Anisotropic Flows of Charmonium in the Relativistic Heavy-Ion Collisions
Abstract
1. Introduction
2. Charm Thermalization and Charmonium Regeneration
2.1. Charm Quark Evolution
2.2. Hot Medium Evolution
3. Charmonium Thermal Production
3.1. Diffusion of Charm Quarks
3.2. Elliptic Flow
3.3. Triangular Flow
3.4. Directed Flow
4. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Bazavov, A.; Bhattacharya, T.; Cheng, M.; DeTar, C.; Ding, H.-T.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; et al. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 2012, 85, 054503. [Google Scholar] [CrossRef]
- Satz, H. Colour deconfinement and quarkonium binding. J. Phys. G 2006, 32, R25. [Google Scholar] [CrossRef]
- Aoki, Y.; Endrődi, G.; Fodor, Z.; Katz, S.D.; Szabó, K.K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Heinz, U.; Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 2013, 63, 123–151. [Google Scholar] [CrossRef]
- Song, H.; Bass, S.A.; Heinz, U.; Hirano, T.; Shen, C. 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett. 2011, 106, 192301, Erratum in Phys. Rev. Lett. 2012, 109, 139904. [Google Scholar] [CrossRef]
- Gale, C.; Jeon, S.; Schenke, B.; Tribedy, P.; Venugopalan, R. Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics. Phys. Rev. Lett. 2013, 110, 012302. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Azimuthal anisotropy in Au+Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 2005, 72, 014904. [Google Scholar] [CrossRef]
- Aamodt, K.; Abelev, B.; Abrahantes Quintana, A.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Agostinelli, A.; Aguilar Salazar, S.; et al. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. Lett. 2011, 107, 032301. [Google Scholar] [CrossRef]
- Matsui, T.; Satz, H. J/ψ Suppression by Quark-Gluon Plasma Formation. Phys. Lett. B 1986, 178, 416–422. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Stachel, J. (Non)thermal aspects of charmonium production and a new look at J/ψ suppression. Phys. Lett. B 2000, 490, 196–202. [Google Scholar] [CrossRef]
- Zhu, X.L.; Zhuang, P.F.; Xu, N. J/ψ transport in QGP and p(t) distribution at SPS and RHIC. Phys. Lett. B 2005, 607, 107–114. [Google Scholar] [CrossRef]
- Yan, L.; Zhuang, P.; Xu, N. Competition between J/ψ suppression and regeneration in quark-gluon plasma. Phys. Rev. Lett. 2006, 97, 232301. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, B.; Xu, N.; Zhuang, P. Υ Production as a Probe for Early State Dynamics in High Energy Nuclear Collisions at RHIC. Phys. Lett. B 2011, 697, 32–36. [Google Scholar] [CrossRef]
- Grandchamp, L.; Rapp, R.; Brown, G.E. In medium effects on charmonium production in heavy ion collisions. Phys. Rev. Lett. 2004, 92, 212301. [Google Scholar] [CrossRef]
- Zhao, X.; Rapp, R. Medium Modifications and Production of Charmonia at LHC. Nucl. Phys. A 2011, 859, 114–125. [Google Scholar] [CrossRef]
- Blaizot, J.P.; Boni, D.D.; Faccioli, P.; Garberoglio, G. Heavy quark bound states in a quark–gluon plasma: Dissociation and recombination. Nucl. Phys. A 2016, 946, 49–88. [Google Scholar] [CrossRef]
- Krouppa, B.; Ryblewski, R.; Strickland, M. Bottomonia suppression in 2.76 TeV Pb-Pb collisions. Phys. Rev. C 2015, 92, 061901. [Google Scholar] [CrossRef]
- Yao, X.; Ke, W.; Xu, Y.; Bass, S.A.; Müller, B. Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma. J. High Energy Phys. 2021, 2021, 46. [Google Scholar] [CrossRef]
- Yao, X.; Mehen, T. Quarkonium Semiclassical Transport in Quark-Gluon Plasma: Factorization and Quantum Correction. J. High Energy Phys. 2021, 2021, 62. [Google Scholar] [CrossRef]
- Wen, L.; Du, X.; Shi, S.; Chen, B. Probe the color screening in proton-nucleus collisions with complex potentials. Chin. Phys. C 2022, 46, 114102. [Google Scholar] [CrossRef]
- Shi, W.; Zha, W.; Chen, B. Charmonium Coherent Photoproduction and Hadroproduction with Effects of Quark Gluon Plasma. Phys. Lett. B 2018, 777, 399–405. [Google Scholar] [CrossRef]
- Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beolè, S.; et al. Transverse momentum distributions of J/ψ, ψ′, Drell–Yan and continuum dimuons produced in Pb–Pb interactions at the SPS. Phys. Lett. B 2001, 499, 85–96. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Al-Jamel, A.; Aoki, K.; Aphecetche, L.; et al. J/ψ Production versus Centrality, Transverse Momentum, and Rapidity in Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2007, 98, 232301. [Google Scholar] [CrossRef]
- Adam, J.; Adamová, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; Aimo, I.; Aiola, S.; et al. Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb-Pb collisions at = 2.76 TeV. J. High Energy Phys. 2016, 2016, 179. [Google Scholar] [CrossRef]
- Adam, J.; Adamová, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Aiola, S.; et al. J/ψ suppression at forward rapidity in Pb-Pb collisions at = 5.02 TeV. Phys. Lett. B 2017, 766, 212–224. [Google Scholar] [CrossRef]
- Thews, R.L.; Schroedter, M.; Rafelski, J. Enhanced J/ψ production in deconfined quark matter. Phys. Rev. C 2001, 63, 054905. [Google Scholar] [CrossRef]
- Greco, V.; Ko, C.M.; Rapp, R. Quark coalescence for charmed mesons in ultrarelativistic heavy ion collisions. Phys. Lett. B 2004, 595, 202–208. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC. Phys. Lett. B 2003, 571, 36–44. [Google Scholar] [CrossRef]
- Fries, R.J.; Greco, V.; Sorensen, P. Coalescence Models For Hadron Formation From Quark Gluon Plasma. Ann. Rev. Nucl. Part. Sci. 2008, 58, 177–205. [Google Scholar] [CrossRef]
- Du, X.; Rapp, R. Sequential Regeneration of Charmonia in Heavy-Ion Collisions. Nucl. Phys. A 2015, 943, 147–158. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, J. Bottomonium Continuous Production from Unequilibrium Bottom Quarks in Ultrarelativistic Heavy Ion Collisions. Phys. Lett. B 2017, 772, 819–824. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, B. Strong diffusion effect of charm quarks on J /ψ production in Pb–Pb collisions at the LHC. Phys. Lett. B 2018, 776, 17–21. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Suppression of non-prompt J/ψ, prompt J/ψ, and Y(1S) in PbPb collisions at = 2.76 TeV. J. High Energy Phys. 2012, 2012, 63. [Google Scholar]
- Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; Ahammed, Z.; et al. D meson elliptic flow in non-central Pb-Pb collisions at = 2.76TeV. Phys. Rev. Lett. 2013, 111, 102301. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Qin, G.Y.; Bass, S.A. Heavy-quark dynamics and hadronization in ultrarelativistic heavy-ion collisions: Collisional versus radiative energy loss. Phys. Rev. C 2013, 88, 044907. [Google Scholar] [CrossRef]
- Cao, S.; Coci, G.; Das, S.K.; Ke, W.; Liu, S.Y.F.; Plumari, S.; Song, T.; Xu, Y.; Aichelin, J.; Bass, S.; et al. Toward the determination of heavy-quark transport coefficients in quark-gluon plasma. Phys. Rev. C 2019, 99, 054907. [Google Scholar] [CrossRef]
- He, M.; Fries, R.J.; Rapp, R. Ds-Meson as Quantitative Probe of Diffusion and Hadronization in Nuclear Collisions. Phys. Rev. Lett. 2013, 110, 112301. [Google Scholar] [CrossRef]
- He, M.; Rapp, R. Hadronization and Charm-Hadron Ratios in Heavy-Ion Collisions. Phys. Rev. Lett. 2020, 124, 042301. [Google Scholar] [CrossRef]
- Chen, B. Elliptic flow as a probe for ψ(2S) production mechanism in relativistic heavy ion collisions. Phys. Rev. C 2017, 95, 034908. [Google Scholar] [CrossRef]
- Liu, Y.P.; Qu, Z.; Xu, N.; Zhuang, P.F. J/ψ Transverse Momentum Distribution in High Energy Nuclear Collisions at RHIC. Phys. Lett. B 2009, 678, 72–76. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, L.; Liu, X.H.; Liu, Y.; Zhao, J. X(3872) Production in Relativistic Heavy-Ion Collisions. Phys. Rev. C 2022, 105, 054901. [Google Scholar] [CrossRef]
- Cao, S.; Qin, G.Y.; Bass, S.A. Energy loss, hadronization and hadronic interactions of heavy flavors in relativistic heavy-ion collisions. Phys. Rev. C 2015, 92, 024907. [Google Scholar] [CrossRef]
- Rapp, R.; Gossiaux, P.B.; Andronic, A.; Averbeck, R.; Masciocchi, S.; Beraudo, A.; Bratkovskaya, E.; Braun-Munzinger, P.; Cao, S.; Dainese, A.; et al. Extraction of Heavy-Flavor Transport Coefficients in QCD Matter. Nucl. Phys. A 2018, 979, 21–86. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, K.; Chen, S.; Zhuang, P. Heavy flavors under extreme conditions in high energy nuclear collisions. Prog. Part. Nucl. Phys. 2020, 114, 103801. [Google Scholar] [CrossRef]
- Guo, X.f.; Wang, X.N. Multiple scattering, parton energy loss and modified fragmentation functions in deeply inelastic e A scattering. Phys. Rev. Lett. 2000, 85, 3591–3594. [Google Scholar] [CrossRef]
- Zhang, B.W.; Wang, E.; Wang, X.N. Heavy quark energy loss in nuclear medium. Phys. Rev. Lett. 2004, 93, 072301. [Google Scholar] [CrossRef]
- Cacciari, M.; Frixione, S.; Nason, P. The p(T) spectrum in heavy flavor photoproduction. J. High Energy Phys. 2001, 2001, 6. [Google Scholar] [CrossRef]
- Huovinen, P.; Petreczky, P. QCD Equation of State and Hadron Resonance Gas. Nucl. Phys. A 2010, 837, 26–53. [Google Scholar] [CrossRef]
- Schenke, B.; Jeon, S.; Gale, C. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions. Phys. Rev. C 2010, 82, 014903. [Google Scholar] [CrossRef]
- Chen, B. Detailed rapidity dependence of J/ψ production at energies available at the Large Hadron Collider. Phys. Rev. C 2016, 93, 054905. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Y.; Zhou, K.; Zhuang, P. ψ′ Production and B Decay in Heavy Ion Collisions at LHC. Phys. Lett. B 2013, 726, 725–728. [Google Scholar] [CrossRef]
- Peskin, M.E. Short Distance Analysis for Heavy Quark Systems. 1. Diagrammatics. Nucl. Phys. B 1979, 156, 365–390. [Google Scholar] [CrossRef]
- Bhanot, G.; Peskin, M.E. Short Distance Analysis for Heavy Quark Systems. 2. Applications. Nucl. Phys. B 1979, 156, 391–416. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; Ahammed, Z.; et al. [ALICE], Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2013, 719, 18–28. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; Ahammed, Z.; et al. [ALICE], Inclusive J/ψ production in pp collisions at = 2.76 TeV. Phys. Lett. B 2012, 718, 295–306, Erratum in Phys. Lett. B 2015, 748, 472–473. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamova, D.; Adare, A.M.; Aggarwal, M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; Ahammed, Z.; et al. Measurement of prompt J/ψ and beauty hadron production cross sections at mid-rapidity in pp collisions at s=7 TeV. J. High Energy Phys. 2012, 2012, 65. [Google Scholar]
- Chen, B. Thermal production of charmonia in Pb-Pb collisions at = 5.02 TeV. Chin. Phys. C 2019, 43, 124101. [Google Scholar] [CrossRef]
- Chen, B.; Guo, T.; Liu, Y.; Zhuang, P. Cold and Hot Nuclear Matter Effects on Charmonium Production in p+Pb Collisions at LHC Energy. Phys. Lett. B 2017, 765, 323–327. [Google Scholar] [CrossRef]
- Eskola, K.J.; Paukkunen, H.; Salgado, C.A. EPS09—A New Generation of NLO and LO Nuclear Parton Distribution Functions. J. High Energy Phys. 2009, 2009, 65. [Google Scholar] [CrossRef]
- He, M.; Wu, B.; Rapp, R. Collectivity of J/ψ Mesons in Heavy-Ion Collisions. Phys. Rev. Lett. 2022, 128, 162301. [Google Scholar] [CrossRef]
- Alver, B.; Roland, G. Collision geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 2010, 81, 054905, Erratum in Phys. Rev. C 2010, 82, 039903.. [Google Scholar] [CrossRef]
- Miller, M.L.; Reygers, K.; Sanders, S.J.; Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 2007, 57, 205–243. [Google Scholar] [CrossRef]
- Kharzeev, D.; Levin, E. Manifestations of high density QCD in the first RHIC data. Phys. Lett. B 2001, 523, 79–87. [Google Scholar] [CrossRef][Green Version]
- Alver, B.H.; Gombeaud, C.; Luzum, M.; Ollitrault, J.Y. Triangular flow in hydrodynamics and transport theory. Phys. Rev. C 2010, 82, 034913. [Google Scholar] [CrossRef]
- Qiu, Z.; Heinz, U.W. Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. Phys. Rev. C 2011, 84, 024911. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, B.; Zhuang, P. Charmonium triangular flow in high energy nuclear collisions. Phys. Rev. C 2022, 105, 034902. [Google Scholar] [CrossRef]
- Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; et al. System-size independence of directed flow at the Relativistic Heavy-Ion Collider. Phys. Rev. Lett. 2008, 101, 252301. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions. Phys. Rev. Lett. 2014, 112, 162301. [Google Scholar] [CrossRef]
- Chen, B.; Hu, M.; Zhang, H.; Zhao, J. Probe the tilted Quark-Gluon Plasma with charmonium directed flow. Phys. Lett. B 2020, 802, 135271. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. First Observation of the Directed Flow of D0 and in Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2019, 123, 162301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Chen, B. Anisotropic Flows of Charmonium in the Relativistic Heavy-Ion Collisions. Mathematics 2022, 10, 4284. https://doi.org/10.3390/math10224284
Li C, Chen B. Anisotropic Flows of Charmonium in the Relativistic Heavy-Ion Collisions. Mathematics. 2022; 10(22):4284. https://doi.org/10.3390/math10224284
Chicago/Turabian StyleLi, Chenyu, and Baoyi Chen. 2022. "Anisotropic Flows of Charmonium in the Relativistic Heavy-Ion Collisions" Mathematics 10, no. 22: 4284. https://doi.org/10.3390/math10224284
APA StyleLi, C., & Chen, B. (2022). Anisotropic Flows of Charmonium in the Relativistic Heavy-Ion Collisions. Mathematics, 10(22), 4284. https://doi.org/10.3390/math10224284