Accelerated Randomized Coordinate Descent for Solving Linear Systems
Abstract
:1. Introduction
2. Nesterov’s Accelerated Randomized Coordinate Descent
Algorithm 1 Nesterov’s accelerated randomized coordinate descent method (NARCD) |
Input:, , , , .
|
3. Randomized Coordinate Descent with Momentum Method
Algorithm 2 Randomized coordinate descent with momentum method (RCDm) |
Input:, , , , .
|
4. Numerical Experiments
4.1. Experiments for Different on the RCDm
4.2. Experiments for NARCD, RCDm, RCD, NASGD
4.3. Experiment with Different Correlations of Matrix A
4.4. The Two-Dimensional Tomography Test Problems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leventhal, D.; Lewis, A.S. Randomized methods for linear constraints: Convergence rates and conditioning. Math. Oper. Res. 2010, 35, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Ruhe, A. Numerical aspects of Gram-Schmidt orthogonalization of vectors. Linear Algebra Its Appl. 1983, 52, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Breheny, P.; Huang, J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl. Stat. 2011, 5, 232. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.W.; Hsieh, C.J.; Lin, C.J. Coordinate descent method for large-scale l2-loss linear support vector machines. J. Mach. Learn. Res. 2008, 9, 1369–1398. [Google Scholar]
- Canutescu, A.A.; Dunbrack Jr, R.L. Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Sci. 2003, 12, 963–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouman, C.A.; Sauer, K. A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans. Image Process. 1996, 5, 480–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.C.; Webb, K.J.; Bouman, C.A.; Millane, R.P. Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework. JOSA A 1999, 16, 2400–2412. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Wu, W.T. On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra Appl. 2019, 26, e2237. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J. On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems. Appl. Numer. Math. 2020, 157, 372–384. [Google Scholar] [CrossRef]
- Lu, Z.; Xiao, L. On the complexity analysis of randomized block-coordinate descent methods. Math. Program. 2015, 152, 615–642. [Google Scholar] [CrossRef] [Green Version]
- Necoara, I.; Nesterov, Y.; Glineur, F. Random block coordinate descent methods for linearly constrained optimization over networks. J. Optim. Theory Appl. 2017, 173, 227–254. [Google Scholar] [CrossRef]
- Richtárik, P.; Takáč, M. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 2014, 144, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Karczmarz, S. Angenaherte auflosung von systemen linearer glei-chungen. Bull. Int. Acad. Pol. Sic. Let. Cl. Sci. Math. Nat. 1937, 35, 355–357. [Google Scholar]
- Strohmer, T.; Vershynin, R. A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 2009, 15, 262–278. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.Z.; Wu, W.T. On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 2018, 40, A592–A606. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Wu, W.T. On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett. 2018, 83, 21–26. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, C.Q. Variant of greedy randomized Kaczmarz for ridge regression. Appl. Numer. Math. 2019, 143, 223–246. [Google Scholar] [CrossRef]
- Guan, Y.J.; Li, W.G.; Xing, L.L.; Qiao, T.T. A note on convergence rate of randomized Kaczmarz method. Calcolo 2020, 57, 1–11. [Google Scholar] [CrossRef]
- Du, K.; Gao, H. A new theoretical estimate for the convergence rate of the maximal weighted residual Kaczmarz algorithm. Numer. Math. Theory Methods Appl. 2019, 12, 627–639. [Google Scholar]
- Yang, X. A geometric probability randomized Kaczmarz method for large scale linear systems. Appl. Numer. Math. 2021, 164, 139–160. [Google Scholar] [CrossRef]
- Nesterov, Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/k2). Dokl. Akad. Nauk Sssr 1983, 269, 543–547. [Google Scholar]
- Nesterov, Y. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 2012, 22, 341–362. [Google Scholar] [CrossRef] [Green Version]
- Polyak, B.T. Some methods of speeding up the convergence of iteration methods. Ussr Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Sun, T.; Li, D.; Quan, Z.; Jiang, H.; Li, S.; Dou, Y. Heavy-ball algorithms always escape saddle points. arXiv 2019, arXiv:1907.09697. [Google Scholar]
- Sarowar Morshed, M.; Saiful Islam, M. Accelerated Sampling Kaczmarz Motzkin Algorithm for The Linear Feasibility Problem. J. Glob. Optim. 2019, 77, 361–382. [Google Scholar] [CrossRef]
- Liu, J.; Wright, S. An accelerated randomized Kaczmarz algorithm. Math. Comput. 2016, 85, 153–178. [Google Scholar] [CrossRef]
- Loizou, N.; Richtárik, P. Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace descent methods. Comput. Optim. Appl. 2020, 77, 653–710. [Google Scholar] [CrossRef]
- Higham, D.J.; Higham, N.J. MATLAB Guide; SIAM: Philadelphia, PA, USA, 2016. [Google Scholar]
- Hansen, P.C.; Jørgensen, J.S. AIR Tools II: Algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 2018, 79, 107–137. [Google Scholar] [CrossRef]
IT | CPU | |||||||
---|---|---|---|---|---|---|---|---|
0 | 416,319 | 209,592 | 59,636 | 43,107 | 21.2625 | 9.9795 | 2.3001 | 1.9263 |
0.1 | 338,108 | 155,672 | 52,806 | 38,483 | 18.2890 | 7.8586 | 2.0735 | 1.5128 |
0.2 | 352,018 | 146,365 | 46,744 | 37,429 | 19.4076 | 7.3941 | 1.7775 | 1.4354 |
0.3 | 326,510 | 135,157 | 47,963 | 32,412 | 17.4489 | 6.8153 | 2.2577 | 1.2290 |
0.4 | 279,492 | 123,871 | 41,812 | 31,270 | 15.2037 | 6.2775 | 2.0089 | 1.2017 |
IT | CPU | |||||||
---|---|---|---|---|---|---|---|---|
0 | 43,760 | 18,200 | 5615 | 2449 | 0.2736 | 0.1239 | 0.0442 | 0.0149 |
0.1 | 39,442 | 16,200 | 5696 | 2188 | 0.2413 | 0.0929 | 0.0323 | 0.0131 |
0.2 | 30,900 | 15,724 | 5286 | 2427 | 0.2091 | 0.0861 | 0.0303 | 0.0150 |
0.3 | 28,501 | 14,047 | 4645 | 1858 | 0.2408 | 0.0791 | 0.0264 | 0.0118 |
0.4 | 25,918 | 12,211 | 4185 | 1735 | 0.1487 | 0.1374 | 0.0244 | 0.0114 |
IT | CPU | |||||||
---|---|---|---|---|---|---|---|---|
0 | 90,517 | 32,685 | 13,310 | 3858 | 0.4722 | 0.1976 | 0.0641 | 0.0169 |
0.1 | 67,610 | 30,382 | 13,022 | 3121 | 0.4669 | 0.1719 | 0.0566 | 0.0137 |
0.2 | 77,748 | 31,879 | 11,382 | 2654 | 0.4529 | 0.1657 | 0.0492 | 0.0126 |
0.3 | 78,023 | 25,130 | 9888 | 2490 | 0.4528 | 0.1540 | 0.0489 | 0.0147 |
0.4 | 66,663 | 18,566 | 7965 | 2344 | 0.4037 | 0.1046 | 0.0411 | 0.0115 |
IT | CPU | |||
---|---|---|---|---|
RCD | 57,723 | 81,926 | 1.3939 | 1.9264 |
RCDm | 44,962 | 66,425 | 1.1068 | 1.5824 |
NARCD | 20,075 | 24,184 | 0.8657 | 0.9711 |
IT | CPU | |||
---|---|---|---|---|
RCD | 194,046 | 414,465 | 9.4357 | 24.2728 |
RCDm | 144,592 | 312,665 | 8.0861 | 19.1512 |
NARCD | 45,700 | 71,216 | 4.5801 | 8.0357 |
IT | CPU | |||
---|---|---|---|---|
12,000 × 2000 | 12,000 × 4000 | 12,000 × 2000 | 12,000 × 4000 | |
RCD | 146,007 | 465,484 | 10.8746 | 31.4180 |
RCDm | 110,339 | 340,633 | 8.5894 | 23.4675 |
NARCD | 43,110 | 89,046 | 5.7312 | 11.0535 |
12,000 | |||
---|---|---|---|
1.2173 | 1.2674 | 1.3387 | |
1.9837 | 3.0206 | 2.8423 |
0 | ||||
---|---|---|---|---|
75.6431 | 113.8689 | 172.7404 | 1425.0834 | |
452.9536 | 673.9111 | 1104.0601 | 8969.5561 |
IT | CPU | |||||||
---|---|---|---|---|---|---|---|---|
0 | 0 | |||||||
RCD | 34,953 | 68,289 | 150,982 | - | 0.1993 | 0.4009 | 0.9189 | - |
RCDm | 30,908 | 54,842 | 120,490 | 4,374,385 | 0.1715 | 0.3642 | 0.6787 | 24.3558 |
NARCD | 8921 | 14,960 | 25,714 | 469,083 | 0.0708 | 0.1148 | 0.2134 | 3.5497 |
0 | ||||
---|---|---|---|---|
1.1620 | 1.1007 | 1.3539 | - | |
2.5291 | 3.4921 | 4.3059 | - |
IT | CPU | |||||||
---|---|---|---|---|---|---|---|---|
0 | 0 | |||||||
RCD | 1,111,363 | 1,694,262 | 3,609,833 | - | 8.0508 | 11.9815 | 25.3595 | - |
RCDm | 746,948 | 1,128,363 | 2,190,455 | - | 5.0748 | 7.7701 | 15.2623 | - |
NARCD | 90,521 | 145,186 | 209,795 | 1,123,632 | 0.8005 | 1.0775 | 1.8670 | 10.4081 |
0 | ||||
---|---|---|---|---|
1.5864 | 1.5420 | 1.6615 | - | |
10.0572 | 11.1197 | 13.5830 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, W.; Bao, W.; Zhang, F. Accelerated Randomized Coordinate Descent for Solving Linear Systems. Mathematics 2022, 10, 4379. https://doi.org/10.3390/math10224379
Wang Q, Li W, Bao W, Zhang F. Accelerated Randomized Coordinate Descent for Solving Linear Systems. Mathematics. 2022; 10(22):4379. https://doi.org/10.3390/math10224379
Chicago/Turabian StyleWang, Qin, Weiguo Li, Wendi Bao, and Feiyu Zhang. 2022. "Accelerated Randomized Coordinate Descent for Solving Linear Systems" Mathematics 10, no. 22: 4379. https://doi.org/10.3390/math10224379
APA StyleWang, Q., Li, W., Bao, W., & Zhang, F. (2022). Accelerated Randomized Coordinate Descent for Solving Linear Systems. Mathematics, 10(22), 4379. https://doi.org/10.3390/math10224379