Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling
Abstract
:1. Introduction
2. Problem Description and Surrogate Model
2.1. Problem Description
2.2. Mathematical Formulation of the Surrogate Model
3. The SRM-R for the Surrogate Model
3.1. The Existing Surrogate Robustness Measures
3.2. The Resilience-Based Surrogate Robustness Measures
- Case 1, if , there is no preceding operation and preceding job before the operation , it is easy to find that ;
- Case 2, Else if , there is at least one operation that precedes of job , then ;
- Case 3, Else if , there is at least one operation precedes on the machine , then ;
- Case 4, Otherwise, , there exists at least one operation that precedes of job and at least one operation precedes on the machine , then . It can be seen from the four cases that if an operation has no preceding jobs and preceding operations, its start time is equal to zero.
4. A Dual-Objective Optimization Algorithm
Algorithm 1. The pseudocode of MO-HEDA. |
Step 1. Set the parameters: population size , the number of parents and offsprings , , the number of superior solutions , evolutionary generation , recombination probability , inheriting rate , learning rate . Step 2. Initialize the algorithm. Step 2.1 Generate , initial schedule solutions, let denote the initial solution set, is the index of iteration. Step 2.2 Decode the solution to obtain the fitness value of each objective ; denotes the number of objectives. Step 2.3 Calculate the probability matrix . Step 3. Set While Do Step 3.1 1 Generate new solutions by using the probability matrix . Let denote the newly generated solution set. Step 3.2 Merge the solution set and to get a new solution set . Step 3.2.1 Execute the improved non-dominated sort algorithm to obtain the non-dominated levels of the Pareto solutions. Let denote the solution set in all the non-dominated levels, where denotes the first level. Step 3.2.2 Set While Do Else if , the solutions are selected by using the crowded-comparison operator; End While Step 3.2.3 Sort the solutions in the new solution set . Step 3.3 Select the first solutions in as the parent solutions. Step 3.4 Generate offspring solutions by using the recombination method with the recombination probability and then sort the solutions by using the same procedure as Step 3.2 to obtain an updated solution set . Step 3.5 Select superior solution to update the probability matrix of HEDA and save elites in the solution set or the next iteration by using the crowded-comparison operator. ; End While Step 4. Robustness evaluation by Monte Carlo simulation method. Step 4.1 Conduct the simulation evaluation on the obtained Pareto optimal solutions in the solution set . Step 4.2 Sort the solutions in according to the simulation results by using the improved non-dominated sort algorithm. Step 4.3 Save the Pareto frontier of the simulated solutions. |
Algorithm 2. The pseudocode of the improved non-dominated sort algorithm. |
Step 1. Set the index of the solutions in the solution set , for each solution, set as the number that is dominated. Step 2. Determine the number that is dominated for each solution. For For If dominates ; Else if dominates ; End End Step 3. Sorting and storing the solutions in each front by using the times to be dominated. Step 3.1 Sorting the solutions based on the values of in ascending order. Step 3.2 For Set , denotes the number of solutions in each level. Set , is the index of the non-dominated level. If ; ; Else if ; ; End End Step 4. Return the solution sets . |
Algorithm 3. The crowding distance assignment. |
Step 1. Let Step 2. For Set For , sort the objective in an ascending order Set For End End End Step 3. Save the for the crowded-comparison operator. |
5. Simulation and Analysis
5.1. Experiment Setting
5.2. The Effectiveness Analysis of SRM-R
5.3. The Performance Analysis of the Pareto Optimal Solutions
5.4. Case Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chang, V.; Askar, S. A Local Search-Based Generalized Normal Distribution Algorithm for Permutation Flow Shop Scheduling. Appl. Sci. 2021, 11, 4837. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Hong, Y.; Yue, X. On the Robust and Stable Flowshop Scheduling Under Stochastic and Dynamic Disruptions. In IEEE Transactions on Engineering Management; IEEE: Manhattan, NY, USA, 2017; pp. 1–15. [Google Scholar]
- Zhang, R.; Wu, C. An Artificial Bee Colony Algorithm for the Job Shop Scheduling Problem with Random Processing Times. Entropy 2011, 13, 1708–1729. [Google Scholar] [CrossRef]
- Horng, S.-C.; Lin, S.-S.; Yang, F.-Y. Evolutionary algorithm for stochastic job shop scheduling with random processing time. Expert Syst. Appl. 2012, 39, 3603–3610. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Xu, Y.; Liu, M. An effective estimation of distribution algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Int. J. Prod. Res. 2013, 51, 3778–3793. [Google Scholar] [CrossRef]
- Al-Hinai, N.; ElMekkawy, T.Y. Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm. Int. J. Prod. Econ. 2011, 132, 279–291. [Google Scholar] [CrossRef]
- Xiong, J.; Xing, L.-N.; Chen, Y.-W. Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns. Int. J. Prod. Econ. 2013, 141, 112–126. [Google Scholar] [CrossRef]
- Xiong, H.; Shi, S.; Ren, D.; Hu, J. A survey of job shop scheduling problem: The types and models. Comput. Oper. Res. 2022, 142, 105731. [Google Scholar] [CrossRef]
- Aytug, H.; Lawley, M.A.; McKay, K.; Mohan, S.; Uzsoy, R. Executing production schedules in the face of uncertainties: A review and some future directions. Eur. J. Oper. Res. 2005, 161, 86–110. [Google Scholar] [CrossRef]
- Ouelhadj, D.; Petrovic, S. A survey of dynamic scheduling in manufacturing systems. J. Sched. 2009, 12, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Sabuncuoglu, I.; Goren, S. Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. Int. J. Comput. Integr. Manuf. 2009, 22, 138–157. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Werner, F. Sequencing and Scheduling with Inaccurate Data; Nova Science Publishers, Inc.: New York, NY, USA, 2014. [Google Scholar]
- Xiao, S.; Wu, Z.; Yu, S. A two-stage assignment strategy for the robust scheduling of dual-resource constrained stochastic job shop scheduling problems. IFAC-PapersOnLine 2019, 52, 421–426. [Google Scholar] [CrossRef]
- Palacios, J.J.; González-Rodríguez, I.; Vela, C.R.; Puente, J. Robust multiobjective optimisation for fuzzy job shop problems. Appl. Soft Comput. 2016, 56, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Sotskov, Y.N.; Matsveichuk, N.M.; Hatsura, V.D. Two-Machine Job-Shop Scheduling Problem to Minimize the Makespan with Uncertain Job Durations. Algorithms 2019, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, J.; Zhou, Y. Robust scheduling for multi-objective flexible job-shop problems with flexible workdays. Eng. Optim. 2016, 48, 1973–1989. [Google Scholar] [CrossRef]
- Herroelen, W.; Leus, R. Robust and reactive project scheduling: A review and classification of procedures. Int. J. Prod. Res. 2004, 42, 1599–1620. [Google Scholar] [CrossRef]
- Goren, S.; Sabuncuoglu, I. Optimization of schedule robustness and stability under random machine breakdowns and processing time variability. IIE Trans. 2009, 42, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Gu, M.; Cao, C.; Gu, X. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem. Comput. Oper. Res. 2010, 37, 927–937. [Google Scholar] [CrossRef]
- Wu, S.D.; Byeon, E.-S.; Storer, R.H. A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness. Oper. Res. 1999, 47, 113–124. [Google Scholar] [CrossRef]
- Xiao, S.; Sun, S.; Yang, H. Proactive Scheduling Research on Job Shop with Stochastically Controllable Processing Times. J. Northwest. Polytech. Univ. 2014, 6, 019. [Google Scholar]
- Xiao, S.; Sun, S.; Jin, J. Surrogate Measures for the Robust Scheduling of Stochastic Job Shop Scheduling Problems. Energies 2017, 10, 543. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Sun, S.; Xiao, S. Risk measure of job shop scheduling with random machine breakdowns. Comput. Oper. Res. 2018, 99, 1–12. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, S.; Li, T. A Meta-Model-Based Multi-Objective Evolutionary Approach to Robust Job Shop Scheduling. Mathematics 2019, 7, 529. [Google Scholar] [CrossRef] [Green Version]
- Zahid, T.; Agha, M.H.; Schmidt, T. Investigation of surrogate measures of robustness for project scheduling problems. Comput. Ind. Eng. 2019, 129, 220–227. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, S.; Yu, S. Optimizing makespan and stability risks in job shop scheduling. Comput. Oper. Res. 2020, 122, 104963. [Google Scholar] [CrossRef]
- Zheng, P.; Zhang, P.; Wang, J.; Zhang, J.; Yang, C.; Jin, Y. A data-driven robust optimization method for the assembly job-shop scheduling problem under uncertainty. Int. J. Comput. Integr. Manuf. 2020, 33, 1–16. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, M.; Wang, Z.Y.; Zhu, Q.B. Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns. Expert Syst. Appl. 2020, 158, 113545. [Google Scholar] [CrossRef]
- Dui, H.; Xu, Z.; Chen, L.; Xing, L.; Liu, B. Data-Driven Maintenance Priority and Resilience Evaluation of Performance Loss in a Main Coolant System. Mathematics 2022, 10, 563. [Google Scholar] [CrossRef]
- Mao, X.; Lou, X.; Yuan, C.; Zhou, J. Resilience-Based Restoration Model for Supply Chain Networks. Mathematics 2020, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Meng, Y.; Zhao, X.; Liu, J. Resilience Assessment of an Urban Metro Complex Network: A Case Study of the Zhengzhou Metro. Sustainability 2022, 14, 11555. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, Z.; Sun, S.; Jin, M. Research on the Dual-resource Constrained Robust Job Shop Scheduling Problems. J. Mech. Eng. 2021, 57, 227–239. [Google Scholar]
- Wang, K.; Choi, S.H.; Lu, H. A hybrid estimation of distribution algorithm for simulation-based scheduling in a stochastic permutation flowshop. Comput. Ind. Eng. 2015, 90, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discret. Math. 1979, 5, 287–326. [Google Scholar]
- Leon, V.J.; Wu, S.D.; Storer, R.H. Robustness measures and robust scheduling for job shops. IIE Trans. 1994, 26, 32–43. [Google Scholar] [CrossRef]
- Hazır, Ö.; Haouari, M.; Erel, E. Robust scheduling and robustness measures for the discrete time/cost trade-off problem. Eur. J. Oper. Res. 2010, 207, 633–643. [Google Scholar] [CrossRef]
- Goren, S.; Sabuncuoglu, I.; Koc, U. Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment. Nav. Res. Logist. 2012, 59, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Larranaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Springer: New York, NY, USA, 2002. [Google Scholar]
- Xiao, S.; Sun, S.; Guo, H.; Jin, M.; Yang, H. Hybrid Estimation of Distribution Algorithm for Solving the Stochastic Job Shop Scheduling Problem. J. Mech. Eng. 2015, 51, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. In IEEE Transactions on Evolutionary Computation; IEEE: Manhattan, NY, USA, 2002; Volume 6, p. 15. [Google Scholar]
- Valledor, P.; Gomez, A.; Puente, J.; Fernandez, I. Solving Rescheduling Problems in Dynamic Permutation Flow Shop Environments with Multiple Objectives Using the Hybrid Dynamic Non-Dominated Sorting Genetic II Algorithm. Mathematics 2022, 10, 2395. [Google Scholar] [CrossRef]
- Muth, J.F.; Thompson, G.L. Industrial Scheduling; Prentice-Hall: Hoboken, NJ, USA, 1963. [Google Scholar]
- Lawrence, S. Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques (Supplement); Carnegie-Mellon University: Pennsylvania, PA, USA, 1984. [Google Scholar]
- Ahmadi, E.; Zandieh, M.; Farrokh, M.; Emami, S.M. A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms. Comput. Oper. Res. 2016, 73, 56–66. [Google Scholar] [CrossRef]
Notations | Definitions |
---|---|
The index of random variables | |
The total number of jobs | |
The total number of machines | |
The job | |
The machine | |
The operation of the job processed on machine | |
The expected processing time of operation | |
The processing time variance of operation | |
A positive number that is large enough | |
The stochastic completion time of the job on machine | |
The stochastic processing time of the job of on machine | |
The makespan when the expected processing times are used | |
Job must be processed on a machine then on machine , if it is satisfied, , otherwise, | |
Job must be processed after on machine , if it is satisfied, , otherwise, |
Parameters of HEDA | Values |
---|---|
Population size | 200 |
Evolutionary generations | 200 |
Recombination probability | 0.8 |
Number of positioning jobs | [ ] |
Learning rate | 0.3 |
Number of superior sub-population | 40 |
Value of μ and λ | 200 |
Number of simulation replications | 50 or 200 |
Benchmark Instances | SRMs | Uncertainty Level | |||||
---|---|---|---|---|---|---|---|
UL2 | UL4 | UL6 | UL8 | UL10 | Average | ||
FT06 | SRM1 | 0.44 | 0.46 | 0.29 | 0.55 | 0.53 | 0.45 |
SRM2 | 0.27 | 0.09 | 0.14 | 0.48 | 0.53 | 0.30 | |
SRM3 | 0.15 | 0.13 | 0.26 | 0.23 | 0.14 | 0.18 | |
SRM4 | 0.69 | 0.72 | 0.83 | 0.69 | 0.87 | 0.76 | |
SRM5 | 0.71 | 0.77 | 0.74 | 0.73 | 0.76 | 0.74 | |
SRM-R | 0.84 | 0.81 | 0.78 | 0.82 | 0.78 | 0.81 | |
FT10 | SRM1 | 0.13 | 0.19 | 0.39 | 0.69 | 0.77 | 0.43 |
SRM2 | 0.14 | 0.16 | 0.44 | 0.56 | 0.72 | 0.40 | |
SRM3 | 0.53 | 0.57 | 0.59 | 0.48 | 0.70 | 0.57 | |
SRM4 | 0.82 | 0.90 | 0.89 | 0.89 | 0.85 | 0.87 | |
SRM5 | 0.78 | 0.83 | 0.83 | 0.86 | 0.85 | 0.83 | |
SRM-R | 0.86 | 0.92 | 0.96 | 0.89 | 0.91 | 0.91 | |
FT20 | SRM1 | 0.03 | 0.12 | 0.35 | 0.48 | 0.76 | 0.35 |
SRM2 | 0.14 | 0.31 | 0.35 | 0.40 | 0.73 | 0.39 | |
SRM3 | 0.44 | 0.67 | 0.62 | 0.59 | 0.68 | 0.60 | |
SRM4 | 0.84 | 0.83 | 0.90 | 0.84 | 0.81 | 0.84 | |
SRM5 | 0.84 | 0.76 | 0.87 | 0.79 | 0.82 | 0.82 | |
SRM-R | 0.92 | 0.96 | 0.94 | 0.96 | 0.92 | 0.94 | |
LA06 | SRM1 | 0.53 | 0.61 | 0.31 | 0.18 | 0.58 | 0.44 |
SRM2 | 0.46 | 0.49 | 0.45 | 0.68 | 0.87 | 0.59 | |
SRM3 | 0.51 | 0.56 | 0.29 | 0.52 | 0.40 | 0.46 | |
SRM4 | 0.84 | 0.78 | 0.67 | 0.79 | 0.68 | 0.75 | |
SRM5 | 0.87 | 0.81 | 0.84 | 0.73 | 0.69 | 0.79 | |
SRM-R | 0.92 | 0.93 | 0.93 | 0.97 | 0.98 | 0.95 | |
LA16 | SRM1 | 0.11 | 0.29 | 0.46 | 0.45 | 0.81 | 0.42 |
SRM2 | 0.20 | 0.39 | 0.44 | 0.55 | 0.79 | 0.47 | |
SRM3 | 0.20 | 0.20 | 0.26 | 0.47 | 0.77 | 0.38 | |
SRM4 | 0.90 | 0.92 | 0.83 | 0.87 | 0.79 | 0.86 | |
SRM5 | 0.81 | 0.75 | 0.73 | 0.81 | 0.80 | 0.78 | |
SRM-R | 0.92 | 0.89 | 0.93 | 0.92 | 0.92 | 0.92 | |
LA21 | SRM1 | 0.20 | 0.20 | 0.26 | 0.47 | 0.67 | 0.46 |
SRM2 | 0.24 | 0.22 | 0.45 | 0.47 | 0.74 | 0.40 | |
SRM3 | 0.55 | 0.59 | 0.57 | 0.71 | 0.68 | 0.66 | |
SRM4 | 0.79 | 0.80 | 0.82 | 0.78 | 0.80 | 0.80 | |
SRM5 | 0.84 | 0.78 | 0.71 | 0.78 | 0.80 | 0.78 | |
SRM-R | 0.90 | 0.88 | 0.92 | 0.90 | 0.88 | 0.90 | |
LA26 | SRM1 | 0.10 | 0.15 | 0.37 | 0.64 | 0.71 | 0.39 |
SRM2 | 0.16 | 0.39 | 0.50 | 0.58 | 0.78 | 0.48 | |
SRM3 | 0.64 | 0.70 | 0.74 | 0.65 | 0.71 | 0.69 | |
SRM4 | 0.83 | 0.85 | 0.82 | 0.87 | 0.77 | 0.83 | |
SRM5 | 0.81 | 0.83 | 0.80 | 0.84 | 0.82 | 0.82 | |
SRM-R | 0.90 | 0.92 | 0.94 | 0.91 | 0.94 | 0.92 | |
LA32 | SRM1 | 0.19 | 0.24 | 0.17 | 0.57 | 0.67 | 0.37 |
SRM2 | 0.12 | 0.22 | 0.26 | 0.45 | 0.58 | 0.33 | |
SRM3 | 0.43 | 0.74 | 0.82 | 0.66 | 0.72 | 0.67 | |
SRM4 | 0.88 | 0.94 | 0.92 | 0.88 | 0.87 | 0.90 | |
SRM5 | 0.85 | 0.91 | 0.92 | 0.92 | 0.90 | 0.90 | |
SRM-R | 0.92 | 0.93 | 0.94 | 0.91 | 0.93 | 0.93 |
UL | Benchmark Instances | FT06 | FT10 | FT20 | LA06 | LA11 | LA16 | LA21 | LA26 | LA32 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
UL-M | RMsim | 10.4 | 17.8 | 14.8 | 18.2 | 17.8 | 17 | 10 | 9.4 | 10.4 | 14.0 |
SRM-R | 7.2 | 8.4 | 10.8 | 11.4 | 10.2 | 10.2 | 8.6 | 9.4 | 7.8 | 9.3 | |
UL-H | RMsim | 6.0 | 10.6 | 9.3 | 8.5 | 8.5 | 7.1 | 9.3 | 7.4 | 6.0 | 8.1 |
SRM-R | 4.2 | 6.3 | 6.2 | 6.0 | 7.9 | 4.2 | 8.7 | 7.6 | 6.1 | 6.4 |
UL | Benchmark Instances | FT06 | FT10 | FT20 | LA06 | LA16 | LA16 | LA21 | LA26 | Average |
---|---|---|---|---|---|---|---|---|---|---|
UL-M | SC1 | 1.00 | 0.98 | 0.78 | 0.90 | 0.89 | 0.90 | 1.00 | 0.74 | 0.90 |
SC2 | 0.66 | 0.67 | 0.92 | 0.75 | 0.78 | 0.85 | 0.74 | 0.98 | 0.78 | |
UL-H | SC1 | 0.71 | 0.84 | 0.96 | 0.83 | 0.95 | 0.86 | 0.77 | 0.75 | 0.84 |
SC2 | 0.95 | 0.72 | 0.73 | 0.62 | 0.66 | 0.89 | 0.97 | 1.00 | 0.79 |
UL | CT | FT06 | FT10 | FT20 | LA06 | LA16 | LA16 | LA21 | LA26 | Average |
---|---|---|---|---|---|---|---|---|---|---|
UL-M | SRM-R | 71.31 | 137.94 | 146.30 | 110.44 | 137.62 | 183.15 | 261.58 | 448.63 | 71.31 |
RMsim | 317.10 | 546.58 | 499.50 | 382.56 | 527.04 | 680.27 | 844.29 | 1298.57 | 317.10 | |
PD (%) | 77.51 | 74.76 | 70.71 | 71.13 | 73.89 | 73.08 | 69.02 | 65.45 | 77.51 | |
UL-H | SRM-R | 69.29 | 130.49 | 134.48 | 107.32 | 127.84 | 185.42 | 257.03 | 439.83 | 69.29 |
RMsim | 308.59 | 542.97 | 516.87 | 387.12 | 593.40 | 708.96 | 862.71 | 1325.46 | 308.59 | |
PD (%) | 77.55 | 75.97 | 73.98 | 72.28 | 78.46 | 73.85 | 70.21 | 66.82 | 77.55 |
Pareto Solutions | SRM-R | RMsim | ||
---|---|---|---|---|
Makespan | RMsim | Makespan | RMsim | |
1 | 57 | 11.25 | 60 | 9.36 |
2 | 54 | 12.82 | 58 | 10.56 |
3 | 56 | 11.26 | 56 | 11.50 |
4 | 58 | 10.66 | 57 | 10.79 |
5 | 59 | 9.57 | 59 | 9.82 |
6 | 61 | 9.22 | 54 | 12.93 |
7 | 55 | 11.90 | 63 | 8.18 |
8 | 63 | 8.28 | 55 | 11.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Wu, Z.; Dui, H. Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling. Mathematics 2022, 10, 4048. https://doi.org/10.3390/math10214048
Xiao S, Wu Z, Dui H. Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling. Mathematics. 2022; 10(21):4048. https://doi.org/10.3390/math10214048
Chicago/Turabian StyleXiao, Shichang, Zigao Wu, and Hongyan Dui. 2022. "Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling" Mathematics 10, no. 21: 4048. https://doi.org/10.3390/math10214048
APA StyleXiao, S., Wu, Z., & Dui, H. (2022). Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling. Mathematics, 10(21), 4048. https://doi.org/10.3390/math10214048