimization and feature selection. Appl. Intell. 2018, 48, 3462–3481. [Google Scholar] [CrossRef]
- Gupta, S.; Deep, K. Improved Sine Cosine Algorithm with crossover scheme for global optimization. Knowl. Based Syst. 2019, 165, 374–406. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Chen, Y.; Liu, Z. A modified Whale Optimization Algorithm for large-scale global optimization problems. Expert Syst. Appl. 2018, 114, 563–577. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Gazelle Optimization Algorithm: A novel nature-inspired metaheuristic optimizer. Neural Comput. Appl. 2022, 4, 1–33. [Google Scholar] [CrossRef]
- Haklı, H.; Uğuz, H. A novel particle swarm optimization algorithm with Lévy flight. Appl. Soft Comput. 2014, 23, 333–345. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, B.; Li, H. Improving ant colony optimization algorithm with epsilon greedy and Lévy flight. Complex Intell. Syst. 2021, 7, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.F.; Liu, S.Y.; Huang, L.L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern. 2013, 43, 1011–1024. [Google Scholar] [PubMed]
- Hu, J.; Chen, H.; Heidari, A.A.; Wang, M.; Zhang, X.; Chen, Y.; Pan, Z. Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowl. Based Syst. 2021, 213, 106684. [Google Scholar] [CrossRef]
- Rosenbrock, H. An automatic method for finding the greatest or least value of a function. Comput. J. 1960, 3, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.M.; Torczon, V.; Trosset, M.W. Direct search methods: Then and now. J. Comput. Appl. Math. 2000, 124, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly Algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium Optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Mirjalili, S. A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowl. Based Syst. 2019, 172, 42–63. [Google Scholar] [CrossRef]
- Jouhari, H.; Lei, D.; AA Al-qaness, M.; Abd Elaziz, M.; Ewees, A.A.; Farouk, O. Sine-cosine algorithm to enhance simulated annealing for unrelated parallel machine scheduling with setup times. Mathematics 2019, 7, 1120. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Wang, P.; Heidari, A.A.; Wang, M.; Zhao, X.; Chen, H.; He, W.; Xu, S. Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns. Knowl. Based Syst. 2021, 215, 106425. [Google Scholar] [CrossRef]
- Luo, J.; Chen, H.; Heidari, A.A.; Xu, Y.; Zhang, Q.; Li, C. Multi-strategy boosted mutative whale-inspired optimization approaches. Appl. Math. Model. 2019, 73, 109–123. [Google Scholar] [CrossRef]
- Chen, H.; Yang, C.; Heidari, A.A.; Zhao, X. An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Syst. Appl. 2020, 154, 113018. [Google Scholar] [CrossRef]
- Nenavath, H.; Jatoth, R.K. Hybridizing Sine Cosine Algorithm with differential evolution for global optimization and object tracking. Appl. Soft Comput. 2018, 62, 1019–1043. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Single sensor-based MPPT of partially shaded PV system for battery charging by using cauchy and gaussian sine cosine optimization. IEEE Trans. Energy Convers. 2017, 32, 983–992. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Oliva, D.; Xiong, S. An improved opposition-based Sine Cosine Algorithm for global optimization. Expert Syst. Appl. 2017, 90, 484–500. [Google Scholar] [CrossRef]
- Zhu, A.; Xu, C.; Li, Z.; Wu, J.; Liu, Z. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. J. Syst. Eng. Electron. 2015, 26, 317–328. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, H.; Heidari, A.A.; Zhao, X.; Xu, Y.; Wang, P.; Li, Y.; Li, C. Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers. IEEE Access 2019, 7, 31243–31261. [Google Scholar] [CrossRef]
- Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation. Remote. Sens. 2019, 11, 1421. [Google Scholar] [CrossRef]
No. | Algorithm | Reference | Parameter | Value |
---|---|---|---|---|
1 | SSA | [32] | 0 | |
2 | WOA | [40] | Decreased from 2 to 0 | |
b | 2 | |||
3 | SCA | [41] | 0.05 | |
4 | DA | [33] | w | 0.2–0.9 |
s, a, and c | 0.1 | |||
f and e | 1 | |||
5 | GWO | [34] | Convergence parameter (a) | Linear reduction from 2 to 0 |
6 | PSO | [36] | Topology | Fully connected |
Cognitive and social constant | (C1, C2) 2, 2 | |||
Inertia weight | Linear reduction from 0.9 to 0.1 | |||
Velocity limit | 10% of dimension range | |||
7 | ALO | [38] | ∈ [0 1] | |
8 | MPA | [39] | > 1 | |
P | 0.0 | |||
9 | EO | [35] | r | 0.5 |
a | 4 | |||
0.5 | ||||
10 | AO | [37] | 0.1 | |
0.1 |
Name | Setting |
---|---|
Software | |
- Operating system | 64-Bit |
- Windows | Windows 10 |
- Language | MATLAB R2015a |
Hardware | |
- CPU | Intel(R) Core(TM) i7 processor |
- Frequency | 2.3 GHz |
- RAM | 16 GB |
- Hard disk | 1000 GB |
Function | Description | Dimensions | Range | |
---|---|---|---|---|
F1 | 10, 50, 100, 500 | [−100, 100] | 0 | |
F2 | 10, 50, 100, 500 | [−10, 10] | 0 | |
F3 | 10, 50, 100, 500 | [−100, 100] | 0 | |
F4 | 10, 50, 100, 500 | [−100, 100] | 0 | |
F5 | 10, 50, 100, 500 | [−30, 30] | 0 | |
F6 | 10, 50, 100, 500 | [−100, 100] | 0 | |
F7 | 10, 50, 100, 500 | [−128, 128] | 0 | |
F8 | 10, 50, 100, 500 | [−500, 500] | −418.9829 × n | |
F9 | 10, 50, 100, 500 | [−5.12, 5.12] | 0 | |
F10 | 10, 50, 100, 500 | [−32, 32] | 0 | |
F11 | 10, 50, 100, 500 | [−600, 600] | 0 | |
F12 | , where | 10, 50, 100, 500 | [−50, 50] | 0 |
F13 | 10, 50, 100, 500 | [−50, 50] | 0 | |
F14 | 2 | [−65, 65] | 1 | |
F15 | 4 | [−5, 5] | 0.00030 | |
F16 | 2 | [−5, 5] | −1.0316 | |
F17 | 2 | [−5, 5] | 0.398 | |
F18 | 2 | [−2, 2] | 3 | |
F19 | 3 | [−1, 2] | −3.86 | |
F20 | 6 | [0, 1] | −0.32 | |
F21 | 4 | [0, 1] | −10.1532 | |
F22 | 4 | [0, 1] | −10.4028 | |
F23 | 4 | [0, 1] | −10.5363 |
Measure | Comparative Algorithms | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSA | WOA | SCA | DA | GWO | PSO | ALO | MPA | EO | AO | GOA | IGOA | |
F1 | ||||||||||||
Max | 5.6687E-06 | 3.0768E-29 | 9.2720E-03 | 3.7901E+02 | 4.5916E-18 | 6.0401E-03 | 5.2574E-01 | 1.9657E-29 | 3.8998E-26 | 9.5870E-81 | 1.6001E-40 | 4.0016E-111 |
Mean | 1.6182E-06 | 7.6986E-30 | 2.3193E-03 | 2.5349E+02 | 1.5936E-18 | 1.6560E-03 | 1.3154E-01 | 9.7494E-30 | 1.6302E-26 | 2.4125E-81 | 4.0002E-41 | 1.0004E-111 |
Min | 1.4128E-07 | 1.4455E-36 | 9.0439E-08 | 1.0313E+02 | 1.2000E-19 | 7.8798E-06 | 7.9433E-05 | 4.8694E-30 | 3.6988E-27 | 1.4810E-85 | 1.6323E-122 | 2.5272E-123 |
Std | 2.7047E-06 | 1.5380E-29 | 4.6352E-03 | 1.2133E+02 | 2.0273E-18 | 2.9346E-03 | 2.6280E-01 | 6.9322E-30 | 1.5858E-26 | 4.7830E-81 | 8.0003E-41 | 2.0008E-111 |
Ranking | 8 | 4 | 10 | 12 | 7 | 9 | 11 | 5 | 6 | 2 | 3 | 1 |
F2 | ||||||||||||
Max | 7.7959E+00 | 2.1492E-29 | 1.1036E-04 | 2.2195E+01 | 3.3639E-11 | 1.6219E-01 | 1.9575E+01 | 2.6474E-16 | 1.4528E-14 | 7.8147E-44 | 6.4440E-71 | 0.0000E+00 |
Mean | 3.0662E+00 | 5.9613E-30 | 4.4043E-05 | 1.1944E+01 | 1.2412E-11 | 1.1260E-01 | 8.5054E+00 | 1.4902E-16 | 3.8156E-15 | 2.0429E-44 | 1.6110E-71 | 0.0000E+00 |
Min | 5.4086E-01 | 3.1640E-34 | 5.9247E-06 | 3.0554E+00 | 1.8400E-12 | 9.3967E-03 | 1.4917E+00 | 1.7669E-17 | 2.9474E-17 | 1.0185E-49 | 3.4455E-95 | 0.0000E+00 |
Std | 3.3581E+00 | 1.0413E-29 | 4.6685E-05 | 7.8998E+00 | 1.4482E-11 | 7.0423E-02 | 7.7648E+00 | 1.0159E-16 | 7.1434E-15 | 3.8512E-44 | 3.2220E-71 | 0.0000E+00 |
Ranking | 10 | 4 | 8 | 12 | 7 | 9 | 11 | 5 | 6 | 3 | 2 | 1 |
F3 | ||||||||||||
Max | 1.2878E+03 | 3.1583E+03 | 7.2366E+01 | 6.6942E+03 | 3.5163E-07 | 3.4736E+00 | 5.4055E+03 | 8.8765E-13 | 2.7141E-11 | 4.1515E-79 | 4.0712E-09 | 1.8119E-94 |
Mean | 5.0275E+02 | 1.7896E+03 | 3.3041E+01 | 4.9705E+03 | 1.2577E-07 | 1.5269E+00 | 3.5168E+03 | 2.3968E-13 | 1.0682E-11 | 1.0379E-79 | 1.0178E-09 | 4.5299E-95 |
Min | 6.5881E+01 | 7.8867E+02 | 1.0676E-01 | 3.4937E+02 | 1.0960E-08 | 4.5930E-02 | 2.0838E+03 | 6.1340E-17 | 4.4484E-13 | 1.3725E-90 | 0.0000E+00 | 1.4890E-115 |
Std | 5.5639E+02 | 1.0134E+03 | 3.7958E+01 | 3.0848E+03 | 1.5853E-07 | 1.4318E+00 | 1.3815E+03 | 4.3327E-13 | 1.1833E-11 | 2.0757E-79 | 2.0356E-09 | 9.0597E-95 |
Ranking | 9 | 10 | 8 | 12 | 6 | 7 | 11 | 3 | 4 | 2 | 5 | 1 |
F4 | ||||||||||||
Max | 1.1350E+01 | 2.4947E+01 | 5.2459E-01 | 3.4546E+01 | 7.0394E-06 | 2.5740E-01 | 2.5872E+01 | 5.0672E-13 | 6.4122E-08 | 7.0382E-40 | 1.9988E-23 | 9.7425E-52 |
Mean | 4.7755E+00 | 1.0417E+01 | 3.4400E-01 | 1.8807E+01 | 2.2793E-06 | 1.6819E-01 | 1.8858E+01 | 3.1893E-13 | 1.8603E-08 | 1.8001E-40 | 4.9970E-24 | 2.4506E-52 |
Min | 1.0957E+00 | 2.8202E+00 | 1.5933E-01 | 8.1766E+00 | 2.3154E-07 | 9.0260E-02 | 1.2936E+01 | 5.3543E-14 | 7.8747E-10 | 1.2170E-48 | 1.8617E-77 | 3.5318E-62 |
Std | 4.5106E+00 | 1.0221E+01 | 1.9127E-01 | 1.1584E+01 | 3.1913E-06 | 6.8608E-02 | 5.7790E+00 | 2.1383E-13 | 3.0477E-08 | 3.4929E-40 | 9.9939E-24 | 4.8613E-52 |
Ranking | 9 | 10 | 8 | 11 | 6 | 7 | 12 | 4 | 5 | 2 | 3 | 1 |
F5 | ||||||||||||
Max | 2.4884E+03 | 8.9652E+00 | 8.9499E+00 | 3.9872E+04 | 8.0846E+00 | 9.6438E+01 | 2.9905E+04 | 8.5294E+00 | 8.7210E+00 | 1.9262E-01 | 8.5801E+00 | 3.4160E-02 |
Mean | 1.1873E+03 | 8.8175E+00 | 8.4259E+00 | 2.4852E+04 | 7.6262E+00 | 3.5639E+01 | 8.2018E+03 | 7.2907E+00 | 7.7837E+00 | 8.6155E-02 | 8.2137E+00 | 1.8406E-02 |
Min | 7.7911E+00 | 8.5543E+00 | 8.0821E+00 | 1.3031E+04 | 7.1861E+00 | 7.4127E+00 | 2.5891E+02 | 6.2748E+00 | 7.1336E+00 | 2.0769E-06 | 7.7814E+00 | 1.4281E-03 |
Std | 1.3156E+03 | 1.9212E-01 | 3.6921E-01 | 1.1143E+04 | 5.0584E-01 | 4.1800E+01 | 1.4479E+04 | 9.2936E-01 | 7.5787E-01 | 9.7685E-02 | 3.4581E-01 | 1.5032E-02 |
Ranking | 10 | 8 | 7 | 12 | 4 | 9 | 11 | 3 | 5 | 2 | 6 | 1 |
F6 | ||||||||||||
Max | 1.8987E-02 | 7.1473E-01 | 1.4622E+00 | 2.5496E+02 | 7.5229E-01 | 8.3608E-04 | 1.2734E-02 | 7.7604E-02 | 4.9193E-01 | 3.3793E-04 | 4.6477E-01 | 3.2478E-04 |
Mean | 6.9763E-03 | 4.8733E-01 | 1.0843E+00 | 2.1284E+02 | 3.7321E-01 | 3.8147E-04 | 3.2223E-03 | 1.9401E-02 | 1.2318E-01 | 1.9276E-04 | 3.4021E-01 | 9.2145E-05 |
Min | 1.1915E-06 | 3.2553E-01 | 8.8693E-01 | 1.8611E+02 | 1.4414E-05 | 1.9334E-05 | 2.9475E-05 | 9.0157E-10 | 2.0808E-05 | 5.9616E-06 | 2.5929E-01 | 4.4427E-08 |
Std | 9.0313E-03 | 1.7744E-01 | 2.6857E-01 | 3.1781E+01 | 3.2201E-01 | 3.6694E-04 | 6.3413E-03 | 3.8802E-02 | 2.4583E-01 | 1.4224E-04 | 9.4276E-02 | 1.5640E-04 |
Ranking | 5 | 10 | 11 | 12 | 9 | 3 | 4 | 6 | 7 | 2 | 8 | 1 |
F7 | ||||||||||||
Max | 9.4570E-02 | 5.1017E-02 | 1.3523E-02 | 4.6264E-01 | 5.0253E-03 | 1.6015E-01 | 7.5349E-01 | 1.4525E-03 | 4.0995E-03 | 1.5900E-03 | 1.0205E-03 | 1.4519E-04 |
Mean | 7.4271E-02 | 1.3559E-02 | 7.8508E-03 | 2.1954E-01 | 3.0991E-03 | 8.1841E-02 | 4.5660E-01 | 1.1726E-03 | 1.8678E-03 | 5.9058E-04 | 5.0738E-04 | 9.7675E-05 |
Min | 5.6938E-02 | 6.9400E-04 | 4.3940E-03 | 9.3729E-02 | 2.1818E-03 | 3.0057E-02 | 8.7673E-02 | 8.4107E-04 | 9.6380E-04 | 1.7258E-05 | 2.2784E-04 | 4.4478E-05 |
Std | 1.9462E-02 | 2.4974E-02 | 4.2216E-03 | 1.6841E-01 | 1.3158E-03 | 6.1565E-02 | 2.7498E-01 | 2.9914E-04 | 1.4989E-03 | 7.0301E-04 | 3.6238E-04 | 4.4662E-05 |
Ranking | 9 | 8 | 7 | 11 | 6 | 10 | 12 | 4 | 5 | 3 | 2 | 1 |
F8 | ||||||||||||
Max | −2.2734E+03 | −1.8870E+03 | −1.6176E+03 | −1.8505E+03 | −2.1174E+03 | −1.2648E+03 | −1.9152E+03 | −2.8653E+03 | −2.4220E+03 | −1.6770E+03 | −2.0896E+03 | −2.7694E+07 |
Mean | −2.5962E+03 | −2.7810E+03 | −1.9484E+03 | −2.1719E+03 | −2.4186E+03 | −1.4903E+03 | −2.0689E+03 | −3.3299E+03 | −2.8783E+03 | −2.4188E+03 | −2.2345E+03 | −1.2332E+08 |
Min | −3.1435E+03 | −3.4289E+03 | −2.3834E+03 | −2.7042E+03 | −2.6000E+03 | −1.6333E+03 | −2.3523E+03 | −3.5369E+03 | −3.4762E+03 | −4.1864E+03 | −2.3109E+03 | −2.5083E+08 |
Std | 3.8896E+02 | 6.4835E+02 | 3.2334E+02 | 3.7546E+02 | 2.0990E+02 | 1.6288E+02 | 2.0383E+02 | 3.1353E+02 | 4.4133E+02 | 1.1838E+03 | 9.9463E+01 | 1.0036E+08 |
Ranking | 5 | 4 | 11 | 9 | 7 | 12 | 10 | 2 | 3 | 6 | 8 | 1 |
F9 | ||||||||||||
Max | 3.6813E+01 | 1.5062E+00 | 1.2066E+00 | 7.0022E+01 | 4.7147E+00 | 3.0419E+01 | 7.6611E+01 | 1.4211E-14 | 3.0381E+00 | 2.6242E-01 | 0.0000E+00 | 0.0000E+00 |
Mean | 2.5869E+01 | 3.7655E-01 | 3.0890E-01 | 5.7496E+01 | 2.6264E+00 | 1.7201E+01 | 5.7956E+01 | 3.5527E-15 | 1.0083E+00 | 6.5605E-02 | 0.0000E+00 | 0.0000E+00 |
Min | 1.5920E+01 | 0.0000E+00 | 2.0227E-06 | 4.7361E+01 | 4.2633E-14 | 5.9917E+00 | 3.7810E+01 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Std | 9.0092E+00 | 7.5310E-01 | 5.9859E-01 | 1.0614E+01 | 1.9778E+00 | 1.0360E+01 | 1.7468E+01 | 7.1054E-15 | 1.4322E+00 | 1.3121E-01 | 0.0000E+00 | 0.0000E+00 |
Ranking | 10 | 6 | 5 | 11 | 8 | 9 | 12 | 3 | 7 | 4 | 1 | 1 |
F10 | ||||||||||||
Max | 1.9965E+01 | 4.3521E-14 | 1.3360E+01 | 1.5782E+01 | 3.2645E-10 | 2.3169E+00 | 1.5140E+01 | 7.9936E-15 | 7.6827E-13 | 8.8818E-16 | 8.8818E-16 | 8.8818E-16 |
Mean | 7.0934E+00 | 1.6875E-14 | 3.3500E+00 | 1.0033E+01 | 2.0063E-10 | 5.8999E-01 | 1.2971E+01 | 5.3291E-15 | 2.7711E-13 | 8.8818E-16 | 8.8818E-16 | 8.8818E-16 |
Min | 1.6466E+00 | 8.8818E-16 | 4.6053E-05 | 3.4909E+00 | 4.7813E-11 | 3.8237E-03 | 9.6145E+00 | 4.4409E-15 | 5.0626E-14 | 8.8818E-16 | 8.8818E-16 | 8.8818E-16 |
Std | 8.6251E+00 | 1.8687E-14 | 6.6735E+00 | 5.0775E+00 | 1.3298E-10 | 1.1513E+00 | 2.3725E+00 | 1.7764E-15 | 3.3477E-13 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Ranking | 10 | 5 | 9 | 11 | 7 | 8 | 12 | 4 | 6 | 1 | 1 | 1 |
F11 | ||||||||||||
Max | 1.9439E-01 | 0.0000E+00 | 4.7522E-01 | 7.2161E+00 | 6.3368E-02 | 5.2703E+00 | 5.5890E-01 | 1.7339E-02 | 2.6300E-02 | 0.0000E+00 | 3.5947E-02 | 0.0000E+00 |
Mean | 1.5599E-01 | 0.0000E+00 | 3.1614E-01 | 4.3403E+00 | 3.9139E-02 | 2.1440E+00 | 2.5481E-01 | 4.3347E-03 | 9.0506E-03 | 0.0000E+00 | 8.9867E-03 | 0.0000E+00 |
Min | 9.1527E-02 | 0.0000E+00 | 5.0005E-02 | 2.1045E+00 | 2.6828E-02 | 2.9533E-01 | 3.7795E-02 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Std | 4.8640E-02 | 0.0000E+00 | 1.9205E-01 | 2.1867E+00 | 1.6448E-02 | 2.1658E+00 | 2.3401E-01 | 8.6694E-03 | 1.2411E-02 | 0.0000E+00 | 1.7973E-02 | 0.0000E+00 |
Ranking | 8 | 1 | 10 | 12 | 7 | 11 | 9 | 4 | 6 | 1 | 5 | 1 |
F12 | ||||||||||||
Max | 1.1753E+01 | 2.6635E-01 | 1.8565E+00 | 1.7519E+01 | 1.5264E-01 | 6.1327E-04 | 4.0024E+01 | 1.5225E-02 | 2.0023E-02 | 3.8124E-04 | 3.3640E-01 | 2.5541E-04 |
Mean | 5.2622E+00 | 2.2869E-01 | 6.9748E-01 | 7.8833E+00 | 7.3856E-02 | 1.8414E-04 | 1.5694E+01 | 3.8159E-03 | 8.8384E-03 | 2.1247E-04 | 2.8413E-01 | 1.7172E-04 |
Min | 1.2927E+00 | 1.8560E-01 | 1.4509E-01 | 1.5513E+00 | 4.2429E-02 | 5.1148E-06 | 6.8637E+00 | 2.2171E-09 | 5.5321E-06 | 8.5093E-05 | 2.0181E-01 | 7.8122E-05 |
Std | 4.6576E+00 | 3.5965E-02 | 7.8947E-01 | 6.8630E+00 | 5.3004E-02 | 2.8779E-04 | 1.6242E+01 | 7.6063E-03 | 1.0349E-02 | 1.2764E-04 | 5.7632E-02 | 7.3077E-05 |
Ranking | 10 | 7 | 9 | 11 | 6 | 2 | 12 | 4 | 5 | 3 | 8 | 1 |
F13 | ||||||||||||
Max | 2.5967E+00 | 5.1313E-01 | 9.8470E-01 | 3.6598E+05 | 5.2436E-01 | 1.0989E-02 | 1.7543E+01 | 5.4243E-02 | 2.4034E-01 | 7.9376E-03 | 9.9617E-01 | 6.4710E-04 |
Mean | 6.9400E-01 | 4.6523E-01 | 6.8633E-01 | 9.1861E+04 | 2.9147E-01 | 2.7604E-03 | 8.9895E+00 | 1.8705E-02 | 1.6238E-01 | 1.9946E-03 | 8.1993E-01 | 2.2333E-04 |
Min | 2.8184E-02 | 4.4162E-01 | 5.5358E-01 | 2.2382E+00 | 1.0911E-01 | 2.5130E-07 | 3.0920E-02 | 1.7929E-08 | 1.0272E-01 | 1.1894E-05 | 6.8063E-01 | 4.5897E-05 |
Std | 1.2691E+00 | 3.3200E-02 | 2.0330E-01 | 1.8275E+05 | 1.7691E-01 | 5.4854E-03 | 8.3440E+00 | 2.5601E-02 | 5.9648E-02 | 3.9620E-03 | 1.3519E-01 | 2.8682E-04 |
Ranking | 9 | 7 | 8 | 12 | 6 | 3 | 11 | 4 | 5 | 2 | 10 | 1 |
Friedman test | ||||||||||||
Mean Rank | 8.62 | 6.46 | 8.54 | 11.38 | 6.62 | 7.62 | 10.62 | 3.92 | 5.38 | 2.54 | 4.77 | 1.00 |
Final Ranking | 10 | 6 | 9 | 12 | 7 | 8 | 11 | 3 | 5 | 2 | 4 | 1 |
Measure | Comparative Algorithms | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSA | WOA | SCA | DA | GWO | PSO | ALO | MPA | EO | AO | GOA | IGOA | |
F14 | ||||||||||||
Max | 2.9821E+00 | 1.0763E+01 | 2.9821E+00 | 1.5504E+01 | 1.0763E+01 | 1.5504E+01 | 2.3809E+01 | 1.2671E+01 | 1.0763E+01 | 1.2671E+01 | 1.2671E+01 | 1.9920E+00 |
Mean | 1.4940E+00 | 3.9616E+00 | 2.4866E+00 | 5.3690E+00 | 8.8179E+00 | 1.1203E+01 | 1.0637E+01 | 5.1574E+00 | 4.6720E+00 | 7.0828E+00 | 1.2194E+01 | 1.2465E+00 |
Min | 9.9800E-01 | 9.9800E-01 | 1.0001E+00 | 9.9800E-01 | 2.9821E+00 | 5.9288E+00 | 3.9683E+00 | 1.9920E+00 | 9.9800E-01 | 9.9800E-01 | 1.0763E+01 | 9.9800E-01 |
Std | 9.9205E-01 | 4.6251E+00 | 9.9101E-01 | 6.8049E+00 | 3.8905E+00 | 5.0297E+00 | 9.0070E+00 | 5.0305E+00 | 4.6790E+00 | 6.4649E+00 | 9.5366E-01 | 4.9701E-01 |
Ranking | 2 | 4 | 3 | 7 | 9 | 11 | 10 | 6 | 5 | 8 | 12 | 1 |
F15 | ||||||||||||
Max | 1.7018E-03 | 4.3071E-03 | 1.5907E-03 | 2.7670E-02 | 1.4827E-03 | 1.7771E-03 | 1.8452E-02 | 3.3202E-04 | 2.0363E-02 | 1.2317E-03 | 8.9716E-02 | 6.4899E-04 |
Mean | 1.5560E-03 | 1.6586E-03 | 1.3341E-03 | 1.2183E-02 | 6.4339E-04 | 1.0875E-03 | 7.7714E-03 | 3.1617E-04 | 1.0343E-02 | 7.0995E-04 | 4.7898E-02 | 5.0192E-04 |
Min | 1.4119E-03 | 3.3772E-04 | 8.9731E-04 | 6.5750E-04 | 3.1075E-04 | 7.6724E-04 | 2.9649E-03 | 3.0749E-04 | 3.0935E-04 | 3.3906E-04 | 2.9486E-02 | 4.4828E-04 |
Std | 1.5860E-04 | 1.7941E-03 | 3.0634E-04 | 1.1296E-02 | 5.6338E-04 | 4.7034E-04 | 7.3060E-03 | 1.1593E-05 | 1.1570E-02 | 4.0040E-04 | 2.8449E-02 | 9.8118E-05 |
Ranking | 7 | 8 | 6 | 11 | 3 | 5 | 9 | 1 | 10 | 4 | 12 | 2 |
F16 | ||||||||||||
Max | −1.0316E+00 | −1.0316E+00 | −1.0000E+00 | −1.0308E+00 | −1.0316E+00 | −1.0291E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0096E+00 | −1.0316E+00 | −1.0316E+00 |
Mean | −1.0316E+00 | −1.0316E+00 | −1.0236E+00 | −1.0313E+00 | −1.0316E+00 | −1.0308E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0198E+00 | −1.0316E+00 | −1.0316E+00 |
Min | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0316E+00 | −1.0249E+00 | −1.0316E+00 | −1.0316E+00 |
Std | 1.1358E-13 | 9.0053E-06 | 1.5707E-02 | 3.2551E-04 | 7.7555E-08 | 1.1721E-03 | 6.8452E-13 | 1.8559E-13 | 3.4995E-14 | 7.0603E-03 | 2.2852E-07 | 0.0000E+00 |
Ranking | 4 | 8 | 11 | 9 | 6 | 10 | 5 | 3 | 2 | 12 | 7 | 1 |
F17 | ||||||||||||
Max | 3.9789E-01 | 4.2689E-01 | 4.3137E-01 | 3.9874E-01 | 3.9795E-01 | 4.8050E-01 | 3.9789E-01 | 3.9789E-01 | 3.9789E-01 | 4.0216E-01 | 1.5356E+00 | 3.9789E-01 |
Mean | 3.9789E-01 | 4.0740E-01 | 4.1413E-01 | 3.9832E-01 | 3.9791E-01 | 4.2242E-01 | 3.9789E-01 | 3.9789E-01 | 3.9789E-01 | 3.9922E-01 | 9.0263E-01 | 3.9789E-01 |
Min | 3.9789E-01 | 3.9866E-01 | 3.9906E-01 | 3.9789E-01 | 3.9789E-01 | 3.9863E-01 | 3.9789E-01 | 3.9789E-01 | 3.9789E-01 | 3.9790E-01 | 4.4057E-01 | 3.9789E-01 |
Std | 1.6369E-14 | 1.3370E-02 | 1.6334E-02 | 3.5436E-04 | 2.6611E-05 | 3.8869E-02 | 4.9152E-13 | 5.5505E-13 | 2.7422E-09 | 2.0199E-03 | 5.2840E-01 | 0.0000E+00 |
Ranking | 2 | 9 | 10 | 7 | 6 | 11 | 4 | 3 | 5 | 8 | 12 | 1 |
F18 | ||||||||||||
Max | 3.0000E+00 | 3.0579E+01 | 3.0022E+00 | 3.0021E+00 | 8.4001E+01 | 3.0542E+00 | 3.0000E+00 | 3.0000E+00 | 3.0000E+00 | 3.6799E+00 | 8.4339E+01 | 3.0000E+00 |
Mean | 3.0000E+00 | 1.6688E+01 | 3.0013E+00 | 3.0010E+00 | 3.0001E+01 | 3.0141E+00 | 3.0000E+00 | 3.0000E+00 | 3.0000E+00 | 3.3010E+00 | 2.4463E+01 | 3.0000E+00 |
Min | 3.0000E+00 | 3.0053E+00 | 3.0007E+00 | 3.0001E+00 | 3.0001E+00 | 3.0000E+00 | 3.0000E+00 | 3.0000E+00 | 3.0000E+00 | 3.0190E+00 | 3.0000E+00 | 3.0000E+00 |
Std | 6.2815E-13 | 1.5784E+01 | 6.6423E-04 | 9.1491E-04 | 3.8184E+01 | 2.6794E-02 | 2.6479E-11 | 2.2338E-13 | 3.8520E-07 | 2.7651E-01 | 3.9974E+01 | 1.4950E-15 |
Ranking | 3 | 10 | 7 | 6 | 12 | 8 | 4 | 2 | 5 | 9 | 11 | 1 |
F19 | ||||||||||||
Max | −3.8572E+00 | −3.0723E+00 | −3.8398E+00 | −3.6103E+00 | −3.8549E+00 | −3.5817E+00 | −3.8596E+00 | −3.0898E+00 | −3.8609E+00 | −3.7221E+00 | −3.8227E+00 | −3.8628E+00 |
Mean | −3.8596E+00 | −3.2723E+00 | −3.8494E+00 | −3.7415E+00 | −3.8601E+00 | −3.7763E+00 | −3.8610E+00 | −3.6695E+00 | −3.8623E+00 | −3.7943E+00 | −3.8444E+00 | −3.8628E+00 |
Min | −3.8627E+00 | −3.8468E+00 | −3.8573E+00 | −3.8471E+00 | −3.8628E+00 | −3.8468E+00 | −3.8628E+00 | −3.8628E+00 | −3.8628E+00 | −3.8522E+00 | −3.8587E+00 | −3.8628E+00 |
Std | 2.5466E-03 | 3.8304E-01 | 7.7153E-03 | 1.1360E-01 | 3.6683E-03 | 1.2987E-01 | 1.3784E-03 | 3.8651E-01 | 9.5396E-04 | 6.3004E-02 | 1.5338E-02 | 4.4409E-16 |
Ranking | 5 | 12 | 6 | 10 | 4 | 9 | 3 | 11 | 2 | 8 | 7 | 1 |
F20 | ||||||||||||
Max | −3.1979E+00 | −1.7529E+00 | −1.2348E+00 | −3.1440E+00 | −2.2762E+00 | −3.2031E+00 | −2.5329E+00 | −3.3220E+00 | −3.2030E+00 | −2.5225E+00 | −2.6051E+00 | −3.3220E+00 |
Mean | −3.2609E+00 | −2.7847E+00 | −2.2059E+00 | −3.1943E+00 | −2.9987E+00 | −3.2328E+00 | −2.7032E+00 | −3.3220E+00 | −3.2328E+00 | −2.8380E+00 | −2.8984E+00 | −3.3220E+00 |
Min | −3.3220E+00 | −3.1841E+00 | −3.0581E+00 | −3.3162E+00 | −3.3219E+00 | −3.3220E+00 | −2.8814E+00 | −3.3220E+00 | −3.3220E+00 | −3.1264E+00 | −3.0035E+00 | −3.3220E+00 |
Std | 7.0573E-02 | 6.8900E-01 | 9.4395E-01 | 8.1983E-02 | 4.8517E-01 | 5.9447E-02 | 1.6440E-01 | 4.0937E-10 | 5.9494E-02 | 2.6187E-01 | 1.9564E-01 | 1.7172E-10 |
Ranking | 3 | 10 | 12 | 6 | 7 | 4 | 11 | 2 | 5 | 9 | 8 | 1 |
F21 | ||||||||||||
Max | −2.6305E+00 | −4.8157E+00 | −3.5065E-01 | −5.0500E+00 | −5.0966E+00 | −2.6829E+00 | −2.6305E+00 | −4.9540E+00 | −8.8199E-01 | −9.2575E+00 | −1.5798E+00 | −1.0153E+01 |
Mean | −7.0094E+00 | −4.8932E+00 | −7.5598E-01 | −6.8195E+00 | −8.8813E+00 | −8.0375E+00 | −5.7235E+00 | −8.0029E+00 | −4.0233E+00 | −9.7647E+00 | −2.4100E+00 | −1.0153E+01 |
Min | −1.0153E+01 | −5.0032E+00 | −1.3155E+00 | −8.6125E+00 | -1.0150E+01 | −1.0153E+01 | −1.0153E+01 | −9.9566E+00 | −5.1007E+00 | -1.0152E+01 | −3.5016E+00 | −1.0153E+01 |
Std | 3.7676E+00 | 7.9719E-02 | 4.3024E-01 | 2.0287E+00 | 2.5232E+00 | 3.6003E+00 | 3.1666E+00 | 2.2399E+00 | 2.0943E+00 | 4.3512E-01 | 8.3575E-01 | 1.3286E-08 |
Ranking | 6 | 9 | 12 | 7 | 3 | 4 | 8 | 5 | 10 | 2 | 11 | 1 |
F22 | ||||||||||||
Max | −2.7519E+00 | −9.0585E-01 | −9.0510E-01 | −1.8369E+00 | −1.0393E+01 | −1.8376E+00 | −5.1288E+00 | −5.0801E+00 | −5.0877E+00 | −5.0645E+00 | −1.2329E+00 | −1.0403E+01 |
Mean | −6.8205E+00 | −5.1360E+00 | −1.4838E+00 | −3.3195E+00 | −1.0399E+01 | −4.4431E+00 | −9.0844E+00 | −8.7305E+00 | −6.4165E+00 | −9.0095E+00 | −2.1487E+00 | −1.0403E+01 |
Min | −1.0403E+01 | −1.0235E+01 | −2.4565E+00 | −5.0164E+00 | −1.0403E+01 | −1.0403E+01 | −1.0403E+01 | −1.0272E+01 | −1.0403E+01 | −1.0399E+01 | −3.0909E+00 | −1.0403E+01 |
Std | 4.1556E+00 | 3.8525E+00 | 7.4057E-01 | 1.3673E+00 | 4.3456E-03 | 3.9973E+00 | 2.6371E+00 | 2.4694E+00 | 2.6576E+00 | 2.6311E+00 | 8.0696E-01 | 1.5991E-08 |
Ranking | 6 | 8 | 12 | 10 | 2 | 9 | 3 | 5 | 7 | 4 | 11 | 1 |
F23 | ||||||||||||
Max | −2.8711E+00 | −2.2850E+00 | −1.8691E+00 | −1.8570E+00 | −5.0079E+00 | −2.8711E+00 | −2.4217E+00 | −3.8354E+00 | −3.8354E+00 | −1.0183E+01 | −3.4634E+00 | −1.0522E+01 |
Mean | −7.2799E+00 | −3.8940E+00 | −2.0020E+00 | −4.1990E+00 | −7.5155E+00 | −6.9448E+00 | −4.4504E+00 | −8.8612E+00 | −7.1852E+00 | −1.0361E+01 | −5.1392E+00 | −1.0526E+01 |
Min | −1.0536E+01 | −5.0669E+00 | −2.0959E+00 | −1.0215E+01 | −1.0019E+01 | −1.0536E+01 | −1.0536E+01 | −1.0536E+01 | −1.0536E+01 | −1.0515E+01 | −8.7041E+00 | −1.0532E+01 |
Std | 3.8762E+00 | 1.3956E+00 | 1.1257E-01 | 4.0177E+00 | 2.8379E+00 | 4.1658E+00 | 4.0573E+00 | 3.3505E+00 | 3.8680E+00 | 1.3645E-01 | 2.4546E+00 | 4.4536E-03 |
Ranking | 5 | 11 | 12 | 10 | 4 | 7 | 9 | 3 | 6 | 2 | 8 | 1 |
Friedman test | ||||||||||||
Mean Rank | 3.91 | 8.09 | 8.27 | 7.55 | 5.09 | 7.09 | 6.00 | 3.73 | 5.18 | 6.00 | 9.00 | 1.00 |
Final Ranking | 3 | 10 | 11 | 9 | 4 | 8 | 6 | 2 | 5 | 6 | 12 | 1 |
Measure | Comparative Algorithms | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SSA | WOA | SCA | DA | GWO | PSO | ALO | MPA | EO | AO | GOA | |
F1 | |||||||||||
p-value | 2.7661E-02 | 3.5541E-02 | 3.5559E-01 | 5.8221E-03 | 1.6699E-02 | 3.0216E-02 | 4.3554E-02 | 3.0643E-02 | 3.5536E-02 | 3.5201E-01 | 3.5592E-01 |
Sign | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
F2 | |||||||||||
p-value | 1.1761E-02 | 2.9581E-01 | 1.0812E-02 | 2.3280E-02 | 1.3734E-01 | 1.8648E-02 | 4.1002E-02 | 2.6155E-02 | 3.2647E-02 | 3.2957E-02 | 3.5592E-02 |
Sign | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F3 | |||||||||||
p-value | 1.2074E-02 | 1.2344E-02 | 1.3234E-02 | 1.8078E-02 | 1.6370E-01 | 4.6919E-02 | 2.2403E-03 | 3.1094E-01 | 1.2106E-02 | 3.5592E-02 | 3.5592E-02 |
Sign | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
F4 | |||||||||||
p-value | 7.8557E-02 | 8.7641E-02 | 1.1406E-02 | 1.7528E-02 | 2.0308E-01 | 2.7028E-03 | 6.1763E-04 | 2.4542E-02 | 2.6797E-01 | 3.4241E-01 | 3.5592E-01 |
Sign | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
F5 | |||||||||||
p-value | 1.2113E-01 | 1.1615E-10 | 7.5441E-09 | 4.2798E-03 | 8.9790E-08 | 1.3920E-02 | 3.0048E-01 | 4.3146E-06 | 8.7920E-07 | 2.1946E-01 | 5.9453E-09 |
Sign | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
F6 | |||||||||||
p-value | 1.7828E-01 | 1.6523E-03 | 2.0092E-04 | 1.0725E-05 | 4.3337E-02 | 1.9479E-01 | 5.2165E-01 | 4.5575E-02 | 3.8125E-01 | 1.8377E-01 | 4.1149E-04 |
Sign | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
F7 | |||||||||||
p-value | 2.7429E-04 | 3.3626E-01 | 1.3366E-02 | 4.0602E-02 | 8.9881E-03 | 3.8431E-02 | 1.6060E-02 | 2.9906E-02 | 1.2811E-01 | 8.4033E-01 | 6.5965E-02 |
Sign | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
F8 | |||||||||||
p-value | 4.9287E-02 | 4.9287E-02 | 4.9286E-02 | 4.9286E-02 | 4.9287E-02 | 4.9285E-02 | 4.9286E-02 | 4.9288E-02 | 4.9287E-02 | 4.9287E-02 | 4.9286E-02 |
Sign | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F9 | |||||||||||
p-value | 1.2123E-03 | 3.5592E-01 | 3.4183E-01 | 3.6625E-05 | 3.7729E-02 | 1.5993E-02 | 5.6505E-04 | 3.5592E-01 | 2.0877E-01 | 3.5592E-01 | 1.2452E-02 |
Sign | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
F10 | |||||||||||
p-value | 1.5111E-02 | 1.3792E-02 | 3.5415E-02 | 7.5193E-03 | 2.3472E-02 | 3.4494E-01 | 3.4726E-05 | 2.4523E-03 | 1.4998E-01 | 3.8431E-02 | 7.5441E-09 |
Sign | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
F11 | |||||||||||
p-value | 6.7778E-04 | 1.0725E-05 | 1.6568E-02 | 7.3688E-03 | 3.1295E-03 | 4.5040E-02 | 7.2286E-02 | 3.5592E-01 | 1.9499E-01 | 4.3146E-06 | 3.5592E-01 |
Sign | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
F12 | |||||||||||
p-value | 4.5898E-02 | 1.4565E-05 | 1.2774E-01 | 4.1330E-02 | 3.1982E-02 | 9.3609E-01 | 1.0150E-01 | 3.7499E-02 | 1.4498E-01 | 5.9953E-01 | 6.2976E-05 |
Sign | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
F13 | |||||||||||
p-value | 3.1619E-01 | 1.3697E-07 | 5.1562E-04 | 3.5354E-01 | 1.6561E-02 | 3.9124E-01 | 7.4624E-02 | 1.9893E-01 | 1.6070E-03 | 4.0685E-01 | 1.9106E-05 |
Sign | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
F14 | |||||||||||
p-value | 2.0296E-02 | 7.3831E-01 | 3.3765E-02 | 2.9617E-02 | 2.9344E-02 | 1.4011E-02 | 3.2899E-02 | 1.7275E-02 | 8.9226E-01 | 4.6549E-02 | 3.3358E-02 |
Sign | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
F15 | |||||||||||
p-value | 2.8670E-05 | 2.4533E-01 | 2.0663E-03 | 4.1099E-02 | 4.6384E-02 | 4.0643E-02 | 9.3738E-02 | 1.3982E-01 | 9.3964E-03 | 3.5181E-01 | 1.5768E-02 |
Sign | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
F16 | |||||||||||
p-value | 2.2168E-01 | 2.2493E-01 | 3.9237E-01 | 4.9464E-02 | 2.2172E-01 | 2.2168E-01 | 2.2168E-01 | 2.2168E-01 | 2.2168E-01 | 2.1779E-02 | 2.2188E-01 |
Sign | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
F17 | |||||||||||
p-value | 2.5376E-02 | 4.9263E-02 | 7.0800E-01 | 2.6141E-02 | 2.5417E-02 | 2.5376E-02 | 2.5376E-02 | 2.5376E-02 | 2.5376E-02 | 2.7835E-02 | 1.1982E-02 |
Sign | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F18 | |||||||||||
p-value | 3.3442E-02 | 1.3387E-02 | 3.7619E-02 | 3.6649E-01 | 2.0723E-02 | 3.3442E-02 | 3.3442E-02 | 3.3442E-02 | 3.3443E-02 | 4.4389E-02 | 3.2447E-02 |
Sign | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F19 | |||||||||||
p-value | 2.4717E-02 | 4.7013E-02 | 3.0434E-02 | 6.9990E-01 | 2.4501E-02 | 2.3149E-02 | 2.4026E-02 | 6.1910E-01 | 2.3379E-02 | 8.1141E-01 | 3.3805E-02 |
Sign | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
F20 | |||||||||||
p-value | 7.8799E-04 | 8.2574E-01 | 3.3926E-01 | 1.7493E-03 | 2.9256E-01 | 9.1595E-04 | 2.8465E-04 | 2.8465E-04 | 9.1707E-04 | 4.1671E-01 | 1.7737E-01 |
Sign | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
F21 | |||||||||||
p-value | 6.6625E-03 | 3.2211E-02 | 7.1209E-04 | 4.6331E-02 | 6.2122E-01 | 9.8752E-01 | 2.8439E-02 | 1.0326E-02 | 4.0904E-02 | 1.7348E-01 | 3.3997E-03 |
Sign | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
F22 | |||||||||||
p-value | 4.5947E-01 | 1.6723E-02 | 1.3534E-03 | 8.6195E-03 | 2.2524E-01 | 1.1780E-02 | 8.5115E-01 | 2.2436E-02 | 2.4921E-02 | 1.8822E-02 | 2.2948E-03 |
Sign | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
F23 | |||||||||||
p-value | 9.2506E-01 | 6.1916E-02 | 8.1461E-03 | 2.2618E-01 | 4.8084E-02 | 8.2839E-01 | 2.6193E-02 | 5.6241E-01 | 2.8950E-02 | 2.2042E-02 | 2.5223E-02 |
Sign | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
Total | 16 | 14 | 17 | 19 | 16 | 16 | 15 | 15 | 14 | 11 | 17 |
Measure | Comparative Algorithms | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSA | WOA | SCA | DA | GWO | PSO | ALO | MPA | EO | AO | GOA | IGOA | |
F1 | ||||||||||||
Max | 1.6218E+04 | 2.1984E-21 | 5.5910E+03 | 1.6915E+04 | 1.2783E-06 | 1.8019E+02 | 2.8149E+04 | 3.6023E-23 | 1.3670E-13 | 5.3554E-79 | 6.6370E-03 | 1.5722E-79 |
Mean | 1.1851E+04 | 5.4959E-22 | 2.4330E+03 | 1.1095E+04 | 6.6143E-07 | 8.8624E+01 | 2.1047E+04 | 1.1866E-23 | 4.4250E-14 | 1.3389E-79 | 3.1433E-03 | 3.9304E-80 |
Min | 6.9875E+03 | 4.3444E-35 | 9.0817E+02 | 4.7960E+03 | 2.2679E-07 | 3.1343E+01 | 1.4298E+04 | 1.5924E-24 | 4.0144E-16 | 1.0172E-86 | 5.1212E-05 | 2.7584E-106 |
Std | 3.8851E+03 | 1.0992E-21 | 2.1585E+03 | 5.0664E+03 | 4.8487E-07 | 6.3910E+01 | 6.5360E+03 | 1.6212E-23 | 6.3336E-14 | 2.6777E-79 | 3.4204E-03 | 7.8608E-80 |
Ranking | 11 | 4 | 9 | 10 | 6 | 8 | 12 | 3 | 5 | 2 | 7 | 1 |
F2 | ||||||||||||
Max | 1.4023E+05 | 6.2386E-23 | 7.3347E+00 | 1.5847E+02 | 2.6315E-04 | 5.9956E+01 | 2.0823E+02 | 5.0305E-13 | 8.1913E-09 | 1.4280E-39 | 9.0945E-42 | 4.7159E-42 |
Mean | 4.9211E+04 | 1.5787E-23 | 4.5222E+00 | 1.1268E+02 | 1.3932E-04 | 3.9135E+01 | 1.6509E+02 | 1.7435E-13 | 5.4547E-09 | 4.1641E-40 | 2.2736E-42 | 1.2189E-42 |
Min | 1.3926E+02 | 4.2176E-30 | 6.1124E-01 | 6.7739E+01 | 4.5768E-05 | 2.2800E+01 | 7.3738E+01 | 2.9129E-14 | 2.6583E-09 | 1.1092E-42 | 4.7221E-59 | 1.8606E-51 |
Std | 6.6198E+04 | 3.1067E-23 | 3.0088E+00 | 4.3988E+01 | 9.3082E-05 | 1.5398E+01 | 6.3429E+01 | 2.2192E-13 | 2.2952E-09 | 6.7921E-40 | 4.5473E-42 | 2.3326E-42 |
Ranking | 12 | 4 | 8 | 10 | 7 | 9 | 11 | 5 | 6 | 3 | 2 | 1 |
F3 | ||||||||||||
Max | 6.5413E+04 | 6.8367E+05 | 1.0594E+05 | 2.4096E+05 | 1.7714E+03 | 1.4516E+04 | 1.5527E+05 | 1.9532E+00 | 6.2031E+01 | 1.0137E-76 | 4.8398E-01 | 3.9901E-84 |
Mean | 5.8588E+04 | 4.5196E+05 | 7.2010E+04 | 1.8319E+05 | 8.7469E+02 | 1.0734E+04 | 1.2098E+05 | 6.1570E-01 | 1.7256E+01 | 2.5343E-77 | 2.4046E-01 | 9.9751E-85 |
Min | 5.1191E+04 | 1.8831E+05 | 4.2268E+04 | 1.1646E+05 | 1.4849E+02 | 8.7526E+03 | 1.0824E+05 | 5.9612E-04 | 1.3599E-02 | 8.5573E-100 | 1.4096E-01 | 1.5318E-116 |
Std | 6.2005E+03 | 2.3483E+05 | 3.3319E+04 | 5.1089E+04 | 6.8684E+02 | 2.6554E+03 | 2.2920E+04 | 9.2270E-01 | 2.9999E+01 | 5.0687E-77 | 1.6308E-01 | 1.9950E-84 |
Ranking | 8 | 12 | 9 | 11 | 6 | 7 | 10 | 4 | 5 | 2 | 3 | 1 |
F4 | ||||||||||||
Max | 6.8899E+01 | 9.1800E+01 | 8.6073E+01 | 9.1337E+01 | 6.4686E+00 | 2.6396E+01 | 6.6814E+01 | 7.2917E-09 | 1.7832E-03 | 1.7153E-40 | 7.7673E-02 | 5.5416E-47 |
Mean | 6.3772E+01 | 7.8942E+01 | 8.1343E+01 | 5.4232E+01 | 4.5319E+00 | 2.4381E+01 | 5.5044E+01 | 3.3935E-09 | 7.1452E-04 | 4.2899E-41 | 7.2182E-02 | 1.4531E-47 |
Min | 6.0251E+01 | 4.1870E+01 | 7.4059E+01 | 2.3414E+01 | 2.8701E+00 | 2.2176E+01 | 4.2960E+01 | 1.6458E-09 | 2.1465E-04 | 2.7587E-52 | 6.7869E-02 | 2.8523E-65 |
Std | 3.6504E+00 | 2.4719E+01 | 5.2408E+00 | 2.8233E+01 | 1.7816E+00 | 1.7632E+00 | 1.0941E+01 | 2.6186E-09 | 7.2951E-04 | 8.5756E-41 | 4.1536E-03 | 2.7287E-47 |
Ranking | 10 | 11 | 12 | 8 | 6 | 7 | 9 | 3 | 4 | 2 | 5 | 1 |
F5 | ||||||||||||
Max | 1.1466E+07 | 4.8878E+01 | 2.5207E+07 | 2.0836E+07 | 4.8797E+01 | 6.0770E+04 | 3.2361E+07 | 4.8543E+01 | 4.8836E+01 | 9.2352E-01 | 4.8946E+01 | 7.5327E-02 |
Mean | 8.1869E+06 | 4.8787E+01 | 1.4245E+07 | 1.1847E+07 | 4.8365E+01 | 3.2787E+04 | 2.1723E+07 | 4.8080E+01 | 4.8736E+01 | 2.6935E-01 | 4.8824E+01 | 2.3955E-02 |
Min | 4.7476E+06 | 4.8704E+01 | 1.8179E+05 | 3.5789E+06 | 4.7957E+01 | 7.7683E+03 | 9.9082E+06 | 4.7882E+01 | 4.8561E+01 | 9.5134E-04 | 4.8635E+01 | 2.7754E-04 |
Std | 3.1123E+06 | 8.7276E-02 | 1.1337E+07 | 7.0631E+06 | 4.0259E-01 | 2.6510E+04 | 1.1468E+07 | 3.1421E-01 | 1.2161E-01 | 4.3930E-01 | 1.4145E-01 | 3.5332E-02 |
Ranking | 9 | 6 | 11 | 10 | 4 | 8 | 12 | 3 | 5 | 2 | 7 | 1 |
F6 | ||||||||||||
Max | 1.9156E+04 | 8.1525E+00 | 7.6716E+03 | 2.0207E+04 | 8.4984E+00 | 1.2644E+02 | 2.4720E+04 | 3.9668E+00 | 6.4815E+00 | 1.2152E-02 | 9.1091E+00 | 1.0081E-01 |
Mean | 1.2957E+04 | 7.3447E+00 | 3.6820E+03 | 1.5112E+04 | 7.6074E+00 | 9.2171E+01 | 1.9583E+04 | 3.6884E+00 | 6.0817E+00 | 3.7421E-03 | 8.7934E+00 | 4.2876E-02 |
Min | 1.0247E+04 | 6.2648E+00 | 6.0131E+02 | 4.7529E+03 | 7.0766E+00 | 4.9020E+01 | 1.4009E+04 | 3.3131E+00 | 5.8648E+00 | 3.6313E-07 | 8.0696E+00 | 2.7665E-03 |
Std | 4.1735E+03 | 7.8671E-01 | 2.9352E+03 | 7.0247E+03 | 6.2472E-01 | 3.2030E+01 | 4.5631E+03 | 2.8150E-01 | 2.7298E-01 | 5.6647E-03 | 4.8543E-01 | 4.1387E-02 |
Ranking | 10 | 5 | 9 | 11 | 6 | 8 | 12 | 3 | 4 | 1 | 7 | 2 |
F7 | ||||||||||||
Max | 2.9031E+01 | 3.1956E-02 | 9.8864E+00 | 2.2178E+01 | 3.0870E-02 | 4.9951E+02 | 3.9801E+01 | 3.1534E-03 | 1.7831E-02 | 8.0405E-04 | 1.2233E-03 | 6.5384E-04 |
Mean | 1.6099E+01 | 1.6597E-02 | 4.9402E+00 | 1.4279E+01 | 1.7940E-02 | 1.8972E+02 | 2.6277E+01 | 2.3485E-03 | 9.1412E-03 | 3.8734E-04 | 6.6861E-04 | 3.0638E-04 |
Min | 8.8668E+00 | 8.2613E-04 | 1.0335E+00 | 5.3067E+00 | 8.2160E-03 | 4.6662E+01 | 8.5259E+00 | 1.8104E-03 | 4.3024E-03 | 1.0980E-04 | 1.3892E-04 | 4.0132E-05 |
Std | 8.8703E+00 | 1.6283E-02 | 3.6637E+00 | 7.6343E+00 | 1.0628E-02 | 2.0972E+02 | 1.3917E+01 | 5.8897E-04 | 6.3451E-03 | 2.9642E-04 | 4.8153E-04 | 2.6922E-04 |
Ranking | 10 | 6 | 8 | 9 | 7 | 12 | 11 | 4 | 5 | 2 | 3 | 1 |
F8 | ||||||||||||
Max | −8.7775E+03 | −1.3214E+04 | −3.8859E+03 | −3.8665E+03 | −7.1314E+03 | −2.7860E+03 | −9.0295E+03 | −1.0965E+04 | −9.4877E+03 | −4.1272E+03 | −5.6384E+03 | −2.7814E+06 |
Mean | −9.4181E+03 | −1.7744E+04 | −4.1214E+03 | −4.6595E+03 | −8.3000E+03 | −4.1270E+03 | −9.0295E+03 | −1.1250E+04 | −1.0613E+04 | −4.7543E+03 | −6.0615E+03 | −1.9399E+09 |
Min | −1.0788E+04 | −2.0805E+04 | −4.3281E+03 | −6.2820E+03 | −9.1511E+03 | −5.2134E+03 | −9.0295E+03 | −1.1795E+04 | −1.2302E+04 | −6.1055E+03 | −6.6070E+03 | −5.7275E+09 |
Std | 9.2277E+02 | 3.6361E+03 | 1.9671E+02 | 1.1238E+03 | 9.8483E+02 | 1.0172E+03 | 0.0000E+00 | 3.7047E+02 | 1.1959E+03 | 9.1748E+02 | 4.6042E+02 | 2.6775E+09 |
Ranking | 5 | 2 | 12 | 10 | 7 | 11 | 6 | 3 | 4 | 9 | 8 | 1 |
F9 | ||||||||||||
Max | 4.0940E+02 | 6.7153E-07 | 2.2995E+02 | 6.3180E+02 | 2.1152E+01 | 4.0120E+02 | 3.6963E+02 | 0.0000E+00 | 2.8863E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Mean | 3.8197E+02 | 1.6788E-07 | 1.4151E+02 | 5.6403E+02 | 9.0516E+00 | 3.5740E+02 | 3.3235E+02 | 0.0000E+00 | 7.2156E-01 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Min | 3.6797E+02 | 0.0000E+00 | 4.2817E+01 | 5.1762E+02 | 1.6947E+00 | 3.3564E+02 | 3.0105E+02 | 0.0000E+00 | 5.6843E-13 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Std | 1.9120E+01 | 3.3576E-07 | 7.7491E+01 | 4.8844E+01 | 8.4071E+00 | 2.9652E+01 | 3.3984E+01 | 0.0000E+00 | 1.4431E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Ranking | 11 | 5 | 8 | 12 | 7 | 10 | 9 | 1 | 6 | 1 | 1 | 1 |
F10 | ||||||||||||
Max | 1.9306E+01 | 6.9722E-13 | 2.0650E+01 | 1.9961E+01 | 3.4051E-04 | 6.9781E+00 | 1.8075E+01 | 5.3024E-13 | 2.0638E-08 | 8.8818E-16 | 1.3498E-08 | 8.8818E-16 |
Mean | 1.8195E+01 | 1.8741E-13 | 1.8678E+01 | 1.7540E+01 | 2.0529E-04 | 5.4526E+00 | 7.9782E+00 | 3.7126E-13 | 1.1748E-08 | 8.8818E-16 | 3.3745E-09 | 8.8818E-16 |
Min | 1.7747E+01 | 4.4409E-15 | 1.2972E+01 | 1.6521E+01 | 6.9576E-05 | 4.3857E+00 | 8.8818E-16 | 2.2116E-13 | 4.6971E-09 | 8.8818E-16 | 8.8818E-16 | 8.8818E-16 |
Std | 7.4469E-01 | 3.4025E-13 | 3.8039E+00 | 1.6273E+00 | 1.2266E-04 | 1.1117E+00 | 8.7915E+00 | 1.3779E-13 | 6.6047E-09 | 0.0000E+00 | 6.7490E-09 | 0.0000E+00 |
Ranking | 11 | 3 | 12 | 10 | 7 | 8 | 9 | 4 | 6 | 1 | 5 | 1 |
F11 | ||||||||||||
Max | 1.7362E+02 | 1.1102E-16 | 1.0601E+01 | 4.3677E+02 | 7.4534E-02 | 1.9413E+02 | 3.1461E+02 | 0.0000E+00 | 1.0418E-02 | 0.0000E+00 | 3.4754E+02 | 0.0000E+00 |
Mean | 1.2334E+02 | 5.5511E-17 | 6.9297E+00 | 2.3595E+02 | 1.8637E-02 | 1.3345E+02 | 1.9353E+02 | 0.0000E+00 | 2.6046E-03 | 0.0000E+00 | 2.1478E+02 | 0.0000E+00 |
Min | 9.4444E+01 | 0.0000E+00 | 1.2481E+00 | 1.1602E+02 | 4.0480E-07 | 1.0472E+02 | 9.0246E+01 | 0.0000E+00 | 1.9984E-15 | 0.0000E+00 | 1.2010E+02 | 0.0000E+00 |
Std | 3.4603E+01 | 6.4099E-17 | 4.2980E+00 | 1.4060E+02 | 3.7264E-02 | 4.2027E+01 | 9.7164E+01 | 0.0000E+00 | 5.2092E-03 | 0.0000E+00 | 9.6724E+01 | 0.0000E+00 |
Ranking | 8 | 4 | 7 | 12 | 6 | 9 | 10 | 1 | 5 | 1 | 11 | 1 |
F12 | ||||||||||||
Max | 6.6041E+06 | 7.6181E-01 | 1.7325E+08 | 2.9504E+06 | 8.7300E-01 | 1.2819E+01 | 2.4959E+07 | 2.8493E-01 | 4.6137E-01 | 7.7594E-05 | 9.6619E-01 | 5.2576E-05 |
Mean | 4.7716E+06 | 6.7329E-01 | 8.5889E+07 | 1.3861E+06 | 5.2826E-01 | 8.2059E+00 | 9.8564E+06 | 2.0643E-01 | 3.9241E-01 | 3.0632E-05 | 9.3607E-01 | 2.1443E-05 |
Min | 7.2951E+05 | 4.2717E-01 | 5.0216E+07 | 6.7839E+05 | 4.0129E-01 | 3.6242E+00 | 1.9815E+06 | 1.1744E-01 | 3.2544E-01 | 1.9160E-06 | 9.0405E-01 | 3.9386E-07 |
Std | 2.7700E+06 | 1.6419E-01 | 5.8718E+07 | 1.0568E+06 | 2.2999E-01 | 4.0047E+00 | 1.0301E+07 | 6.8716E-02 | 6.0555E-02 | 3.2779E-05 | 2.8743E-02 | 2.5393E-05 |
Ranking | 10 | 6 | 12 | 9 | 5 | 8 | 11 | 3 | 4 | 2 | 7 | 1 |
F13 | ||||||||||||
Max | 1.8640E+08 | 4.0618E+00 | 3.5703E+08 | 5.1925E+07 | 4.5126E+00 | 9.2536E+01 | 1.3806E+08 | 4.6401E+00 | 3.9209E+00 | 7.1058E-03 | 5.0124E+00 | 5.0486E-04 |
Mean | 7.4528E+07 | 3.2654E+00 | 1.3817E+08 | 2.0251E+07 | 4.1590E+00 | 7.7931E+01 | 9.0749E+07 | 4.1691E+00 | 3.6951E+00 | 3.4706E-03 | 4.9641E+00 | 1.9322E-04 |
Min | 2.7158E+07 | 2.5325E+00 | 3.4788E+06 | 7.2943E+06 | 3.7958E+00 | 3.5409E+01 | 6.6837E+07 | 3.7053E+00 | 3.4860E+00 | 3.5106E-04 | 4.9044E+00 | 3.0919E-05 |
Std | 7.5206E+07 | 8.1278E-01 | 1.6310E+08 | 2.1185E+07 | 3.3293E-01 | 2.8350E+01 | 3.3005E+07 | 3.8267E-01 | 1.7869E-01 | 2.9141E-03 | 5.0203E-02 | 2.1632E-04 |
Ranking | 10 | 3 | 12 | 9 | 5 | 8 | 11 | 6 | 4 | 2 | 7 | 1 |
Friedman test | ||||||||||||
Mean Rank | 9.62 | 5.46 | 9.92 | 10.08 | 6.08 | 8.69 | 10.23 | 3.31 | 4.85 | 2.31 | 5.62 | 1.08 |
Final Ranking | 9 | 5 | 10 | 11 | 7 | 8 | 12 | 3 | 4 | 2 | 6 | 1 |
Measure | Comparative Algorithms | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSA | WOA | SCA | DA | GWO | PSO | ALO | MPA | EO | AO | GOA | IGOA | |
F1 | ||||||||||||
Max | 6.4450E+04 | 2.2100E-25 | 1.8971E+04 | 6.1119E+04 | 1.9274E-03 | 2.6248E+03 | 1.0401E+05 | 2.1620E-21 | 1.7958E-11 | 4.7366E-83 | 6.4311E-02 | 3.2757E-97 |
Mean | 5.8329E+04 | 6.0754E-26 | 1.5087E+04 | 3.0927E+04 | 1.2495E-03 | 1.8935E+03 | 8.6209E+04 | 8.2788E-22 | 8.9226E-12 | 1.1847E-83 | 4.5752E-02 | 8.1893E-98 |
Min | 4.6369E+04 | 6.0190E-30 | 1.0715E+04 | 7.4207E+03 | 8.4757E-04 | 1.2104E+03 | 5.7437E+04 | 5.0547E-23 | 8.6992E-13 | 3.0147E-93 | 3.5219E-02 | 4.1461E-126 |
Std | 8.2402E+03 | 1.0732E-25 | 4.0115E+03 | 2.3071E+04 | 4.9092E-04 | 6.0029E+02 | 2.0334E+04 | 9.2942E-22 | 9.1868E-12 | 2.3680E-83 | 1.3744E-02 | 1.6379E-97 |
Ranking | 11 | 3 | 9 | 10 | 6 | 8 | 12 | 4 | 5 | 2 | 7 | 1 |
F2 | ||||||||||||
Max | 1.1688E+25 | 3.4538E-23 | 4.4337E+01 | 3.2154E+02 | 7.1401E-03 | 2.2877E+02 | 4.8464E+02 | 7.1408E-13 | 9.6007E-08 | 1.0283E-44 | 1.4934E-12 | 7.6707E-49 |
Mean | 2.9221E+24 | 8.6966E-24 | 3.5901E+01 | 2.8186E+02 | 4.9435E-03 | 1.9384E+02 | 4.0496E+02 | 3.6888E-13 | 6.5048E-08 | 3.7138E-45 | 4.0823E-13 | 1.9177E-49 |
Min | 3.6567E+07 | 4.6747E-27 | 2.3812E+01 | 2.0375E+02 | 3.8459E-03 | 1.5887E+02 | 2.2760E+02 | 1.6618E-13 | 5.5969E-09 | 5.0295E-54 | 5.8608E-24 | 2.8573E-57 |
Std | 5.8441E+24 | 1.7228E-23 | 9.0612E+00 | 5.3474E+01 | 1.5476E-03 | 3.1984E+01 | 1.1956E+02 | 2.4632E-13 | 4.1719E-08 | 4.5717E-45 | 7.2438E-13 | 3.8354E-49 |
Ranking | 12 | 3 | 8 | 10 | 7 | 9 | 11 | 4 | 6 | 2 | 5 | 1 |
F3 | ||||||||||||
Max | 3.0940E+05 | 2.9857E+06 | 4.5705E+05 | 7.2240E+05 | 2.6564E+04 | 9.1971E+04 | 5.1265E+05 | 1.6998E+02 | 1.3121E+04 | 9.4571E-79 | 2.1274E+00 | 9.9554E-97 |
Mean | 2.3669E+05 | 1.7822E+06 | 2.9752E+05 | 6.5700E+05 | 1.9553E+04 | 8.5210E+04 | 4.3074E+05 | 5.5700E+01 | 4.8385E+03 | 2.3644E-79 | 8.8560E-01 | 5.5818E-97 |
Min | 1.6464E+05 | 9.4484E+05 | 2.0399E+05 | 5.8488E+05 | 1.2861E+04 | 7.6831E+04 | 3.9466E+05 | 2.5961E-01 | 9.3275E+01 | 3.7128E-93 | 3.2007E-01 | 4.0772E-112 |
Std | 6.7513E+04 | 9.2686E+05 | 1.1076E+05 | 6.5245E+04 | 6.5376E+03 | 6.8786E+03 | 5.5000E+04 | 7.7934E+01 | 6.1542E+03 | 4.7284E-79 | 8.4679E-01 | 4.1342E-97 |
Ranking | 8 | 12 | 9 | 11 | 6 | 7 | 10 | 4 | 5 | 2 | 3 | 1 |
F4 | ||||||||||||
Max | 8.9996E+01 | 9.5933E+01 | 9.7350E+01 | 9.0926E+01 | 3.6873E+01 | 4.2037E+01 | 9.2671E+01 | 7.6362E-08 | 4.6973E+00 | 4.0962E-40 | 1.3932E-01 | 5.7872E-40 |
Mean | 8.1540E+01 | 8.5303E+01 | 9.5168E+01 | 7.3538E+01 | 3.0380E+01 | 3.8428E+01 | 7.3165E+01 | 3.6609E-08 | 1.3036E+00 | 1.0252E-40 | 1.1315E-01 | 1.4468E-40 |
Min | 7.1679E+01 | 6.9219E+01 | 9.2087E+01 | 5.7173E+01 | 2.7215E+01 | 3.6876E+01 | 5.9800E+01 | 9.5124E-09 | 1.5244E-02 | 9.4961E-61 | 8.1765E-02 | 7.0045E-51 |
Std | 7.5223E+00 | 1.1439E+01 | 2.2576E+00 | 1.5401E+01 | 4.4120E+00 | 2.4303E+00 | 1.4777E+01 | 2.8403E-08 | 2.2658E+00 | 2.0473E-40 | 2.7412E-02 | 2.8936E-40 |
Ranking | 10 | 11 | 12 | 9 | 6 | 7 | 8 | 3 | 5 | 1 | 4 | 2 |
F5 | ||||||||||||
Max | 1.3626E+08 | 9.8819E+01 | 2.9568E+08 | 1.6827E+08 | 9.9508E+01 | 2.3804E+06 | 2.1146E+08 | 9.8561E+01 | 9.8782E+01 | 1.2431E+00 | 9.9003E+01 | 1.0128E+00 |
Mean | 1.1233E+08 | 9.8685E+01 | 1.8065E+08 | 1.3770E+08 | 9.8798E+01 | 1.6261E+06 | 1.3225E+08 | 9.8410E+01 | 9.8675E+01 | 6.8750E-01 | 9.8967E+01 | 2.5496E-01 |
Min | 9.6365E+07 | 9.8552E+01 | 1.0803E+08 | 9.1133E+07 | 9.7860E+01 | 1.1455E+06 | 7.1318E+07 | 9.7992E+01 | 9.8452E+01 | 2.2469E-01 | 9.8940E+01 | 7.9814E-04 |
Std | 1.7408E+07 | 1.1599E-01 | 8.7119E+07 | 3.6996E+07 | 6.8924E-01 | 5.3146E+05 | 5.8216E+07 | 2.7899E-01 | 1.5157E-01 | 4.5514E-01 | 2.7347E-02 | 5.0525E-01 |
Ranking | 9 | 5 | 12 | 11 | 6 | 8 | 10 | 3 | 4 | 2 | 7 | 1 |
F6 | ||||||||||||
Max | 8.9225E+04 | 1.7458E+01 | 4.4523E+04 | 4.8419E+04 | 1.8732E+01 | 4.5079E+03 | 1.1998E+05 | 1.5020E+01 | 1.8757E+01 | 4.8547E-02 | 2.0854E+01 | 9.9236E-02 |
Mean | 6.7793E+04 | 1.5675E+01 | 2.2272E+04 | 3.1812E+04 | 1.7622E+01 | 2.3132E+03 | 8.8804E+04 | 1.4006E+01 | 1.7521E+01 | 1.4148E-02 | 2.0176E+01 | 3.3483E-02 |
Min | 5.0618E+04 | 1.4788E+01 | 5.6090E+03 | 1.7590E+04 | 1.6555E+01 | 8.9842E+02 | 5.7004E+04 | 1.2863E+01 | 1.5730E+01 | 4.5258E-06 | 1.9503E+01 | 2.3732E-03 |
Std | 1.6012E+04 | 1.2371E+00 | 1.8107E+04 | 1.4850E+04 | 8.8996E-01 | 1.5634E+03 | 3.2783E+04 | 9.4087E-01 | 1.3357E+00 | 2.3070E-02 | 6.8445E-01 | 4.4461E-02 |
Ranking | 11 | 4 | 9 | 10 | 6 | 8 | 12 | 3 | 5 | 1 | 7 | 2 |
F7 | ||||||||||||
Max | 2.7204E+02 | 1.8463E-02 | 3.9305E+02 | 3.0559E+02 | 1.0116E-01 | 2.0273E+03 | 2.0268E+02 | 4.6610E-03 | 1.1035E-02 | 1.8323E-03 | 8.5588E-04 | 1.0198E-03 |
Mean | 1.4734E+02 | 9.5542E-03 | 1.6825E+02 | 1.9049E+02 | 5.8300E-02 | 1.7556E+03 | 1.3493E+02 | 2.3908E-03 | 8.0461E-03 | 8.9543E-04 | 5.3393E-04 | 3.7064E-04 |
Min | 7.9767E+01 | 6.0216E-03 | 7.5642E+01 | 1.0019E+02 | 2.5231E-02 | 1.4554E+03 | 5.2479E+01 | 1.5111E-03 | 6.0757E-03 | 6.8527E-06 | 1.7860E-05 | 2.0470E-05 |
Std | 8.6798E+01 | 5.9534E-03 | 1.5044E+02 | 8.9961E+01 | 3.5648E-02 | 2.5530E+02 | 6.5760E+01 | 1.5163E-03 | 2.2743E-03 | 8.5082E-04 | 3.6001E-04 | 4.6821E-04 |
Ranking | 9 | 6 | 10 | 11 | 7 | 12 | 8 | 4 | 5 | 3 | 2 | 1 |
F8 | ||||||||||||
Max | −1.3646E+04 | −2.1492E+04 | −5.3732E+03 | −6.6223E+03 | −1.1677E+04 | −5.1598E+03 | −1.8059E+04 | −1.6364E+04 | −1.4114E+04 | −4.9756E+03 | −7.1045E+03 | −4.9875E+06 |
Mean | −1.5292E+04 | −2.7471E+04 | −5.9623E+03 | −7.6416E+03 | −1.3239E+04 | −5.9618E+03 | −1.8059E+04 | −1.8456E+04 | −1.7127E+04 | -6.9425E+03 | −7.5314E+03 | −1.1856E+11 |
Min | −1.6871E+04 | −3.7725E+04 | −6.2835E+03 | −8.9144E+03 | −1.4785E+04 | −7.7160E+03 | −1.8059E+04 | −2.0714E+04 | −2.1019E+04 | −8.8904E+03 | −8.5248E+03 | −4.7145E+11 |
Std | 1.3184E+03 | 7.0723E+03 | 4.0828E+02 | 1.0152E+03 | 1.3767E+03 | 1.1981E+03 | 0.0000E+00 | 1.9681E+03 | 3.0433E+03 | 1.7483E+03 | 6.7273E+02 | 2.3526E+11 |
Ranking | 6 | 2 | 11 | 8 | 7 | 12 | 4 | 3 | 5 | 10 | 9 | 1 |
F9 | ||||||||||||
Max | 9.9339E+02 | 0.0000E+00 | 4.8313E+02 | 1.1884E+03 | 9.8581E+01 | 1.1115E+03 | 9.3285E+02 | 0.0000E+00 | 2.4728E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Mean | 8.7313E+02 | 0.0000E+00 | 3.2001E+02 | 1.1454E+03 | 5.4544E+01 | 9.7640E+02 | 8.0171E+02 | 0.0000E+00 | 8.7120E-01 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Min | 7.9510E+02 | 0.0000E+00 | 1.4363E+02 | 1.0557E+03 | 2.8686E+01 | 9.0364E+02 | 6.9063E+02 | 0.0000E+00 | 1.3642E-12 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Std | 8.6539E+01 | 0.0000E+00 | 1.6490E+02 | 6.0815E+01 | 3.0661E+01 | 9.8033E+01 | 1.0578E+02 | 0.0000E+00 | 1.1695E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
Ranking | 10 | 1 | 8 | 12 | 7 | 11 | 9 | 1 | 6 | 1 | 1 | 1 |
F10 | ||||||||||||
Max | 1.9126E+01 | 3.5039E-12 | 2.0689E+01 | 1.9743E+01 | 6.6654E-03 | 1.0103E+01 | 1.8613E+01 | 2.2462E-12 | 2.5460E-07 | 4.4409E-15 | 4.8293E-03 | 8.8818E-16 |
Mean | 1.8807E+01 | 9.2015E-13 | 2.0650E+01 | 1.6857E+01 | 4.6223E-03 | 9.7618E+00 | 9.3010E+00 | 1.7613E-12 | 1.4055E-07 | 1.7764E-15 | 2.4339E-03 | 8.8818E-16 |
Min | 1.8189E+01 | 1.5099E-14 | 2.0599E+01 | 1.4417E+01 | 2.2334E-03 | 9.3897E+00 | 8.8818E-16 | 1.4539E-12 | 6.4001E-08 | 8.8818E-16 | 3.7348E-06 | 8.8818E-16 |
Std | 4.1994E-01 | 1.7234E-12 | 3.7988E-02 | 2.5906E+00 | 2.0241E-03 | 3.1516E-01 | 1.0740E+01 | 3.4094E-13 | 8.0772E-08 | 1.7764E-15 | 2.2733E-03 | 0.0000E+00 |
Ranking | 11 | 3 | 12 | 10 | 7 | 9 | 8 | 4 | 5 | 2 | 6 | 1 |
F11 | ||||||||||||
Max | 7.6438E+02 | 0.0000E+00 | 2.4170E+02 | 5.5599E+02 | 1.3725E-01 | 3.4697E+02 | 8.8736E+02 | 0.0000E+00 | 4.4995E-11 | 0.0000E+00 | 1.5563E+03 | 0.0000E+00 |
Mean | 6.6258E+02 | 0.0000E+00 | 1.2059E+02 | 3.2260E+02 | 6.7813E-02 | 2.9022E+02 | 7.4397E+02 | 0.0000E+00 | 1.5632E-11 | 0.0000E+00 | 1.2242E+03 | 0.0000E+00 |
Min | 5.0940E+02 | 0.0000E+00 | 6.7609E+01 | 9.6513E+01 | 3.6218E-04 | 2.6014E+02 | 4.8176E+02 | 0.0000E+00 | 3.2496E-13 | 0.0000E+00 | 9.8697E+02 | 0.0000E+00 |
Std | 1.0973E+02 | 0.0000E+00 | 8.1316E+01 | 1.9609E+02 | 7.7747E-02 | 3.9246E+01 | 1.8275E+02 | 0.0000E+00 | 2.0097E-11 | 0.0000E+00 | 2.4182E+02 | 0.0000E+00 |
Ranking | 10 | 1 | 7 | 9 | 6 | 8 | 11 | 1 | 5 | 1 | 12 | 1 |
F12 | ||||||||||||
Max | 1.0867E+08 | 6.2302E-01 | 1.1473E+09 | 1.3795E+07 | 7.8790E-01 | 8.7761E+04 | 1.9343E+08 | 4.1403E-01 | 6.5971E-01 | 3.2853E-05 | 1.1572E+00 | 1.3334E-05 |
Mean | 7.7271E+07 | 5.0075E-01 | 7.2816E+08 | 7.4978E+06 | 6.9134E-01 | 3.0279E+04 | 1.2189E+08 | 3.6533E-01 | 6.2007E-01 | 1.5033E-05 | 1.0648E+00 | 7.0284E-06 |
Min | 5.3628E+07 | 2.8339E-01 | 2.5478E+08 | 2.0035E+06 | 5.7241E-01 | 1.1431E+03 | 4.8932E+07 | 3.3838E-01 | 5.4336E-01 | 1.5344E-06 | 1.0026E+00 | 7.4445E-09 |
Std | 2.4450E+07 | 1.5492E-01 | 3.7221E+08 | 5.3527E+06 | 1.0843E-01 | 4.0208E+04 | 6.2288E+07 | 3.4113E-02 | 5.3034E-02 | 1.5254E-05 | 6.7986E-02 | 7.2560E-06 |
Ranking | 10 | 4 | 12 | 9 | 6 | 8 | 11 | 3 | 5 | 2 | 7 | 1 |
F13 | ||||||||||||
Max | 6.1786E+08 | 9.3496E+00 | 1.0303E+09 | 5.1763E+08 | 1.0134E+01 | 9.1508E+05 | 7.5026E+08 | 9.7839E+00 | 9.2059E+00 | 4.2178E-02 | 1.0028E+01 | 2.5780E-02 |
Mean | 3.3934E+08 | 8.5770E+00 | 8.8837E+08 | 2.0178E+08 | 9.4544E+00 | 4.9212E+05 | 4.8928E+08 | 9.6897E+00 | 8.9239E+00 | 1.1599E-02 | 9.9911E+00 | 7.5849E-03 |
Min | 1.6900E+08 | 8.0494E+00 | 6.4915E+08 | 3.6750E+07 | 8.8932E+00 | 1.1739E+05 | 2.9431E+08 | 9.5922E+00 | 8.5903E+00 | 5.6404E-04 | 9.9129E+00 | 1.2093E-05 |
Std | 1.9376E+08 | 5.5539E-01 | 1.7019E+08 | 2.1606E+08 | 5.2363E-01 | 3.3819E+05 | 2.0447E+08 | 1.0628E-01 | 2.6804E-01 | 2.0401E-02 | 5.3388E-02 | 1.2292E-02 |
Ranking | 10 | 3 | 12 | 9 | 5 | 8 | 11 | 6 | 4 | 2 | 7 | 1 |
Friedman test | ||||||||||||
Mean Rank | 9.77 | 4.46 | 10.08 | 9.92 | 6.31 | 8.85 | 9.62 | 3.31 | 5.00 | 2.38 | 5.92 | 1.15 |
Final Ranking | 10 | 4 | 12 | 11 | 7 | 8 | 9 | 3 | 5 | 2 | 6 | 1 |
No. | Type | Description | Fi* |
---|---|---|---|
1 | Unimodal functions | SAR Bent Cigar Function | 100 |
2 | SAR Sum of Different Power Functions | 200 | |
3 | SAR Zakharov Function | 300 | |
4 | Simple Multimodal Functions | SAR Rosenbrock’s Function | 400 |
5 | SAR Rastrigin’s Function | 500 | |
6 | SAR Expanded Schaffer’s F6 Function | 600 | |
7 | SAR Lunacek’s Bi-Rastrigin Function | 700 | |
8 | SAR Non-Continuous Rastrigin’s Function | 800 | |
9 | SAR Lévy Function | 900 | |
10 | SAR Schwefel’s Function | 1000 | |
11 | Hybrid functions | HF1 (N = 3) | 1100 |
12 | HF2 (N = 3) | 1200 | |
13 | HF3 (N = 3) | 1300 | |
14 | HF4 (N = 4) | 1400 | |
15 | HF5 (N = 4) | 1500 | |
16 | HF6 (N = 4) | 1600 | |
17 | HF6 (N = 5) | 1700 | |
18 | HF6 (N = 5) | 1800 | |
19 | HF6 (N = 5) | 1900 | |
20 | HF6 (N = 6) | 2000 | |
21 | Composition Functions | CF1 (N = 3) | 2100 |
22 | CF2 (N = 3) | 2200 | |
23 | CF3 (N = 4) | 2300 | |
24 | CF4 (N = 4) | 2400 | |
25 | CF5 (N = 5) | 2500 | |
26 | CF6 (N = 5) | 2600 | |
27 | CF7 (N = 6) | 2700 | |
28 | CF8 (N = 6) | 2800 | |
29 | CF9 (N = 3) | 2900 | |
30 | CF10 (N = 3) | 3000 |
Measure | Comparative Algorithms | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GCHHO | CCMWOA | BMWOA | BWOA | SCADE | CGSCA | OBSCA | HGWO | CMSSA | DHHOM | IGOA | |
F1 | |||||||||||
Mean | 3.30940E+03 | 2.02540E+10 | 2.37560E+08 | 1.57600E+08 | 2.01310E+10 | 1.42880E+10 | 1.67810E+10 | 8.13100E+09 | 1.35370E+09 | 1.34700E+07 | 3.25100E+03 |
Std | 4.00990E+03 | 4.34540E+09 | 1.12730E+08 | 9.52730E+07 | 2.37100E+09 | 1.99070E+09 | 2.57230E+09 | 1.16330E+09 | 8.03300E+08 | 2.56170E+06 | 4.65850E+04 |
F2 | |||||||||||
Mean | 1.42050E+06 | 7.75550E+37 | 2.63340E+22 | 1.86990E+26 | 1.55760E+36 | 1.78980E+35 | 3.60910E+35 | 1.18990E+34 | 7.57370E+31 | 7.66760E+15 | 1.32600E+03 |
Std | 4.35570E+06 | 2.78850E+38 | 1.01970E+23 | 7.00190E+26 | 4.19900E+36 | 4.60380E+35 | 8.75620E+35 | 2.40170E+34 | 3.86780E+32 | 2.11000E+16 | 4.23561E+06 |
F3 | |||||||||||
Mean | 5.72480E+02 | 7.75120E+04 | 6.95490E+04 | 5.78200E+04 | 5.93160E+04 | 4.18320E+04 | 6.17240E+04 | 7.78820E+04 | 5.91790E+04 | 1.54280E+04 | 5.72000E+02 |
Std | 2.29300E+02 | 6.00500E+03 | 8.30380E+03 | 1.08020E+04 | 6.77840E+03 | 7.55140E+03 | 5.80660E+03 | 5.29540E+03 | 7.90900E+03 | 3.37440E+03 | 2.15410E+04 |
F4 | |||||||||||
Mean | 4.92330E+02 | 3.37030E+03 | 6.13220E+02 | 6.11720E+02 | 3.69940E+03 | 1.71050E+03 | 2.67520E+03 | 8.98810E+02 | 6.97120E+02 | 5.38890E+02 | 4.93000E+02 |
Std | 2.20920E+01 | 1.07380E+03 | 4.52740E+01 | 7.44420E+01 | 7.85300E+02 | 3.16700E+02 | 8.37710E+02 | 1.21710E+02 | 1.25430E+02 | 3.28540E+01 | 2.15000E+02 |
F5 | |||||||||||
Mean | 7.16920E+02 | 8.35120E+02 | 7.94230E+02 | 7.67440E+02 | 8.28150E+02 | 7.89630E+02 | 8.06510E+02 | 7.50670E+02 | 7.16280E+02 | 7.35870E+02 | 7.15000E+02 |
Std | 3.58460E+01 | 3.41570E+01 | 4.81890E+01 | 3.47290E+01 | 2.18030E+01 | 2.43770E+01 | 2.45210E+01 | 1.39620E+01 | 5.00250E+01 | 3.09490E+01 | 1.21456E+01 |
F6 | |||||||||||
Mean | 6.52280E+02 | 6.68500E+02 | 6.64740E+02 | 6.67190E+02 | 6.60110E+02 | 6.54060E+02 | 6.57370E+02 | 6.37400E+02 | 6.52630E+02 | 6.62000E+02 | 6.37322E+02 |
Std | 7.04260E+00 | 7.43640E+00 | 1.22790E+01 | 4.92080E+00 | 5.71150E+00 | 6.12160E+00 | 5.42690E+00 | 2.75530E+00 | 1.67270E+01 | 6.79720E+00 | 1.23549E+01 |
F7 | |||||||||||
Mean | 1.07440E+03 | 1.28440E+03 | 1.18850E+03 | 1.23650E+03 | 1.17650E+03 | 1.14720E+03 | 1.17170E+03 | 1.03810E+03 | 9.80550E+02 | 1.23790E+03 | 9.80003E+02 |
Std | 9.50300E+01 | 7.86780E+01 | 1.04810E+02 | 7.38450E+01 | 3.21420E+01 | 5.09880E+01 | 3.47780E+01 | 2.95840E+01 | 6.57600E+01 | 7.19790E+01 | 2.15648E+01 |
F8 | |||||||||||
Mean | 9.51300E+02 | 1.05130E+03 | 1.01270E+03 | 9.77110E+02 | 1.08420E+03 | 1.05910E+03 | 1.06590E+03 | 1.00090E+03 | 9.89580E+02 | 9.53930E+02 | 9.50548E+02 |
Std | 2.50210E+01 | 3.14490E+01 | 3.44830E+01 | 2.20290E+01 | 1.78760E+01 | 2.15500E+01 | 1.96760E+01 | 1.30390E+01 | 3.35310E+01 | 2.24990E+01 | 1.23684E+01 |
F9 | |||||||||||
Mean | 4.99930E+03 | 7.99490E+03 | 7.26070E+03 | 6.21960E+03 | 8.16870E+03 | 6.13090E+03 | 6.89320E+03 | 3.48300E+03 | 4.79750E+03 | 7.15890E+03 | 3.48226E+03 |
Std | 6.67700E+02 | 1.18910E+03 | 1.33260E+03 | 8.87330E+02 | 1.20850E+03 | 1.22730E+03 | 1.13440E+03 | 4.07920E+02 | 1.93030E+03 | 7.65270E+02 | 1.85667E+02 |
F10 | |||||||||||
Mean | 4.93970E+03 | 7.11260E+03 | 7.41370E+03 | 6.54980E+03 | 8.23470E+03 | 8.14170E+03 | 7.36950E+03 | 6.65980E+03 | 6.29020E+03 | 5.52560E+03 | 4.93911E+03 |
Std | 7.02370E+02 | 6.56310E+02 | 7.24060E+02 | 9.75090E+02 | 2.22270E+02 | 2.97070E+02 | 3.50750E+02 | 4.53880E+02 | 6.78770E+02 | 5.45470E+02 | 1.98266E+02 |
F11 | |||||||||||
Mean | 1.22750E+03 | 3.51630E+03 | 1.63860E+03 | 1.74140E+03 | 3.43800E+03 | 2.24610E+03 | 2.69610E+03 | 5.03510E+03 | 2.11820E+03 | 1.25990E+03 | 1.22636E+03 |
Std | 4.61680E+01 | 7.12600E+02 | 1.73870E+02 | 2.18240E+02 | 6.15770E+02 | 2.93550E+02 | 5.75960E+02 | 9.23410E+02 | 3.80140E+02 | 4.31720E+01 | 3.26710E+01 |
F12 | |||||||||||
Mean | 1.18910E+06 | 2.18990E+09 | 7.96980E+07 | 1.34760E+08 | 1.92660E+09 | 1.43190E+09 | 2.04570E+09 | 5.89000E+08 | 1.78120E+08 | 1.54720E+07 | 1.18237E+06 |
Std | 1.05870E+06 | 1.40780E+09 | 6.51450E+07 | 8.69410E+07 | 4.82420E+08 | 3.09240E+08 | 6.73740E+08 | 1.53340E+08 | 1.86560E+08 | 1.09180E+07 | 1.53623E+04 |
F13 | |||||||||||
Mean | 1.51460E+04 | 8.10180E+07 | 3.16270E+05 | 2.49390E+05 | 6.42760E+08 | 5.11870E+08 | 6.32870E+08 | 3.06160E+08 | 7.74430E+05 | 4.53100E+05 | 1.51413E+04 |
Std | 1.55350E+04 | 1.01880E+08 | 2.76180E+05 | 1.49100E+05 | 2.80990E+08 | 1.88770E+08 | 2.45500E+08 | 1.52570E+08 | 3.73460E+06 | 3.41790E+05 | 1.23633E+04 |
F14 | |||||||||||
Mean | 4.37800E+04 | 1.36190E+06 | 4.51810E+05 | 9.58570E+05 | 3.42730E+05 | 1.83780E+05 | 2.12560E+05 | 7.58740E+05 | 3.33800E+05 | 1.26670E+05 | 4.36933E+04 |
Std | 3.37360E+04 | 1.06020E+06 | 2.97310E+05 | 1.03090E+06 | 1.51470E+05 | 1.04920E+05 | 1.04490E+05 | 6.32210E+05 | 3.16240E+05 | 1.06830E+05 | 1.54932E+04 |
F15 | |||||||||||
Mean | 7.98250E+03 | 6.08890E+06 | 8.76670E+04 | 1.20450E+05 | 8.49960E+06 | 1.02240E+07 | 1.38510E+07 | 1.27440E+07 | 2.58440E+04 | 6.76810E+04 | 7.98191E+03 |
Std | 7.03540E+03 | 7.18430E+06 | 9.03590E+04 | 8.97940E+04 | 5.00020E+06 | 1.16050E+07 | 1.72250E+07 | 1.57900E+07 | 2.18710E+04 | 4.31430E+04 | 7.54535E+03 |
F16 | |||||||||||
Mean | 2.75590E+03 | 3.82030E+03 | 3.29790E+03 | 3.67160E+03 | 3.91670E+03 | 3.76790E+03 | 3.84600E+03 | 3.29040E+03 | 3.18600E+03 | 3.27670E+03 | 2.75461E+03 |
Std | 3.40700E+02 | 5.19220E+02 | 3.55500E+02 | 5.13770E+02 | 2.38250E+02 | 2.22570E+02 | 2.22620E+02 | 1.67740E+02 | 3.03380E+02 | 2.92610E+02 | 1.33951E+02 |
F17 | |||||||||||
Mean | 2.32790E+03 | 2.74680E+03 | 2.37630E+03 | 2.60050E+03 | 2.52920E+03 | 2.46670E+03 | 2.60340E+03 | 2.41310E+03 | 2.38060E+03 | 2.61210E+03 | 2.32751E+03 |
Std | 2.20580E+02 | 3.49430E+02 | 2.56110E+02 | 2.84310E+02 | 1.63110E+02 | 1.85890E+02 | 1.61410E+02 | 1.69650E+02 | 1.98150E+02 | 2.77480E+02 | 1.25317E+02 |
F18 | |||||||||||
Mean | 2.25110E+05 | 8.74010E+06 | 2.91200E+06 | 3.17660E+06 | 3.73710E+06 | 3.13090E+06 | 4.22870E+06 | 1.46490E+06 | 2.46650E+06 | 1.09400E+06 | 2.25110E+05 |
Std | 1.61650E+05 | 8.78500E+06 | 2.41540E+06 | 3.06640E+06 | 2.58540E+06 | 1.39660E+06 | 2.36190E+06 | 1.30980E+06 | 3.60400E+06 | 9.71750E+05 | 1.65429E+04 |
F19 | |||||||||||
Mean | 6.63810E+03 | 5.12680E+06 | 7.74970E+05 | 3.48230E+06 | 2.33610E+07 | 2.46870E+07 | 4.16280E+07 | 1.38590E+07 | 6.29370E+06 | 4.04430E+05 | 6.63798E+03 |
Std | 7.38500E+03 | 7.32160E+06 | 8.59610E+05 | 3.12020E+06 | 1.15100E+07 | 1.22460E+07 | 2.74960E+07 | 1.55780E+07 | 5.81650E+06 | 2.62140E+05 | 4.62325E+03 |
F20 | |||||||||||
Mean | 2.56010E+03 | 2.70240E+03 | 2.76650E+03 | 2.79680E+03 | 2.74110E+03 | 2.62520E+03 | 2.70000E+03 | 2.65430E+03 | 2.60240E+03 | 2.71820E+03 | 2.55955E+03 |
Std | 2.02220E+02 | 2.16930E+02 | 1.62670E+02 | 2.18290E+02 | 1.08830E+02 | 1.38560E+02 | 1.31380E+02 | 1.30220E+02 | 2.05090E+02 | 1.30250E+02 | 1.12149E+02 |
F21 | |||||||||||
Mean | 2.48850E+03 | 2.61950E+03 | 2.53510E+03 | 2.57030E+03 | 2.57740E+03 | 2.56520E+03 | 2.44250E+03 | 2.50510E+03 | 2.46770E+03 | 2.55420E+03 | 2.48749E+03 |
Std | 3.85930E+01 | 5.12580E+01 | 4.56750E+01 | 5.02670E+01 | 2.56880E+01 | 3.32110E+01 | 8.21800E+01 | 1.56890E+01 | 5.50670E+01 | 4.03780E+01 | 1.51456E+02 |
F22 | |||||||||||
Mean | 4.62350E+03 | 7.04850E+03 | 5.53390E+03 | 6.18390E+03 | 4.59700E+03 | 3.93100E+03 | 4.11250E+03 | 3.23580E+03 | 2.94720E+03 | 6.79490E+03 | 2.94754E+03 |
Std | 2.41780E+03 | 1.54310E+03 | 3.21560E+03 | 2.48410E+03 | 2.19660E+02 | 2.56550E+02 | 3.62170E+02 | 2.77220E+02 | 1.26680E+03 | 1.67410E+03 | 3.20515E+02 |
F23 | |||||||||||
Mean | 2.92700E+03 | 3.18090E+03 | 2.99450E+03 | 3.08030E+03 | 3.01140E+03 | 3.00190E+03 | 3.01420E+03 | 2.90250E+03 | 2.84090E+03 | 3.16020E+03 | 2.99325E+03 |
Std | 7.37890E+01 | 1.18160E+02 | 8.17800E+01 | 1.07680E+02 | 3.48820E+01 | 3.15550E+01 | 4.54740E+01 | 1.68870E+01 | 6.23460E+01 | 1.38630E+02 | 2.35565E+02 |
F24 | |||||||||||
Mean | 3.08380E+03 | 3.30380E+03 | 3.09670E+03 | 3.19780E+03 | 3.16640E+03 | 3.14920E+03 | 3.18440E+03 | 3.05480E+03 | 2.95410E+03 | 3.44050E+03 | 2.95326E+03 |
Std | 5.04200E+01 | 1.16420E+02 | 7.36580E+01 | 8.09340E+01 | 3.72610E+01 | 2.53380E+01 | 3.43000E+01 | 2.60000E+01 | 3.86290E+01 | 1.45780E+02 | 3.52588E+01 |
F25 | |||||||||||
Mean | 2.90010E+03 | 3.44510E+03 | 3.02210E+03 | 3.01640E+03 | 3.45100E+03 | 3.28120E+03 | 3.38280E+03 | 3.08930E+03 | 3.09440E+03 | 2.91640E+03 | 3.00055E+03 |
Std | 1.49490E+01 | 1.41040E+02 | 3.39370E+01 | 4.69270E+01 | 9.77010E+01 | 1.02840E+02 | 1.57830E+02 | 3.12340E+01 | 5.98770E+01 | 2.30520E+01 | 1.22550E+01 |
F26 | |||||||||||
Mean | 5.65890E+03 | 9.01340E+03 | 6.69870E+03 | 8.11220E+03 | 7.41680E+03 | 7.13610E+03 | 7.05350E+03 | 5.92290E+03 | 5.48950E+03 | 7.64800E+03 | 5.47518E+03 |
Std | 1.72280E+03 | 1.03630E+03 | 9.25950E+02 | 7.67280E+02 | 2.41560E+02 | 3.74440E+02 | 5.36350E+02 | 4.49190E+02 | 1.27270E+03 | 1.08640E+03 | 4.52201E+02 |
F27 | |||||||||||
Mean | 3.26360E+03 | 3.63050E+03 | 3.31650E+03 | 3.39200E+03 | 3.44060E+03 | 3.38790E+03 | 3.45800E+03 | 3.31450E+03 | 3.33700E+03 | 3.38570E+03 | 3.26194E+03 |
Std | 2.42390E+01 | 1.79580E+02 | 7.97790E+01 | 8.83970E+01 | 5.54960E+01 | 4.08300E+01 | 5.42170E+01 | 2.33400E+01 | 8.83800E+01 | 9.26590E+01 | 5.66982E+01 |
F28 | |||||||||||
Mean | 3.21950E+03 | 4.67320E+03 | 3.39180E+03 | 3.38910E+03 | 4.37540E+03 | 3.89120E+03 | 4.18740E+03 | 3.60200E+03 | 3.52070E+03 | 3.27420E+03 | 3.29525E+03 |
Std | 2.31010E+01 | 4.05870E+02 | 4.45990E+01 | 4.22080E+01 | 2.39090E+02 | 1.21840E+02 | 1.91430E+02 | 4.75420E+01 | 1.14230E+02 | 2.25600E+01 | 2.35466E+01 |
F29 | |||||||||||
Mean | 4.04170E+03 | 5.18310E+03 | 4.78350E+03 | 5.07360E+03 | 5.08210E+03 | 4.76980E+03 | 4.94150E+03 | 4.48290E+03 | 4.76470E+03 | 4.49320E+03 | 4.04055E+03 |
Std | 2.30680E+02 | 4.91440E+02 | 4.43160E+02 | 5.09510E+02 | 2.77570E+02 | 2.08340E+02 | 2.10560E+02 | 1.72000E+02 | 4.50640E+02 | 3.90420E+02 | 2.35486E+02 |
F30 | |||||||||||
Mean | 1.15970E+04 | 5.82960E+07 | 7.26090E+06 | 1.50610E+07 | 8.68650E+07 | 8.04480E+07 | 1.16700E+08 | 7.21540E+07 | 2.47330E+07 | 2.64540E+06 | 1.93215E+05 |
Std | 4.23300E+03 | 5.37510E+07 | 5.42220E+06 | 1.03830E+07 | 3.83730E+07 | 2.22460E+07 | 4.32210E+07 | 3.48540E+07 | 2.61650E+07 | 1.50810E+06 | 6.45852E+05 |
Measure | Comparative Algorithms | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GCHHO | CCMWOA | BMWOA | BWOA | SCADE | CGSCA | OBSCA | HGWO | CMSSA | DHHOM | IGOA | |
F1 | 2 | 11 | 5 | 4 | 10 | 8 | 9 | 7 | 6 | 3 | 1 |
F2 | 2 | 11 | 4 | 5 | 10 | 8 | 9 | 7 | 6 | 3 | 1 |
F3 | 2 | 10 | 9 | 5 | 7 | 4 | 8 | 11 | 6 | 3 | 1 |
F4 | 1 | 10 | 5 | 4 | 11 | 8 | 9 | 7 | 6 | 3 | 2 |
F5 | 3 | 11 | 8 | 6 | 10 | 7 | 9 | 5 | 2 | 4 | 1 |
F6 | 3 | 11 | 9 | 10 | 7 | 5 | 6 | 2 | 4 | 8 | 1 |
F7 | 4 | 11 | 8 | 9 | 7 | 5 | 6 | 3 | 2 | 10 | 1 |
F8 | 2 | 8 | 7 | 4 | 11 | 9 | 10 | 6 | 5 | 3 | 1 |
F9 | 4 | 10 | 9 | 6 | 11 | 5 | 7 | 2 | 3 | 8 | 1 |
F10 | 2 | 7 | 9 | 5 | 11 | 10 | 8 | 6 | 4 | 3 | 1 |
F11 | 2 | 10 | 4 | 5 | 9 | 7 | 8 | 11 | 6 | 3 | 1 |
F12 | 2 | 11 | 4 | 5 | 9 | 8 | 10 | 7 | 6 | 3 | 1 |
F13 | 2 | 7 | 4 | 3 | 11 | 9 | 10 | 8 | 6 | 5 | 1 |
F14 | 2 | 11 | 8 | 10 | 7 | 4 | 5 | 9 | 6 | 3 | 1 |
F15 | 2 | 7 | 5 | 6 | 8 | 9 | 11 | 10 | 3 | 4 | 1 |
F16 | 2 | 9 | 6 | 7 | 11 | 8 | 10 | 5 | 3 | 4 | 1 |
F17 | 2 | 11 | 3 | 8 | 7 | 6 | 9 | 5 | 4 | 10 | 1 |
F18 | 2 | 11 | 6 | 8 | 9 | 7 | 10 | 4 | 5 | 3 | 1 |
F19 | 2 | 6 | 4 | 5 | 9 | 10 | 11 | 8 | 7 | 3 | 1 |
F20 | 2 | 7 | 10 | 11 | 9 | 4 | 6 | 5 | 3 | 8 | 1 |
F21 | 4 | 11 | 6 | 9 | 10 | 8 | 1 | 5 | 2 | 7 | 3 |
F22 | 7 | 11 | 8 | 9 | 6 | 4 | 5 | 3 | 1 | 10 | 2 |
F23 | 3 | 11 | 5 | 9 | 7 | 6 | 8 | 2 | 1 | 10 | 4 |
F24 | 4 | 10 | 5 | 9 | 7 | 6 | 8 | 3 | 2 | 11 | 1 |
F25 | 1 | 10 | 5 | 4 | 11 | 8 | 9 | 6 | 7 | 2 | 3 |
F26 | 3 | 11 | 5 | 10 | 8 | 7 | 6 | 4 | 2 | 9 | 1 |
F27 | 2 | 11 | 4 | 8 | 9 | 7 | 10 | 3 | 5 | 6 | 1 |
F28 | 1 | 11 | 5 | 4 | 10 | 8 | 9 | 7 | 6 | 2 | 3 |
F29 | 2 | 11 | 7 | 9 | 10 | 6 | 8 | 3 | 5 | 4 | 1 |
F30 | 1 | 7 | 4 | 5 | 10 | 9 | 11 | 8 | 6 | 3 | 2 |
Summation | 73 | 294 | 181 | 202 | 272 | 210 | 246 | 172 | 130 | 158 | 42 |
Mean Rank | 2.4333 | 9.8 | 6.033 | 6.733 | 9.066 | 7.00 | 8.200 | 5.733 | 4.333 | 5.266 | 1.400 |
Final Ranking | 2 | 11 | 6 | 7 | 10 | 8 | 9 | 5 | 3 | 4 | 1 |
Dataset | Features No. | Instances No. | Classes No. |
---|---|---|---|
Cancer | 9 | 683 | 2 |
CMC | 10 | 1473 | 3 |
Glass | 9 | 214 | 7 |
Iris | 4 | 150 | 3 |
Seeds | 7 | 210 | 3 |
Heart | 13 | 270 | 2 |
Vowels | 6 | 871 | 3 |
Water | 13 | 178 | 3 |
Dataset | Metric | Comparative Algorithms | |||||||
---|---|---|---|---|---|---|---|---|---|
AOA | PSO | GWO | SCA | PDOA | RSA | GOA | IGOA | ||
Cancer | Worst | 3.34E+03 | 2.01E+03 | 2.95E+03 | 3.47E+03 | 3.50E+03 | 3.55E+03 | 3.48E+03 | 3.73E+02 |
Average | 3.28E+03 | 1.12E+03 | 2.81E+03 | 3.16E+03 | 3.23E+03 | 3.38E+03 | 3.18E+03 | 2.49E+02 | |
Best | 3.19E+03 | 5.62E+02 | 2.48E+03 | 2.88E+03 | 3.06E+03 | 3.05E+03 | 2.94E+03 | 1.54E+02 | |
STD | 7.93E+01 | 5.98E+02 | 1.92E+02 | 2.85E+02 | 2.10E+02 | 1.90E+02 | 2.35E+02 | 9.07E+01 | |
CMC | Worst | 3.33E+02 | 9.60E+01 | 3.11E+02 | 3.35E+02 | 3.35E+02 | 3.35E+02 | 3.35E+02 | 8.08E+01 |
Average | 3.33E+02 | 8.95E+01 | 3.08E+02 | 3.33E+02 | 3.35E+02 | 3.34E+02 | 3.34E+02 | 7.76E+01 | |
Best | 3.32E+02 | 8.14E+01 | 3.01E+02 | 3.32E+02 | 3.34E+02 | 3.33E+02 | 3.32E+02 | 7.43E+01 | |
STD | 5.34E-01 | 6.48E+00 | 4.21E+00 | 9.86E-01 | 2.03E-01 | 8.63E-01 | 1.12E+00 | 2.77E+00 | |
Glass | Worst | 3.48E+01 | 1.08E+01 | 3.07E+01 | 3.49E+01 | 3.52E+01 | 3.43E+01 | 3.51E+01 | 1.23E+00 |
Average | 3.42E+01 | 6.40E+00 | 2.89E+01 | 3.44E+01 | 3.49E+01 | 3.37E+01 | 3.44E+01 | 7.67E-01 | |
Best | 3.36E+01 | 0.00E+00 | 2.74E+01 | 3.37E+01 | 3.44E+01 | 3.23E+01 | 3.37E+01 | 0.00E+00 | |
STD | 4.65E-01 | 4.20E+00 | 1.40E+00 | 4.16E-01 | 3.35E-01 | 8.74E-01 | 6.66E-01 | 4.62E-01 | |
Iris | Worst | 2.39E+01 | 6.19E+00 | 1.66E+01 | 2.43E+01 | 2.47E+01 | 2.47E+01 | 2.48E+01 | 2.16E+00 |
Average | 2.37E+01 | 4.48E+00 | 1.54E+01 | 2.37E+01 | 2.37E+01 | 2.40E+01 | 2.44E+01 | 1.60E+00 | |
Best | 2.33E+01 | 6.16E-01 | 1.42E+01 | 2.29E+01 | 2.27E+01 | 2.33E+01 | 2.39E+01 | 9.03E-01 | |
STD | 2.68E-01 | 2.23E+00 | 1.07E+00 | 5.47E-01 | 8.98E-01 | 5.31E-01 | 3.39E-01 | 5.38E-01 | |
Seeds | Worst | 4.92E+01 | 1.96E+01 | 4.52E+01 | 5.02E+01 | 5.01E+01 | 5.06E+01 | 5.04E+01 | 6.65E+00 |
Average | 4.86E+01 | 1.69E+01 | 3.89E+01 | 4.86E+01 | 4.92E+01 | 4.99E+01 | 4.97E+01 | 6.28E+00 | |
Best | 4.80E+01 | 1.56E+01 | 3.59E+01 | 4.74E+01 | 4.78E+01 | 4.84E+01 | 4.82E+01 | 5.95E+00 | |
STD | 5.41E-01 | 1.60E+00 | 3.65E+00 | 1.12E+00 | 9.53E-01 | 8.76E-01 | 9.81E-01 | 2.55E-01 | |
Statlog (Heart) | Worst | 1.66E+03 | 4.06E+02 | 9.85E+02 | 1.69E+03 | 1.69E+03 | 1.67E+03 | 1.66E+03 | 3.53E+01 |
Average | 1.58E+03 | 2.72E+02 | 9.14E+02 | 1.65E+03 | 1.59E+03 | 1.49E+03 | 1.60E+03 | 2.12E+01 | |
Best | 1.50E+03 | 7.35E+01 | 7.40E+02 | 1.61E+03 | 1.48E+03 | 1.39E+03 | 1.43E+03 | 0.00E+00 | |
STD | 6.06E+01 | 1.28E+02 | 1.01E+02 | 2.97E+01 | 7.84E+01 | 1.09E+02 | 9.47E+01 | 1.38E+01 | |
Vowels | Worst | 1.53E+02 | 2.51E+01 | 1.53E+02 | 1.53E+02 | 1.53E+02 | 1.53E+02 | 1.53E+02 | 2.10E+01 |
Average | 1.52E+02 | 2.05E+01 | 1.37E+02 | 1.53E+02 | 1.53E+02 | 1.52E+02 | 1.53E+02 | 1.97E+01 | |
Best | 1.52E+02 | 1.56E+01 | 1.28E+02 | 1.52E+02 | 1.53E+02 | 1.51E+02 | 1.52E+02 | 1.85E+01 | |
STD | 4.75E-01 | 5.43E+00 | 1.00E+01 | 2.97E-01 | 1.20E-01 | 4.95E-01 | 3.70E-01 | 1.04E+00 | |
Water | Worst | 3.91E+03 | 1.66E+03 | 2.91E+03 | 4.02E+03 | 3.94E+03 | 3.91E+03 | 3.98E+03 | 3.63E+02 |
Average | 3.87E+03 | 1.20E+03 | 2.52E+03 | 3.91E+03 | 3.87E+03 | 3.83E+03 | 3.84E+03 | 3.08E+02 | |
Best | 3.78E+03 | 8.05E+02 | 2.20E+03 | 3.79E+03 | 3.72E+03 | 3.77E+03 | 3.42E+03 | 2.48E+02 | |
STD | 5.49E+01 | 3.39E+02 | 3.29E+02 | 9.24E+01 | 9.02E+01 | 5.02E+01 | 2.31E+02 | 4.17E+01 |
Dataset | Metric | Comparative Algorithms | |||||||
---|---|---|---|---|---|---|---|---|---|
AOA | PSO | GWO | SCA | PDOA | RSA | GOA | IGOA | ||
Cancer | p-value | 1.11E-11 | 0.012455 | 3.83E-09 | 2.12E-08 | 2.11E-09 | 7.38E-10 | 5.2E-09 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 7 | 2 | 3 | 4 | 6 | 8 | 5 | 1 | |
CMC | p-value | 4.01E-16 | 0.005429 | 9.41E-14 | 5.47E-16 | 3.34E-16 | 4.8E-16 | 6.09E-16 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 4 | 2 | 3 | 5 | 8 | 7 | 6 | 1 | |
Glass | p-value | 3.93E-14 | 0.017665 | 1.01E-10 | 2.43E-14 | 1.1E-14 | 1.19E-12 | 2.02E-13 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 5 | 2 | 3 | 6 | 8 | 4 | 7 | 1 | |
Iris | p-value | 5.39E-13 | 0.022566 | 5.6E-09 | 3.76E-12 | 4.45E-11 | 2.96E-12 | 6.55E-13 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 4 | 2 | 3 | 5 | 6 | 7 | 8 | 1 | |
Seeds | p-value | 2.85E-15 | 4.65E-07 | 4.18E-08 | 5.38E-13 | 1.39E-13 | 6.58E-14 | 1.58E-13 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 5 | 2 | 3 | 4 | 6 | 8 | 7 | 1 | |
Statlog (Heart) | p-value | 1.15E-11 | 0.00248 | 4.79E-08 | 4.89E-14 | 7.74E-11 | 1.68E-09 | 3.2E-10 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 5 | 2 | 3 | 8 | 6 | 4 | 7 | 1 | |
Vowels | p-value | 5.48E-17 | 0.965425 | 5.32E-09 | 3.43E-17 | 2.6E-17 | 5.98E-17 | 4E-17 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 5 | 2 | 3 | 6 | 8 | 4 | 7 | 1 | |
Water | p-value | 3.56E-14 | 0.000384 | 4.03E-07 | 7.09E-13 | 6.53E-13 | 2.47E-14 | 6.74E-10 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | |
Rank | 6 | 2 | 3 | 8 | 7 | 4 | 5 | 1 | |
Mean | Ranking | 5.125 | 2.000 | 3.000 | 5.750 | 6.875 | 5.750 | 6.500 | 1.000 |
Final | Ranking | 4 | 2 | 3 | 5 | 8 | 5 | 7 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abualigah, L.; Diabat, A.; Zitar, R.A. Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization. Mathematics 2022, 10, 4509. https://doi.org/10.3390/math10234509
Abualigah L, Diabat A, Zitar RA. Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization. Mathematics. 2022; 10(23):4509. https://doi.org/10.3390/math10234509
Chicago/Turabian StyleAbualigah, Laith, Ali Diabat, and Raed Abu Zitar. 2022. "Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization" Mathematics 10, no. 23: 4509. https://doi.org/10.3390/math10234509
APA StyleAbualigah, L., Diabat, A., & Zitar, R. A. (2022). Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization. Mathematics, 10(23), 4509. https://doi.org/10.3390/math10234509